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Linear polynomials in numbers of bounded degree
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WOLFGANG M. ScHMIDT (Boulder, CO)

1. Introduction. Given natural numbers n, A, a hypersurface of type
S(n, A) will be a hypersurface in C" defined over the rationals, and of total
degree at most A. Such a surface is the set of zeros of a nonzero polynomial
with rational coefficients, and of total degree < A.

Recently Philippon and Schlickewei [1] proved a result about simultane-
ous approximation by algebraic n-tuples of bounded degree. Their result is
as follows.

THEOREM A. Let n,d be natural numbers, and set

(1.1) e= "Lt yvn,

(1.2) A=|((n+1)d)""].

Let o = (aq,...,ay) in C™ have algebraic components, and lie on no hyper-
surface of type S(n, A). Then given

(1.3) B > cd™tD/m,

there are only finitely many points 3 = (B, ..., Bn) with

(1.4 Q... fa);Q) < d

and

(1.5) loy — Bi| < H(B)™B  (i=1,...,n),

We will recall the definition of this height in Section 2. In the case of
simultaneous approximation by rational n-tuples, there is a “dual” result on
linear forms. For Theorem A there appears to be no simple duality. We will
only be able to prove the following.
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By a hypersurface of type Sp(n,d) we will understand a homogeneous
hypersurface in C"*! defined over the rationals, and of degree at most d.
Such a hypersurface is the zero set of a nonzero homogeneous polynomial
f(Xo, Xq,...,X,) with rational coefficients, and of total degree at most d.

THEOREM B. Suppose @ = (g, a1, ..., ) has algebraic components,
and does not lie on a surface of type Sy(n,d). Then given
d
(1.6) B>d< +n>+d,
n

there are only finitely many points B = (B1, ..., Bn) with (1.4) and
(1.7) oo + 1By + - + Bl < H(B)P.

Note that the condition (1.6) is independent of the degree of Q(ag, a1,
., ). But there is little doubt that it is more restrictive than need be.

COROLLARY. Suppose o = (a1, ...,ay) has algebraic components, and
if n > 1, does not lie on a hypersurface of type Sp(n —1,d). Then given
d -1
(1.8) B>d( +”1 >+2d,
n —

there are only finitely many B = (B1, ..., Bn) with (1.4) and
(1.9) 1 f1 + -+ anfa| < H(B) ™.

2. Proofs. For a number field K, let M (K) be the set of its places, and
Moo (K) the set of its archimedean places. For v € M(K) let | - |, denote
the absolute value induced by v normalized to extend the standard or a

p-adic absolute value of Q. Further if D = deg K and D, is the local degree
D,/D

associated with v, set || ||, = |- [v"". When 8 € K™, then we define
H@)= 11 18l
veM(K)
where

18lv = max (1, [| B1llv; - - -, |Bnllo)-

Suppose k = Q(f1,. .., Bn) is a number field of degree d. Let z +— z()
(¢ = 1,...,d) be the embeddings of k into C. When P is a subset of

{1,...,d}, put
2P — H 2
i€eP

This is understood to be 1 when P is empty. It will be convenient to set
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Bo = 1. Given ag, a, ..., qy, we have
d
@) Jleos + - +ans) = 30 ol alas,
=1 j07~--ujn6220
Jottin=d
with
P
(22) Giowgn = D, By - B
where > " is the sum over all partitions of {1,... ,d} into (not necessarily

nonempty) subsets P,..., P, with |P| = j; ({ =0,...,n). The numbers
Qjo---j, are easily seen to be rational. The point q with coordinates gj,...;,
(where jo + -+ + j, = d) lies in Q¥ with N = (*I").

LeEMMA 2.1. H(q) < d'H(B)%.
Proof. Set K = Q(BW,....8W) = (,....8",.... 8\, ..., 8.

For v € M(K),
18510 = TT 18710 < TT 1891,

i€Py i€EPp

hence
d
16857 - ), < TT 189
=1

The sum Y " in (2.2) has < d! summands, so that

d
(2.3) oo llo < <2/ P TT 118D,

i=1
where ¢, = d! when v € My (K), and ¢, = 1 otherwise.
The estimate (2.3) also holds for ||ql|,. We obtain

Haq= ]] HCIHUSd'H IT 18" ||v—d'HH D) = dlH(B)". =

veEM (K 1=1lveM(K)

LEMMA 2.2. Suppose a = (ag, a1, ...,ap) has algebraic components and
does not lie on a surface of type Sp(n,d). Then given B > dN + d, the
points B with (1.4) and (1.7) give rise to only finitely many points q € QN
as described above.

Proof. We may suppose that z(!) = z for z € k. Then

d d
HB) = [ 18l.=]]1B1M* =] 18D
) i=1 i=2

u€ Moo (K
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where |37 | = max(1, |B§z)\, e |ﬁ§f)|) We clearly have

oo + a1 B + -+ @, 89| < e()| B,

in particular for ¢ = 2,...,d. In conjunction with (1.7), this yields
d
TT(co+ 1B + -+ anp)| < cla) " H(B) 7+,
i=1

and therefore, by virtue of (2.1) and Lemma 2.1,

Z o’ adr gy | < c(e) 1 dBAH (q) "B/,

(2.4)

Before proceeding further, consider an inequality
(2.5) lo1qr + -+ + angn| < H(q) ™

where q = (q1,...,qn) € QY \ {0}. Say ¢; := a;/b with ged(b,ay,...,an)
=1, so that H(q) = max(|b|, |ai|,...,|an|). Then (2.5) gives

larar + -+ ayan| < [b|H(q)"¢ < H(q)*™% < max(|ai], ..., |an])*"C,

provided C > 1. If oy, ..., ay are algebraic and linearly independent over Q,
it follows from the Subspace Theorem that if C' > N, then there are only
finitely many such (a1, ...,an). Given ay,...,ay, the left hand side of (2.5)
becomes |a/b| with a = aja; + - - - + anyan, and the right hand side for large
|b| becomes |b|~C. Therefore |b| is bounded, and (2.5) has only finitely many
solutions.

Now o as in Theorem B and Lemma 2.2 has the numbers ag" . e a%"
with jo + -+ + jn = d linearly independent over Q. Returning to (2.4), we
may conclude that when B > dN +d, hence (B—d)/d > N, then (2.4) leads

to finitely many points q @ "

Proof of Theorem B. Let £,t with 1 </ <nand 1 <t <d be given. Set
jo=d—t, jo=t,and j, =0 for m ¢ {0,¢}. Then

qet = Qjo-jn :Z 1(Po)/3éPz)

where the sum " is over the partitions of {1,...,d} into sets Py, P, with
|Po| = d —t, |Py| = t. Therefore

Qe = Z/@éul) T 5(5%5) = St(ﬁél)v R Blgd))a

with the sum over the subsets {uj,...,us} of {1,...,d}, and s; the tth el-
ementary symmetric polynomial. Therefore the symmetric polynomials in

(*) The components of q satisfy certain polynomial equations independent of 3. There-
fore presumably a better result than the one given by the Subspace Theorem should apply.
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ﬁél), e ,@Ed) are determined by q. For given q, there are at most d possi-
bilities for 8, (¢ = 1,...,n), hence at most d" possibilities for 3. Theorem
B now is a consequence of Lemma 2.2. =

Proof of the Corollary. We may suppose that 81 # 0. Assume first that
n=1. Since H(B1) = H(1/B1) > 1/|61|"/%, (1.9) gives H(B1) B > |ouf1] >
|1 |H (B1)~¢. Therefore H(f) is bounded, and there are only finitely many
choices for .

When n > 1, write 5y = f1y¢ (£ = 2,...,n). Since H(B) > H(p1) >

1/]6:[Y4, (1.9) yields
(2.6) o1 + agy2 + -+ + o] < B TTH(B) TP < H(B)P.
By (1.8), and by the case n — 1 of Theorem B, there are only finitely many
Y2y« -y Yo With (2.6). Given o, ..., Vn, set v = a1 + aoy2 + -+ + Y, SO
that (1.9) becomes |yB1| < H(B)~B. Here v # 0, for otherwise we have
H?Zl(al + agfyél) +- an%(f)) =0, and (o1, ...,ay,) lies on a hypersurface
of type Sp(n — 1,d). By the case n = 1, with v in place of a;, we obtain
only finitely many choices for 3. The Corollary follows. m
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