
ACTA ARITHMETICA

155.2 (2012)

A polynomial investigation
inspired by work of Schinzel and Sierpiński
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1. Introduction. Define a covering system (or covering) of the integers
as a finite collection of congruences x ≡ aj (mod mj), with 1 ≤ j ≤ r,
such that every integer satisfies at least one of these congruences. As an
interesting application of coverings, W. Sierpiński [4] showed that there are
odd positive integers k for which k · 2n + 1 is composite for all integers n ≥ 0.
For d ∈ Z, the first author [1] considered the analogous problem of finding
f(x) ∈ Z[x] such that f(x) · xn + d is reducible over the rationals for all
integers n ≥ 0. To make the problem non-trivial, we also require here that
f(1) 6= −d. This problem was motivated by the work of A. Schinzel in [3].
Among the open problems on covering systems is the problem of determining
whether there is an odd covering, that is, a covering that consists of distinct
odd moduli > 1. Schinzel showed that if there is an f(x) ∈ Z[x] such that
f(1) 6= −1 and f(x) · xn + 1 is reducible for all integers n ≥ 0, then there
must be an odd covering. In fact, he showed considerably more than this,
and the reader is directed to [3] for more details. For the general problem
concerning f(x)xn + d, the following is an easy consequence of the work of
Schinzel [3] (see also [1]).

Theorem 1.1. Let d be an odd integer. If there is an f(x) ∈ Z[x] sat-
isfying f(1) 6= −d and f(x) · xn + d is reducible over the rationals for all
integers n ≥ 0, then there is an odd covering of the integers.

The polynomial

f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x+ 3,
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motivated by an example given by Schinzel in [3], satisfies f(1) 6= −12 and
f(x)xn + 12 is reducible for all n ≥ 0. To justify the latter, one can make
use of the following implications:

n ≡ 0 (mod 2) ⇒ f(x)xn + 12 ≡ 0 (mod x+ 1),

n ≡ 2 (mod 3) ⇒ f(x)xn + 12 ≡ 0 (mod x2 + x+ 1),

n ≡ 1 (mod 4) ⇒ f(x)xn + 12 ≡ 0 (mod x2 + 1),

n ≡ 1 (mod 6) ⇒ f(x)xn + 12 ≡ 0 (mod x2 − x+ 1),

n ≡ 3 (mod 12) ⇒ f(x)xn + 12 ≡ 0 (mod x4 − x2 + 1).

The congruences involving n on the left can be shown to form a covering of
the integers; in other words, every integer n will satisfy at least one of these
congruences. Each implication can be justified by noting that the modulus
on the right is a cyclotomic polynomial Φm(x) with m corresponding to the
modulus used on n on the left. We deduce from these implications that for
each integer n ≥ 0, the polynomial f(x)xn + 12 is divisible by Φm(x) for
some m dividing 12 and, hence, reducible.

In [1], the first author showed that a similar example exists whenever
d is an integer divisible by 4. Thus, if 4 | d, then there is an f(x) ∈ Z[x]
such that f(1) 6= −d and f(x) · xn + d is reducible over the rationals for all
integers n ≥ 0. L. Jones [2] has shown that there are also similar examples
for infinitely many positive integers d ≡ 2 (mod 4). The smallest such d he
gives with his method is d = 90.

The purpose of this paper is to improve on the work in [1] and [2] by
showing that examples similar to Schinzel’s example above exist for every
even integer d. Thus, examples exist for every d for which Theorem 1.1 does
not apply. Specifically, we show the following.

Theorem 1.2. Let d be an even integer. There is an f(x) ∈ Z[x] such
that both f(1) 6= −d and f(x) · xn + d is reducible over the rationals for all
integers n ≥ 0.

2. Further preliminaries. Our arguments begin with the following
lemma which appears in [1].

Lemma 2.1. Let d be a positive integer. Suppose that S is a system of
congruences

(2.1) x ≡ 2j−1 (mod 2j) for j ∈ {1, . . . , k}
for some positive integer k together with

(2.2) x ≡ aj (mod mj) for j ∈ {1, . . . , r}
for some positive integer r satisfying:

(i) The system S is a covering of the integers.
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(ii) The moduli in (2.1) and (2.2) are all distinct and > 1.
(iii) For each j ∈ {1, . . . , r},( ∏

1≤i≤r
i 6=j

a(i, j)
)( k∏

i=1

b(i, j)
)

divides d

where

a(i, j) =

{
p if mi/mj = pt for some prime p and some integer t,

1 otherwise,

b(i, j) =

{
p if mj/2

i = pt for some prime p and some integer t,

1 otherwise.

(iv) The double product
∏k

i=1

∏r
j=1 b(i, j) divides d.

Then there exists f(x) ∈ Z[x] with positive coefficients such that f(x)xn + d
is reducible over the rationals for all non-negative integers n.

We now proceed as follows. First, we state a lemma establishing the
existence of a certain covering system. Then we explain how this lemma will
allow us to obtain Theorem 1.2. Finally, we give a proof of the lemma by
explicitly establishing the needed covering.

Lemma 2.2. There is a covering of the integers consisting of moduli
m1, . . . ,mr satisfying:

(i) Each ml is odd and > 1.
(ii) If ml is a prime number, then mj 6= ml for each j 6= l, with 1 ≤

j ≤ r.
(iii) If ml has at least two distinct prime factors, then there is at most

one j 6= l, with 1 ≤ j ≤ r, such that mj = ml.

We show that Lemma 2.2 implies that there is an f(x) ∈ Z[x] with
positive coefficients such that f(x)xn + 2 is reducible over the rationals for
all non-negative integers n. Observe that by simply multiplying through by
an appropriate positive integer, we can deduce that for every even integer d,
there is an f(x) ∈ Z[x], depending on d, with positive coefficients such that
f(x)xn + d is reducible over the rationals for all non-negative integers n.
More interesting examples, where for instance the greatest common divisor
of the coefficients of f(x) is 1, can be obtained for general even d by adding
a polynomial of the form xm + xm−1 + · · ·+ x+ 1 for an appropriate large
positive integer m. In any case, f(1) 6= −d.

To obtain f(x) ∈ Z[x] with positive coefficients such that f(x)xn + 2
is reducible over the rationals for all non-negative integers n, Lemma 2.1
implies that we need only show the existence of a certain covering system.
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Our goal is to revise the covering system in Lemma 2.2 to show that the
covering system for Lemma 2.1 exists.

Let x ≡ aj (mod mj) for j ∈ {1, . . . , r} denote the r congruences given
by Lemma 2.2. Suppose that the first s of these congruences have prime
moduli and the remaining do not. We suppose as we may (from Lemma
2.2(iii)) that if mi = mj for some integers i and j with s + 1 ≤ j < i ≤ r,
then i = j + 1. Define

m′j =

{
mj for j ∈ {1, . . . , s},
2j−smj for j ∈ {s+ 1, s+ 2, . . . , r}.

Let bj = aj for 1 ≤ j ≤ s. For each j ∈ {s+ 1, s+ 2, . . . , r}, we define bj as
the non-negative integer < 2j−smj satisfying

bj ≡ aj (mod mj) and bj ≡ 0 (mod 2j−s),

which exists by the Chinese Remainder Theorem. We consider the congru-
ences

(2.3) x ≡ 2j−1 (mod 2j) for j ∈ {1, . . . , r − s}
together with

(2.4) x ≡ bj (mod m′j) for j ∈ {1, . . . , r}.
We show that these congruences form a system S of congruences satisfying
the conditions of Lemma 2.1 with d = 2, k = r−s and the mj there replaced
by m′j .

Suppose n is an integer that does not satisfy one of the congruences in
(2.3). Observe that if j is the largest positive integer for which 2j−1 divides n,
then n ≡ 2j−1 (mod 2j). Since n does not satisfy the congruences in (2.3),
we deduce n ≡ 0 (mod 2r−s). Also, since the congruences x ≡ aj (mod mj)
for j ∈ {1, . . . , r} form a covering of the integers, n ≡ aj (mod mj) for
some j ∈ {1, . . . , r}. By the definition of bj , we see for that choice of j that
x ≡ bj (mod m′j). Hence, n satisfies one of the congruences in (2.4). Thus,
S satisfies condition (i) of Lemma 2.1.

Condition (ii) of Lemma 2.1 is easily checked for the congruences in
(2.3) and (2.4). To verify conditions (iii) and (iv) of Lemma 2.1 for the
congruences in (2.3) and (2.4), we alter the definitions of a(i, j) and b(i, j)
accordingly so that mi and mj are replaced by m′i and m′j . Note that the
conditions in Lemma 2.2 and the definition of s imply that m′1, . . . ,m

′
s are

distinct primes and m′s+1,m
′
s+2, . . . ,m

′
r are distinct numbers each having

≥ 3 distinct prime factors. Further, the largest powers of 2 dividing the
numbers m′s+1,m

′
s+2, . . . ,m

′
r, namely 2, 22, . . . , 2r−s, are distinct. It follows

that if m′j/m
′
i = pt for some prime p and some integer t, then p = 2 and,

consequently, mj = mi. Recall that for j fixed, the conditions i 6= j and
mj = mi imply there is at most one possibility for i. We deduce that for
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each j ∈ {1, . . . , r}, ∏
1≤i≤r
i 6=j

a(i, j) divides 2.

The conditions in Lemma 2.2 imply that each mj with j > s and, hence,
each even m′j has at least two odd prime divisors. It follows that b(i, j) = 1
for every choice of i and j in {1, . . . , r}. Conditions (iii) and (iv) of Lemma
2.1 now easily follow.

3. Construction for Lemma 2.2. Given lists [b1, . . . ,bt] and [n1, . . . ,nt]
with n1, . . . , nt pairwise relatively prime positive integers, we denote by

([b1, . . . , bt], [n1, . . . , nt])

the congruence x ≡ b (mod n) where n = n1 · · ·nt and b ∈ {0, 1, . . . , n− 1}
satisfies b ≡ bj (mod nj) for 1 ≤ j ≤ t. That such a b exists follows from the
Chinese Remainder Theorem. Note that, with b and n so defined, the con-
gruences represented by ([b1, . . . , bt], [n1, . . . , nt]) and ([b], [n]) are identical.
With this same notation, we denote by

I([b1, . . . , bt], [n1, . . . , nt]) = I([b], [n])

the set of integers satisfying x ≡ b (mod n). We say that a collection of
congruences covers a set of integers if every integer in the set satisfies at
least one congruence in the collection.

In this section, we elaborate on the covering system, say S, satisfying the
conditions of Lemma 2.2. Noting that every integer belongs to one of the sets
I([1], [3]), I([2], [3]) and I([3], [3]) = I([0], [3]), we determine congruences for
S by finding collections S1, S2 and S3 of congruences that cover each of these
three sets. The system S, then, will be the union of the congruences given
in S1, S2 and S3.

For I([1], [3]), we simply use the congruence ([1], [3]). For I([2], [3]),
we consider the integers in each of the five residue classes modulo 5. We
cover the integers in I([2], [3]) that are 1 modulo 5 by using the congruence
([1], [5]). For later purposes, we note that this same congruence will cover the
integers in I([3], [3]) that are 1 modulo 5. We cover the integers in I([2], [3])
that are 2 modulo 5 and 5 modulo 5 by using congruences modulo 15. Recall
that the conditions in Lemma 2.2 allow us to use the modulus 15 for two dif-
ferent congruences. Thus, we can use the two congruences ([2, 2], [3, 5]) and
([2, 5], [3, 5]). So far our congruences S include the four congruences given
by

(3.1) ([1], [3]), ([1], [5]), ([2, 2], [3, 5]), ([2, 5], [3, 5]).

With these, we have covered I([1], [3]) and three-fifths of I([2], [3]). We still
need to elaborate on the congruences of S that cover the integers in I([2], [3])
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that are 3 and 4 modulo 5 and that cover the integers in I([3], [3]) (that are
not 1 modulo 5).

We explain next the congruences used to cover I([2, 3], [3, 5]). We will
make use here of moduli of the form 3j+1 ·5 and moduli of the form 3j ·5 ·23
where j is a positive integer. We keep in mind that each such modulus can
be used for two congruences in S, though we only take advantage of this
fact for those of the form 3j+1 · 5. Each integer in I([2], [3]) is either 2, 5 or
8 modulo 9. In the first two of these three cases, the integers that are also
3 modulo 5 satisfy one of the congruences ([2, 3], [32, 5]) and ([5, 3], [32, 5]).
The integers that are 8 modulo 9 are either 8, 17 or 26 modulo 27. Those
that are 8 or 17 modulo 27 satisfy one of the congruences ([8, 3], [33, 5]) and
([17, 3], [33, 5]). In general, for each positive integer j, the integers that are
3j − 1 modulo 3j are either 3j − 1, 2 · 3j − 1 or 3 · 3j − 1 = 3j+1 − 1 modulo
3j+1. Those that are 3j − 1 or 2 · 3j − 1 modulo 3j+1 and 3 modulo 5 are
covered by ([3j − 1, 3], [3j+1, 5]) and ([2 · 3j − 1, 3], [3j+1, 5]). We deduce that
the congruences

(3.2) ([3j − 1, 3], [3j+1, 5]), ([2 · 3j − 1, 3], [3j+1, 5]) for 1 ≤ j ≤ 22

cover all the integers in I([2], [3]) that are 3 modulo 5 except those that
are 323 − 1 modulo 323. Since each such integer is also congruent to some
positive integer ≤ 23 modulo 23, we deduce that these integers are covered
by the congruences

(3.3) ([323 − 1, 3, j], [3j , 5, 23]) for 1 ≤ j ≤ 23.

Thus, the congruences in (3.2) and (3.3) cover the integers in I([2], [3]) that
are 3 modulo 5.

To finish covering the integers that are in I([2], [3]), we are left with
finding congruences that cover those that are also 4 modulo 5. In other
words, we now want to cover I([2, 4], [3, 5]). We divide these integers into
classes modulo 7, covering each in turn. We start with the congruences

(3.4) ([1], [7]), ([2, 4, 2], [3, 5, 7]), ([2, 4, 3], [3, 5, 7]), ([4, 4], [5, 7])

to cover those integers in I([2, 4], [3, 5]) that are 1, 2, 3 or 4 modulo 7. Next,
we mimic what was done in (3.2) and (3.3) to cover I([2, 3], [3, 5]) by restrict-
ing these same congruences to integers that are 5 modulo 7. Specifically, we
include

(3.5) ([3j−1, 4, 5], [3j+1, 5, 7]), ([2·3j−1, 4, 5], [3j+1, 5, 7]) for 1 ≤ j ≤ 22

and

(3.6) ([323 − 1, 4, 5, j], [3j , 5, 7, 23]) for 1 ≤ j ≤ 23

in our system S to cover I([2, 4, 5], [3, 5, 7]). To finish covering I([2, 4], [3, 5]),
we consider separately I([2, 4, 6], [3, 5, 7]) and I([2, 4, 7], [3, 5, 7]).
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To cover I([2, 4, 6], [3, 5, 7]), we use the fact that each is in one of seven
different residue classes modulo 72. We keep in mind that, although our
required system S for Lemma 2.2 can involve moduli divisible by pe where p
is an odd prime and e an integer ≥ 2, it cannot have moduli that are equal
to these prime powers. For I([2, 4, 6], [3, 5, 7]), we cover six of the needed
residue classes modulo 72 using

(3.7)
([2, 6], [3, 72]), ([2, 13], [3, 72]), ([4, 20], [5, 72]), ([4, 27], [5, 72]),

([2, 4, 34], [3, 5, 72]), ([2, 4, 41], [3, 5, 72]).

For the final residue class modulo 72, we use congruences similar to (3.2)
and (3.3). This last class modulo 72 is covered by

([3j − 1, 4, 48], [3j+1, 5, 72]),

(3.8) ([2 · 3j − 1, 4, 48], [3j+1, 5, 72]) for 1 ≤ j ≤ 22,

([323 − 1, 4, 48, j], [3j , 5, 72, 23]) for 1 ≤ j ≤ 23.

To finish covering I([2], [3]), we need only cover I([2, 4, 7], [3, 5, 7]). This
is a thin enough set that we are able to get away with using the prime 19
to complete this case. The idea then is to consider each of the 19 possible
residue classes that each of these integers can belong to. We cover 15 of
these residue classes using

(3.9)

([1], [19]), ([2, 2], [3, 19]), ([2, 3], [3, 19]), ([4, 4], [5, 19]),

([4, 5], [5, 19]), ([2, 4, 6], [3, 5, 19]), ([2, 4, 7], [3, 5, 19]),

([7, 8], [7, 19]), ([7, 9], [7, 19]), ([2, 7, 10], [3, 7, 19]),

([2, 7, 11], [3, 7, 19]), ([4, 7, 12], [5, 7, 19]), ([4, 7, 13], [5, 7, 19]),

([2, 4, 7, 14], [3, 5, 7, 19]), ([2, 4, 7, 15], [3, 5, 7, 19]).

We make use of the idea in (3.2) and (3.3) to cover the remaining classes
modulo 19, each class making use of such a list of congruences. Those integers
congruent to 16 modulo 19 in I([2, 4, 7], [3, 5, 7]) are covered by

(3.10)
([3j − 1, 16], [3j+1, 19]), ([2 · 3j − 1, 16], [3j+1, 19]) for 1 ≤ j ≤ 22,

([323 − 1, 16, j], [3j , 19, 23]) for 1 ≤ j ≤ 23;

those congruent to 17 modulo 19 by

([3j − 1, 4, 17], [3j+1, 5, 19]),

(3.11) ([2 · 3j − 1, 4, 17], [3j+1, 5, 19]) for 1 ≤ j ≤ 22,

([323 − 1, 4, 17, j], [3j , 5, 19, 23]) for 1 ≤ j ≤ 23;

those congruent to 18 modulo 19 by
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([3j − 1, 7, 18], [3j+1, 7, 19]),

(3.12) ([2 · 3j − 1, 7, 18], [3j+1, 7, 19]) for 1 ≤ j ≤ 22,

([323 − 1, 7, 18, j], [3j , 7, 19, 23]) for 1 ≤ j ≤ 23;

those congruent to 19 (or 0) modulo 19 by

([3j − 1, 4, 7, 19], [3j+1, 5, 7, 19]),

(3.13) ([2 · 3j − 1, 4, 7, 19], [3j+1, 5, 7, 19]) for 1 ≤ j ≤ 22,

([323 − 1, 4, 7, 19, j], [3j , 5, 7, 19, 23]) for 1 ≤ j ≤ 23.

The congruences above combine then to cover I([2], [3]).
Next, we use an approach similar to the case of I([2], [3]) and break

up I([3], [3]) into the five residue classes modulo 5. The second congru-
ence in (3.1) will cover I([3, 1], [3, 5]). In each of the four remaining cases
I([3, j], [3, 5]), with 2 ≤ j ≤ 5, we will divide the integers up into their
residue classes modulo 7. What is of particular importance to us here is
that the first congruence in (3.4) and the congruences

(3.14) ([3, 2], [3, 7]), ([3, 3], [3, 7])

cover three of the seven residue classes modulo 7 for each I([3, j], [3, 5]).
Further, we can cover a fourth residue class modulo 7 in each I([3, j], [3, 5])
by using the congruences

(3.15)
([3j , 5], [3j+1, 7]), ([2 · 3j , 5], [3j+1, 7]) for 1 ≤ j ≤ 22,

([323, 5, j], [3j , 7, 23]) for 1 ≤ j ≤ 23.

To finish covering I([3], [3]), we are left with covering the integers congruent
to 4, 6 or 7 modulo 7 in each I([3, j], [3, 5]), with 2 ≤ j ≤ 5. We note that we
have deliberately covered the residue class 5 modulo 7 instead of 4 modulo
7 so that we can make use of the last congruence in (3.4) when we consider
I([3, 4], [3, 5]).

We finish covering I([3, 2], [3, 5]) as follows. As noted above, the congru-
ences in (3.14) and (3.15) cover four residue classes modulo 7. We make use
of this momentarily, but for the time being we instead break up the integers
in I([3, 2], [3, 5]) into their five residue classes modulo 52 with the goal of
covering each of these five classes in turn. The congruences corresponding
to j = 1 in the list

(3.16) ([3, 5j + 2], [3, 5j+1]), ([3, 2 · 5j + 2], [3, 5j+1]) for 1 ≤ j ≤ 22

cover the residue classes of 7 and 12 modulo 52. The collection of 2 · 22 + 23
congruences corresponding to j = 1 in

([3i, 3 · 5j + 2], [3i+1, 5j+1]),

(3.17) ([2 · 3i, 3 · 5j + 2], [3i+1, 5j+1]) for 1 ≤ i, j ≤ 22,

([323, 3 · 5j + 2, i], [3i, 5j+1, 23]) for 1 ≤ i ≤ 23, 1 ≤ j ≤ 22
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cover the integers that are 17 modulo 52. To cover the integers that are
22 modulo 52, we consider their residue classes modulo 7 and recall that
we have already covered the integers in I([3, 2], [3, 5]) that are 1, 2, 3 or 5
modulo 7. We use the case j = 1 in

(3.18) ([4 · 5j + 2, 4], [5j+1, 7]), ([4 · 5j + 2, 6], [5j+1, 7]),

([3, 4 · 5j + 2, 7], [3, 5j+1, 7]) for 1 ≤ j ≤ 23

to finish covering the integers that are 22 modulo 52. We still need to cover
I([3, 2], [3, 52]). We divide these into five residue classes modulo 53 and use
j = 2 in (3.16)–(3.18) to cover the four of these five classes that are not
2 modulo 53. Continuing with 3 ≤ j ≤ 22 to cover residue classes modulo
5j+1, we see that the congruences in (3.16)–(3.18) cover all the integers in
I([3, 2], [3, 52]) except those that are in I([3, 2], [3, 523]). We cover these by
using the congruences

(3.19) ([2, j], [5j , 23]) for 1 ≤ j ≤ 23,

noting the jth congruence in this list covers those integers in I([3, 2], [3, 523])
that are j modulo 23.

Next, we cover I([3, 3], [3, 5]). We break up these integers into their
residue classes modulo 7. Recall we only need to cover the residue classes
of 4, 6 and 7 modulo 7. In (3.4), the modulus 5 · 7 was used once, and we
use it again here to cover I([3, 3, 4], [3, 5, 7]) with

([3, 4], [5, 7]).(3.20)

We cover all integers in I([3, 3, 6], [3, 5, 7]) except those congruent to 6 mod-
ulo 11 using

(3.21)

([1], [11]), ([3, 2], [3, 11]), ([3, 3], [3, 11]), ([3, 4], [5, 11]),

([3, 3, 5], [3, 5, 11]), ([3, 6, 7], [3, 7, 11]), ([3, 6, 8], [3, 7, 11]),

([6, 9], [7, 11]), ([6, 10], [7, 11]), ([3, 6, 11], [5, 7, 11]).

For later purposes, note that we have only used some moduli dividing 3 · 5 ·
7 · 11 above once. To cover I([3, 3, 6, 6], [3, 5, 7, 11]), we use

(3.22)
([3j , 6], [3j+1, 11]), ([2 · 3j , 6], [3j+1, 11]) for 1 ≤ j ≤ 22,

([323, 6, j], [3j , 11, 23]) for 1 ≤ j ≤ 23.

Next, we turn to I([3, 3, 7], [3, 5, 7]) and consider their residue classes mod-
ulo 13. We cover all integers in I([3, 3, 7], [3, 5, 7]) except those congruent to
12 or 13 modulo 13 in a manner very similar to our approach for covering
I([3, 3, 6], [3, 5, 7]) above but with 11 replaced by 13. Specifically, we use

(3.23)

([1], [13]), ([3, 2], [3, 13]), ([3, 3], [3, 13]), ([3, 4], [5, 13]),

([3, 3, 5], [3, 5, 13]), ([3, 7, 7], [3, 7, 13]), ([3, 7, 8], [3, 7, 13]),

([7, 9], [7, 13]), ([7, 10], [7, 13]), ([3, 7, 11], [5, 7, 13]),
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and

(3.24)
([3j , 6], [3j+1, 13]), ([2 · 3j , 6], [3j+1, 13]) for 1 ≤ j ≤ 22,

([323, 6, j], [3j , 13, 23]) for 1 ≤ j ≤ 23.

We use

(3.25) ([3, 3, 7, 12], [3, 5, 7, 13])

to cover I([3, 3, 7, 12], [3, 5, 7, 13]) and

([3j , 7, 13], [3j+1, 7, 13]),

(3.26) ([2 · 3j , 7, 13], [3j+1, 7, 13]) for 1 ≤ j ≤ 22,

([323, 7, 13, j], [3j , 7, 13, 23]) for 1 ≤ j ≤ 23,

to cover I([3, 3, 7, 13], [3, 5, 7, 13]). We deduce that the congruences (3.20)–
(3.26) cover I([3, 3], [3, 5]).

To cover I([3, 4], [3, 5]), we need only cover those integers that are in the
residue classes of 4, 6 and 7 modulo 7 (the other residue classes having al-
ready been covered above). The congruence ([4, 4], [5, 7]) in (3.4) covers the
integers in I([3, 4, 4], [3, 5, 7]). To cover I([3, 4, 6], [3, 5, 7]), we can reuse sev-
eral of the congruences in (3.21) and (3.22) (those with moduli not divisible
by 5) to cover the integers in certain residue classes modulo 11. Specifically,
the integers in I([3, 4, 6], [3, 5, 7]) that are 1, 2, 3, 6, 7, 8, 9 or 10 modulo 11
are covered by congruences in (3.21) and (3.22). We only used the moduli
5 · 11, 3 · 5 · 11 and 5 · 7 · 11 once in (3.21), so we now use

(3.27) ([4, 4], [5, 11]), ([3, 4, 5], [3, 5, 11]), ([4, 6, 11], [5, 7, 11])

to cover the integers in I([3, 4, 6], [3, 5, 7]) that are 4, 5 or 11 modulo 11.
This completes covering I([3, 4, 6], [3, 5, 7]). Turning to I([3, 4, 7], [3, 5, 7]),
we can reuse congruences in (3.23), (3.24) and (3.26) to cover those integers
here that lie in the residue classes 1, 2, 3, 6, 7, 8, 9, 10 or 13 modulo 13. We
use

(3.28)
([4, 4], [5, 13]), ([3, 4, 5], [3, 5, 13]),

([4, 7, 11], [5, 7, 13]), ([3, 4, 7, 12], [3, 5, 7, 13])

to cover the remaining integers in I([3, 4, 7], [3, 5, 7]).

We are left with covering I([3, 5], [3, 5]). More precisely, we need only
cover I([3, 5, 4], [3, 5, 7]), I([3, 5, 6], [3, 5, 7]) and I([3, 5, 7], [3, 5, 7]). We split
up the integers in I([3, 5, 4], [3, 5, 7]) into residue classes modulo 17. Let
a ∈ I([3, 5, 4], [3, 5, 7]), and let m1, . . . ,m7 be the divisors of 3 · 5 · 7 that
are > 1. We use

(3.29) ([a, j], [mj , 17]), ([a, j + 7], [mj , 17]) for 1 ≤ j ≤ 7

to cover the integers in I([3, 5, 4], [3, 5, 7]) that are in the residue classes of
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1, . . . , 13 or 14 modulo 17. We cover the remaining integers using

([15], [17]),(3.30)

([3j , 16], [3j+1, 17]), ([2 · 3j , 16], [3j+1, 17]) for 1 ≤ j ≤ 22,

([323, 16, j], [3j , 17, 23]) for 1 ≤ j ≤ 23,
(3.31)

and

([3j , 5, 17], [3j+1, 5, 17]),

(3.32) ([2 · 3j , 5, 17], [3j+1, 5, 17]) for 1 ≤ j ≤ 22,

([323, 5, 17, j], [3j , 5, 17, 23]) for 1 ≤ j ≤ 23.

We turn to covering I([3, 5, 6], [3, 5, 7]) and once again use the congruences
in (3.21) and (3.22). With these, we cover the integers in I([3, 5, 6], [3, 5, 7])
that are 1, 2, 3, 6, 7, 8, 9 or 10 modulo 11. We use

(3.33) ([3, 5, 6, 4], [3, 5, 7, 11]), ([3, 5, 6, 5], [3, 5, 7, 11]),

to cover those integers in I([3, 5, 6], [3, 5, 7]) that are 4 or 5 modulo 11. We
cover those that are 11 modulo 11 using

([3j , 5, 11], [3j+1, 5, 11]),

(3.34) ([2 · 3j , 5, 11], [3j+1, 5, 11]) for 1 ≤ j ≤ 22,

([323, 5, 11, j], [3j , 5, 11, 23]) for 1 ≤ j ≤ 23.

For I([3, 5, 7], [3, 5, 7]), we use congruences in (3.23), (3.24) and (3.26) again
to cover integers in the residue classes 1, 2, 3, 6, 7, 8, 9, 10 or 13 modulo 13.
The congruences

([3j , 5, 4], [3j+1, 5, 13]),

(3.35) ([2 · 3j , 5, 4], [3j+1, 5, 13]) for 1 ≤ j ≤ 22,

([323, 5, 4, j], [3j , 5, 13, 23]) for 1 ≤ j ≤ 23

and

([3j , 5, 7, 5], [3j+1, 5, 7, 13]),

(3.36) ([2 · 3j , 5, 7, 5], [3j+1, 5, 7, 13]) for 1 ≤ j ≤ 22,

([323, 5, 7, 5, j], [3j , 5, 7, 13, 23]) for 1 ≤ j ≤ 23

cover the integers in I([3, 5, 7], [3, 5, 7]) that are in the residue classes of 4 or 5
modulo 13. We can use the congruences in (3.21) and (3.22) to cover those in-
tegers in each of I([3, 5, 7, 11], [3, 5, 7, 13]) and I([3, 5, 7, 12], [3, 5, 7, 13]) that
are 1, 2, 3 or 6 modulo 11. Recall m1, . . . ,m7 are the divisors of 3 · 5 · 7 that
are > 1. Let b ∈ I([3, 5, 7], [3, 5, 7]). We cover the remaining integers using

(3.37) ([b, j + 3, 11], [mj , 11, 13]),

([b, j + 3, 12], [mj , 11, 13]) for 1 ≤ j ≤ 2



160 M. Filaseta and J. Harrington

and

(3.38) ([b, j + 4, 11], [mj , 11, 13]),

([b, j + 4, 12], [mj , 11, 13]) for 3 ≤ j ≤ 7.

We note that the modulus 11 · 13, which could have been used twice, was
not used here.

As just shown, the congruences in (3.1)–(3.38) form a covering of the
integers. We use these congruences to form the set S needed for Lemma 2.2.
What is left is to verify the conditions (i), (ii) and (iii) in Lemma 2.2, which
can be done directly going through the various moduli indicated above. This
completes the proof.

4. Concluding remarks. We made use of 2773 congruences for the
construction given in the previous section, that is, to obtain a covering sat-
isfying the conditions in Lemma 2.2. This corresponds to 5539 congruences
to construct a polynomial f(x) ∈ Z[x], based on Lemma 2.1, such that
f(1) 6= −2 and f(x)xn + 2 is reducible for all integers n ≥ 0. Although
the method used in [1] is similar to the approach here, the covering system
obtained for constructing an analogous f(x) with d = 4 there was more
complicated due to the fact that prime moduli were not used (i.e., Lemma
2.2(ii) was not considered in [1]).

The approach given by L. Jones in [2] was to show first that there is
an f(x) ∈ Z[x] such that f(1) 6= −d and f(x)xn + d is reducible for all
integers n ≥ 0 if there is a covering system with distinct moduli > 1 and
with the least common multiple of the moduli equal to d. Jones then uses
this information to show that such an f(x) can be constructed for infinitely
many d ≡ 2 (mod 4). In particular, he is able to produce an explicit f(x)
in the case d = 90. We note that, although the values of d found by Jones
in [2] were not found by the first author in [1], the present Lemma 2.1 (which
appears as Theorem 3 in [1]) can be used to produce them.
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