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1. Introduction. Our aim in this paper is to obtain lower bounds for
the conductor of L-functions in a general setting. We therefore start with the
definition of our framework, i.e. the Selberg class S of L-functions: F ∈ S if

(i) F (s) is an absolutely convergent Dirichlet series for σ > 1,

F (s) =
∞∑
n=1

a(n)

ns
;

(ii) (s− 1)mF (s) is an entire function of finite order for some m ∈ N;
(iii) F (s) satisfies a functional equation of the type Φ(s) = ωΦ̄(1 − s),

where |ω| = 1, f̄(s) = f(s̄) and

Φ(s) = Qs
r∏
j=1

Γ (λjs+ µj)F (s) = γ(s)F (s),

say, with Q > 0, r ≥ 0, λj > 0 and <µj ≥ 0;
(iv) a(n)� nε for every ε > 0;
(v) logF (s) is a Dirichlet series with coefficients b(n) satisfying b(n) = 0

unless n = pk with p prime and k ≥ 1, and b(n) � nϑ for some
ϑ < 1/2.

The extended Selberg class S] is the larger class of the functions F (s) satis-
fying (i)–(iii) above.

We refer to Selberg [15], Conrey–Ghosh [2] and to our survey papers [7],
[4], [12], [13], [14] for a discussion of the basic properties of S and S]. Here
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we recall that (v) implies an Euler product expansion of general type, i.e.

(1.1) F (s) =
∏
p

Fp(s), Fp(s) =

∞∑
m=0

a(pm)

pms
.

Moreover, the degree and the conductor of F ∈ S] are defined respec-
tively by

dF = 2
r∑
j=1

λj , qF = (2π)dFQ2
r∏
j=1

λ
2λj
j .

Note that the real numbers dF and qF are invariants, i.e. they depend only
on F (s) and not on the shape of the functional equation (which may be
changed by means of suitable formulae for the Γ function). We refer to [8]
and [9] for the invariant theory of the Selberg class. Note also that in the case
of classical L-functions, the conductor qF coincides with well known objects
associated with the underlying structure of the L-functions. For example,
qF is the conductor of the primitive Dirichlet character χ if F (s) = L(s, χ),
the level of the normalized newform f(z) if F (s) = Lf (s), the absolute value
of the discriminant of the number field K if F (s) = ζK(s), and so on.

From now on we assume that dF > 0. Indeed, the structure of the de-
gree 0 functions from both S and S] is quite well understood (see Conrey–
Ghosh [2] and, e.g., Kaczorowski–Molteni–Perelli [5]); in this case sharper
results than those presented below are easily obtained.

It turns out that qF ∈ N when F (s) is a classical L-function, and we
expect that qF ∈ N for every F ∈ S. This is mainly based on the expectation
that S coincides with the class of automorphic L-functions. However, at
present the classification of S is far from being complete, and the question
if qF ∈ N is an interesting open problem. As usual, the situation is more
complicated for S]. Indeed, in this case qF does not need to be an integer,
as one can see from Hecke’s theory of (suitably normalized) Dirichlet series
associated with G(λ)-modular forms; see e.g. Berndt–Knopp [1]. In fact,
qF = λ2 if F (s) comes from G(λ). Nevertheless, we still expect a universal
lower bound, say qF ≥ c0 > 0, for all F ∈ S]. Actually, since S] is a
multiplicative semigroup and qFG = qF qG, if such a c0 exists then c0 = 1.
We wish to thank Brian Conrey for pointing out that in the Hecke theory
case, although a priori conductors can be arbitrary positive numbers, the
spaces of modular forms are trivial when the conductor is < 1. We further
note that the situation changes completely if generalized Dirichlet series are
allowed. Indeed, in this case qF can be arbitrarily small; see [10].

In order to state our results we first have to introduce and discuss several
interesting invariants; again, we refer to [8] and [9] for a full account. For
any integer n ≥ 0 let Bn(z) denote the nth Bernoulli polynomial. The
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H-invariants of F ∈ S] are defined as

HF (n) = 2
r∑
j=1

Bn(µj)

λn−1j

, n = 0, 1, . . . .

The interest of the H-invariants comes from the fact that if F,G ∈ S]
have the same conductor, root number (see e.g. [9] for its definition) and
all H-invariants, then they satisfy the same functional equation. Moreover,
HF (0) = dF and HFG(n) = HF (n) + HG(n). Another interesting invariant
is the meromorphic function

KF (z) = z
r∑
j=1

ezµj/λj

ez/λj − 1
.

KF (z) is related both to the H-invariants and to the poles ρ of the γ-factor
γ(s) in the functional equation of F (s), thanks to the following expressions
(valid in suitable regions of C):

KF (z) =
1

2

∞∑
n=0

HF (n)

n!
zn = −z

∑
ρ

e−ρz,

where ρ runs over such poles.

Now we define three new invariants. For F ∈ S] let

H∗F = sup
n≥1

(
|HF (n)|
n!

)1/n

, H•F = lim sup
n→∞

(
|HF (n)|
n!

)1/n

and, if dF > 0,

DF = max
j=1,...,r

|=µj |
λj

.

Clearly, H∗F and H•F are invariants, and H∗F ≥ H•F . Moreover, DF is an
invariant since

DF = max
ρ
|=ρ|,

where ρ runs over the trivial zeros of F (s). We have

Theorem 1. Let F ∈ S] with dF > 0. Then

1

πdF
≤ H•F ≤ H∗F <∞.

From the proof of Theorem 1 (see (2.1) below), and the fact that dF ≥ 1
if dF 6= 0 (see [6]), we have the upper bound

(1.2) H∗F � dF max
j=1,...,r

1 + |µj |
λj

.
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It is expected that every F ∈ S has an Euler product of polynomial type,
i.e. for every prime p the shape of Fp(s) in (1.1) is

(1.3) Fp(s) =

∂p∏
j=1

(
1− αj,p

ps

)−1
with |αj,p| ≤ 1 and ∂p ≤ dF . Our main result holds for functions satisfying
(1.3); therefore we denote by S∗ the subclass of S of the functions satisfying
(1.3), and hence conjecturally S∗ = S. We have

Theorem 2. Let F ∈ S∗ with dF > 0. Then there exists an absolute
constant c0 > 0 such that

(1 +H∗F +DF )q
1/dF
F ≥ c0.

In accordance with a previous remark, the bound in Theorem 2 does not
hold if generalized Dirichlet series are allowed. Theorem 2 provides at once
a lower bound for qF in terms of the other invariants dF , H∗F and DF , hence
relations between H∗F and DF would be of interest. For example, is it true
that something like

DF � H∗F

holds? From (1.2) we see that if the µj are pure imaginary with modulus,
say, ≥ 1, then H∗F � dFDF . On the other hand, DF = 0 if the µj are all
real, and hence H∗F � DF certainly does not hold in general.

We can avoid the invariant DF in lower bounds for qF assuming that the
functional equation of F ∈ S∗ has the expected shape, i.e. if we can take all
λj equal to 1/2. In this case we have, as expected, dF ∈ N and F (s) has a
γ-factor of the form

(1.4) γ(s) = Qs
dF∏
j=1

Γ

(
s

2
+ µj

)
.

Note that if F ∈ S∗ we expect that ∂p = dF for almost all primes p. We
refer to [8] and [11] for a discussion of these matters. We have

Theorem 3. Let F ∈ S∗ with dF > 0 and suppose that F (s) has a
γ-factor of the form (1.4). Then there exists an absolute constant c1 > 0
such that

dFH
∗
F q

1/dF
F ≥ c1.

Finally, we refer to Section 3 below for sharper results and computation
of the above invariants in several special cases.

2. Proofs

Proof of Theorem 1. Since H•F ≤ H∗F , we prove that H∗F < ∞ and
H•F ≥ 1/πdF . We refer to our paper [9] for several results needed in the
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proof. From (3) and (22) of Section 1.13 of the Bateman Project [3] we see
that the Bernoulli polynomials Bn(z) satisfy

|Bn(z)| ≤
n∑
r=0

(
n

r

)
|Br| |z|n−r �

n!

(2π)n
(1 + |z|)n.

Therefore from the definition of the H-invariants we obtain

(2.1) |HF (n)| � n!

(2π)n

r∑
j=1

(1 + |µj |)n

λn−1j

� n!dF

(
max
j=1,...,r

1 + |µj |
λj

)n
,

hence H∗F <∞.

To prove the lower bound for H•F , thanks to Theorem 2 of [9] we first
write the γ-factor of F (s) in the form

γ(s) = Qs
hF∏
j=1

Nj∏
k=1

Γ (λjs+ µj,k),

where hF is the γ-class number of F (s) (see [8]), Nj are suitable positive
integers, <µj,k ≥ 0 and different λj ’s are not Q-equivalent (i.e. λi/λj /∈ Q if
i 6= j); note that these Q and λj are not necessarily equal to the Q and λj
introduced in (iii) in Section 1. Then formula (2.3) of [9] becomes

(2.2)

hF∑
j=1

Sj(z) =
1

2

∞∑
n=0

HF (n)

n!
zn

with

Sj(z) =
z

ez/λj − 1

Nj∑
k=1

ezµj,k/λj =
z

ez/λj − 1
S̃j(z),

say. Note that Sj(z) has poles at the points z = 2πimλj with 0 6= m ∈ Z
such that S̃j(2πimλj) 6= 0. Denoting by mj the integer m 6= 0 with smallest

absolute value for which S̃j(2πimλj) 6= 0, we have |mj | ≤ Nj . Indeed, if

S̃j(2πimλj) = 0 for m = 1, . . . , Nj (or m = −1, . . . ,−Nj) then by (i) of
Lemma 4.1 of [9] we deduce that e2πiµj,k = 0 for k = 1, . . . , Nj , a contradic-
tion. Note also that the poles of distinct Sj(z) are all distinct since the λj
are not Q-equivalent. Therefore, the left hand side of (2.2) is holomorphic
in the disc

|z| < 2π min
1≤j≤hF

|mj |λj

and in no larger disc, and hence

H•F = lim sup
n→∞

(
|HF (n)|
n!

)1/n

=
1

2πmin1≤j≤hF |mj |λj
.
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But min1≤j≤hF |mj |λj ≤ min1≤j≤hF Njλj ≤
∑hF

j=1Njλj = dF /2, and the
result follows.

Proof of Theorem 2. We start with several preliminary lemmas. For
τ, µ ∈ C we write

A(τ) =

1�

0

(e−ξ/τ − e−ξ) dξ
ξ

+

∞�

1

e−ξ/τ
dξ

ξ

B(τ, µ) =

1�

0

(
e−ξ − ξe−ξ(1+µ/τ)

τ(1− e−ξ/τ )

)
dξ

ξ

C(τ, µ) =
1

τ

∞�

1

e−ξ(1+µ/τ)

1− e−ξ/τ
dξ.

Clearly, A(τ) and B(τ, µ) are absolutely convergent and holomorphic for
<τ > 0, while C(τ, µ) is absolutely convergent and holomorphic for <τ > 0
and <µτ > −1.

Lemma 1. For real τ > 0 we have

A(τ) = log τ +O(1)

with an absolute constant in the O-symbol.

Proof. Suppose first that τ ≥ 1. Since e−ξ/τ − e−ξ = O(ξ) for 0 ≤ ξ ≤ 1
we have

1�

0

(e−ξ/τ − e−ξ) dξ
ξ
� 1.

Moreover,

∞�

1

e−ξ/τ
dξ

ξ
=

τ�

1

dξ

ξ
+

τ�

1

(e−ξ/τ − 1)
dξ

ξ
+

∞�

τ

e−ξ/τ
dξ

ξ

= log τ +O

( τ�

1

ξ/τ

ξ
dξ

)
+O

(∞�
1

e−ξ

ξ
dξ

)
= log τ +O(1),

as required. Let now 0 < τ < 1. Then

∞�

1

e−ξ/τ
dξ

ξ
≤
∞�

1

e−ξ
dξ

ξ
� 1.

Moreover, for 0 < ξ < τ we have e−ξ/τ − e−ξ = O(ξ/τ), hence

τ�

0

(e−ξ/τ − e−ξ) dξ
ξ
� 1

τ

τ�

0

dξ � 1
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and
1�

τ

(e−ξ/τ− e−ξ) dξ
ξ

=

1�

τ

e−ξ/τ
dξ

ξ
+

1�

τ

(1− e−ξ) dξ
ξ
−

1�

τ

dξ

ξ
=O(1)+O(1)+log τ,

as required.

Lemma 2. For <τ > 0, |τ | > 1/2π and µ ∈ C we have

B(τ, µ) =

∞∑
n=1

(−1)n+1Bn(µ)cn
n!

1

τn
with cn =

1�

0

e−ξξn−1 dξ.

Proof. By the substitution ξ 7→ τξ we get

(2.3) B(τ, µ) =

1/τ�

0

(
−ξe

−ξ(τ+µ)

1− e−ξ
+ e−τξ

)
dξ

ξ
.

By (2) and (12) of Sect. 1.13 of Bateman’s Project [3], for |ξ| ≤ 1/τ (< 2π)
we have

ξe−ξµ

1− e−ξ
=
ξeξ(1−µ)

eξ − 1
=
∞∑
n=0

Bn(1− µ)ξn

n!
= 1 +

∞∑
n=1

(−1)nBn(µ)ξn

n!
.

Hence the integral in (2.3) becomes

1/τ�

0

e−τξ
( ∞∑
n=1

(−1)n+1Bn(µ)ξn−1

n!

)
dξ =

∞∑
n=1

(−1)n+1Bn(µ)

n!

1/τ�

0

e−τξξn−1 dξ,

and the result follows by the substitution ξ 7→ ξ/τ .

Lemma 3. For real τ > 0 and <µ ≥ 0 we have

C(τ, µ) =
e−µ/τ

e(τ + µ)
+O(1)

with an absolute constant in the O-symbol.

Proof. We have

1

τ

∞�

1

e−ξ(1+µ/τ)

1− e−ξ/τ
dξ =

1

τ

∞∑
k=0

∞�

1

e−ξ(1+(µ+k)/τ) dξ =
1

τ

∞∑
k=0

e−(1+(µ+k)/τ)

1 + (µ+ k)/τ

=
e−µ/τ

e(τ + µ)
+O

( ∞∑
k=1

e−k/τ

τ + k

)

=
e−µ/τ

e(τ + µ)
+O

(
1

τ

∑
1≤k<τ

1 + τ
∑

k≥max(1,τ)

1

k2

)

=
e−µ/τ

e(τ + µ)
+O(1),

as required.
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Lemma 4. Let c2 > 0 be the unique solution of the equation ξ+arctan ξ =
π/2. Then there exists an absolute constant c3 ≥ 0 such that for real τ > 0
and µ ∈ C satisfying <µ ≥ 0 and |=µ| ≤ c2τ we have

<C(τ, µ) ≥ −c3.

Proof. By Lemma 3 it suffices to show that < e−µ/ττ+µ ≥ 0 for τ and µ
subject to the above conditions. But

<e
−µ/τ

τ + µ
=

1

τ

e−<µ/τ

|1 + µ/τ |
cos

(
|=µ|
τ

+ arctan
|=µ/τ |

1 + <µ/τ

)
≥ 0

since

0 ≤ |=µ|
τ

+ arctan
|=µ/τ |

1 + <µ/τ
≤ |=µ|

τ
+ arctan

|=µ|
τ
≤ π

2
,

and the result follows at once.

As usual we write

ψ(s) =
Γ ′

Γ
(s).

Thanks to equation (17) of Section 1.7.2 of the Bateman Project [3], for
λ > 0, <µ ≥ 0, real s > 0 and < µ

λs > −1 we have

(2.4) ψ(λs+ µ) = A(λs) +B(λs, µ)− C(λs, µ).

Indeed, by a change of variable we see that

A(λs) +B(λs, µ)− C(λs, µ) =

∞�

0

(
e−ξ − ξe−ξ(λs+µ)

1− e−ξ

)
dξ

ξ
,

and the last integral equals ψ(λs + µ) by the above-mentioned equation
in [3].

Lemma 5. Let F ∈ S] with dF > 0 and c2 be as in Lemma 4. Then for
real s ≥ max(2H∗F , DF /c2) we have

<
r∑
j=1

(λjψ(λjs+ µj)− λj log λj) ≤
1

2
dF log s+O(dF )

with an absolute constant in the O-symbol.

Proof. By (2.4) we rewrite the left hand side as

<
r∑
j=1

(λjA(λjs)− λj log λj) + <
r∑
j=1

λjB(λjs, µj)−<
r∑
j=1

λjC(λjs, µj)

= S1 + S2 − S3,
say. Thanks to Lemma 1 we have

S1 =
1

2
dF log s+O(dF ).
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Moreover, for s > 1
2π max1≤j≤r

1
λj

from Lemma 2 and the definition of the

HF (n)’s we get

r∑
j=1

λjB(λjs, µj) = −
r∑
j=1

λj

∞∑
n=1

(−1)nBn(µj)cn
n!λnj

1

sn

= −1

2

∞∑
n=1

(−1)nHF (n)cn
n!

1

sn
.

Since |cn| ≤ 1, the last series is certainly absolutely convergent for s ≥ 2H∗F
and we have

|S2| ≤
∣∣∣ r∑
j=1

λjB(λjs, µj)
∣∣∣� ∞∑

n=1

(
H∗F
s

)n
� 1.

Finally, from Lemma 4, for s ≥ DF /c2 we obtain

S3 ≥ −
1

2
dF c3,

and the result follows.

Let mF denote the order of the pole of F (s) at s = 1, with the convention
that −mF is the order of zero if F (1) = 0, and write

ξ(s) = smF (1− s)mFQs
r∏
j=1

Γ (λjs+ µj)F (s).

Then ξ(s) is entire and non-vanishing at s = 0, s = 1 and satisfies ξ(s) =
ωξ̄(1− s).

Lemma 6. For F ∈ S with dF > 0 and σ > 1 we have

<ξ
′

ξ
(s) ≥ 0.

Proof. By Hadamard’s theory we observe that

ξF (s) = eAs+B
∏
ρ

(
1− s

ρ

)
es/ρ

where ρ = β + iγ runs over the zeros of F (s), and hence

ξ′F
ξF

(s) = A+
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

On the other hand the functional equation gives

ξ′F
ξF

(s) = −
ξ′F
ξF

(1− s̄),
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therefore

A+
∑
ρ

(
1

s− ρ
+

1

ρ

)
= −Ā−

∑
ρ

(
1

1− s− ρ̄
+

1

ρ̄

)
.

Since ρ is a zero of F (s) if and only if 1− ρ̄ is also a zero, the sums involving
s− ρ and 1− s− ρ̄ cancel, thus giving

<A = −
∑
ρ

<1

ρ
.

Consequently, for σ > 1,

<
ξ′F
ξF

(s) = <A+
∑
ρ

(
σ − β
|s− ρ|2

+ <1

ρ

)
=
∑
ρ

σ − β
|s− ρ|2

≥ 0,

and the result follows.

The proof of Theorem 2 is now easy. From Lemma 6, for real s > 1 we
have

mF

s
+

mF

s− 1
+ logQ+ <

r∑
j=1

λjψ(λjs+ µj) + <F
′

F
(s) ≥ 0.

Moreover, since F ∈ S∗ with dF > 0, comparing with the Riemann zeta
function we immediately see that mF ≤ dF and (F ′/F )(s) = O(dF ) for
s ≥ 2. Hence, recalling the definition of qF , for real s ≥ 2 we get

1

2
log qF + <

r∑
j=1

(λjψ(λjs+ µj)− λj log λj) +O(dF ) ≥ 0.

With the notation of Lemma 5, choosing s = max(2H∗F , DF /c2, 2) and ap-
plying Lemma 5 we obtain

1

2
log qF +

1

2
dF log s+O(dF ) ≥ 0.

Hence for some constant c4 > 0 we have

q
1/dF
F s ≥ c4,

and now Theorem 2 follows immediately upon recalling the fact that s =
max(2H∗F , DF /c2, 2).

Proof of Theorem 3. Let F ∈ S∗ with dF > 0 and suppose that F (s)
has a γ-factor of the form (1.4); in particular, dF ∈ N. We use again formula
(2.3) of [9], which in this case reads

(2.5)
z

e2z − 1

dF∑
j=1

e2zµj =
1

2

∞∑
n=0

HF (n)

n!
zn.
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The right hand side of (2.5) converges absolutely for |z| ≤ 1/2H∗F , and for
such z we have

(2.6)

∞∑
n=0

|HF (n)|
n!

|z|n ≤ dF +

∞∑
n=1

1

2n
= dF + 1.

Choosing z = z±l = ±il/4H∗FdF with dF ≤ l ≤ 2dF we have |z±l | ≤ 1/2H∗F
and hence from (2.5) and (2.6) we obtain

(2.7)
∣∣∣ dF∑
j=1

(e±iµj/2H
∗
F dF )l

∣∣∣ ≤ ∣∣∣∣e2z±l − 1

z±l

∣∣∣∣12(dF + 1)� dF + 1

for every dF ≤ l ≤ 2dF . By Turán’s Second Main Theorem (see Theorem 8.1
of Turán [16] with bj = 1, m = 0 and n = dF ), there exists l0 in the above
range such that the left hand side of (2.7) is

(2.8) ≥ max
1≤j≤r

|e±iµj/2H∗
F dF |l0c−dF5

with a suitable absolute constant c5 > 0. Note that the max in (2.8) is due
to a normalization in the above-cited Theorem 8.1. Recalling the definition
of DF , since λj = 1/2 for every j we can choose the signs ± in such a way
that

(2.9) max
1≤j≤r

|e±iµj/2H∗
F dF | = eDF /4H

∗
F dF .

Therefore, from (2.7)–(2.9) we deduce that

eDF l0/4H
∗
F dF � cdF5 (dF + 1) ≤ cdF6

with some absolute constant c6 > 0, and hence

DF � H∗FdF .

The result now follows from Theorems 1 and 2.

3. Special cases. In this section we collect further results and problems,
and consider several special cases. Suppose first that the γ-factor of F ∈ S]
has the form

γ(s) = QsΓ (λs+ µ)m, m ∈ N.

Specializing formula (2.3) of [9] and arguing similarly to (2.5)–(2.7) above,
choosing z = εi/2H∗F with ε = − sgn=µ we obtain

eDF /2H
∗
F ≤ 2

H∗F
m

(dF + 1) ≤ 2H∗F (dF + 1),

and hence

(3.1) (1 + dF )H∗F ≥
1

2
and DF ≤ 2H∗F log(2H∗F (dF + 1)).
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If, in addition, we have λ ≤ 1 then (dF + 1)/m ≤ (2m + 1)/m ≤ 3, thus
eDF /2H

∗
F ≤ 6H∗F and therefore

H∗F ≥
1

6
and DF ≤ 2H∗F log(6H∗F ).

Suppose now that the γ-factor of F (s) has the form

γ(s) = Qs
r∏
j=1

Γ (λs+ µj), µj = iκj with κj ∈ R.

By an analogous argument, with ε = ±1, we obtain

1

2H∗F

∣∣∣ r∑
j=1

e−εκj/2λH
∗
F

∣∣∣ ≤ dF + 1.

Choosing ε = − sgn maxj κj we obtain

eDF /2H
∗
F ≤ 2(dF + 1)H∗F ,

and inequalities (3.1) follow in this case as well.
A subset F of S∗ is called an H-family if for every F,G ∈ F we have

HF (n) = HG(n) for all n ≥ 0. For example, the set of the Dedekind zeta
functions associated with all fields with given signature (r1, r2) is an H-
family. We have

Corollary. Given an H-family F there exists a constant c(F) > 0
such that for every F ∈ F ,

qF ≥ c(F).

Proof. Clearly, H∗F and dF are constant for F ∈ F . Let F,G ∈ F and
γ(s), γ′(s) be γ-factors of F (s) and G(s), respectively. From p. 99 of [9] we
know that γ(s) and γ′(s) have the same poles. But the poles ρ of γ(s) (resp.
γ′(s)) coincide, apart possibly from ρ = 0, with the trivial zeros of F (s)
(resp. G(s)), therefore

DF = max
ρ
|=ρ| = DG.

Hence DF is also constant, and the result follows from Theorem 2.

Now we compute H•F and H∗F for F (s) = ζ(s)k (k ≥ 1 integer) and
ζK(s). Recalling the definition of HF (n), for n ≥ 0 we have

Hζ(n) = 2nBn(0) = 2nBn =


(−1)n/2−12n+1n!(2π)−nζ(n), 2 | n,

0, 2 - n, n > 1,

1, n = 1.

Writing the even n as n = 2m ≥ 2 we get(
|Hζ(2m)|

(2m)!

)1/2m

=
(2ζ(2m))1/2m

π
,
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hence

H•ζ = lim sup
m→∞

(2ζ(2m))1/2m

π
=

1

π
.

By Theorem 1 we have dFH
•
F ≥ 1/π, therefore the infimum of dFH

•
F for

F ∈ S] is H•ζ . Moreover,

(2ζ(2m))1/2m = exp

(
1

2m

∑
p

∞∑
k=1

1

kp2mk
+

log 2

2m

)
≤ (2ζ(2))1/2 =

π√
3

since the argument of the exponential is decreasing in m, and |Hζ(1)| =
|2B1| = 1. Hence

H∗ζ = 1.

Since for integers n, k ≥ 1 we have

Hζk(n) = kHζ(n),

the above results also give

H•ζk =
1

π
, H∗ζk = k.

Consider now ζK(s) with K of signature (r1, r2). We have

HζK (n) = (r12
n + 2r2)Bn,

and writing n = 2m we deduce as before that(
|HζK (2m)|

(2m)!

)1/2m

= (r12
2m + 2r2)

1/2m (2ζ(2m))1/2m

2π
,

hence

H•ζK =
1

π
.

Moreover,(
|HζK (2m)|

(2m)!

)1/2m

≤ (4r1 + 2r2)
1/2

2π
(2ζ(2))1/2 =

√
2r1 + r2

6

since (a2ξ + b)1/ξ is decreasing. Finally, HζK (1) = r1 + r2 and therefore

H∗ζK = r1 + r2.

We conclude with two problems.

Problem 1. Does there exist a function Φ such that

dF ≤ Φ(H∗F )

(i.e. the degree is controlled by the invariant H∗F )? We believe that there
exists an absolute constant c > 0 such that dF � (H∗F )c, or even dF �
(H∗F )1+ε.
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Problem 2. Is it true that the infimum of dFH
∗
F is H∗ζ ? Here the in-

fimum is over S], or S, or S∗. We know that this is true with H•F in place
of H∗F .
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