Linear polynomials in numbers of bounded degree

by

Wolfgang M. Schmidt (Boulder, CO)

1. Introduction. Given natural numbers n, Δ , a hypersurface of type $S(n, \Delta)$ will be a hypersurface in \mathbb{C}^n defined over the rationals, and of total degree at most Δ . Such a surface is the set of zeros of a nonzero polynomial with rational coefficients, and of total degree $\leq \Delta$.

Recently Philippon and Schlickewei [1] proved a result about simultaneous approximation by algebraic *n*-tuples of bounded degree. Their result is as follows.

Theorem A. Let n, d be natural numbers, and set

(1.1)
$$c = \frac{n+1}{n}((n+1)!)^{1/n},$$

(1.2)
$$\Delta = \lfloor ((n+1)!d)^{1/n} \rfloor.$$

Let $\alpha = (\alpha_1, \dots, \alpha_n)$ in \mathbb{C}^n have algebraic components, and lie on no hypersurface of type $S(n, \Delta)$. Then given

$$(1.3) B > cd^{(n+1)/n},$$

there are only finitely many points $\beta = (\beta_1, \dots, \beta_n)$ with

$$(1.4) [\mathbb{Q}(\beta_1, \dots, \beta_n); \mathbb{Q}] \le d$$

and

(1.5)
$$|\alpha_i - \beta_i| < H(\beta)^{-B} \quad (i = 1, ..., n),$$

where $H(\beta)$ is the absolute Weil height of the projective point $(1:\beta_1:\ldots:\beta_n)$.

We will recall the definition of this height in Section 2. In the case of simultaneous approximation by rational n-tuples, there is a "dual" result on linear forms. For Theorem A there appears to be no simple duality. We will only be able to prove the following.

²⁰¹⁰ Mathematics Subject Classification: Primary 11J68.

Key words and phrases: diophantine approximation, bounded degree.

By a hypersurface of type $S_h(n,d)$ we will understand a homogeneous hypersurface in \mathbb{C}^{n+1} defined over the rationals, and of degree at most d. Such a hypersurface is the zero set of a nonzero homogeneous polynomial $f(X_0, X_1, \ldots, X_n)$ with rational coefficients, and of total degree at most d.

THEOREM B. Suppose $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n)$ has algebraic components, and does not lie on a surface of type $S_h(n, d)$. Then given

$$(1.6) B > d \binom{d+n}{n} + d,$$

there are only finitely many points $\beta = (\beta_1, ..., \beta_n)$ with (1.4) and

$$(1.7) |\alpha_0 + \alpha_1 \beta_1 + \dots + \alpha_n \beta_n| < H(\beta)^{-B}.$$

Note that the condition (1.6) is independent of the degree of $\mathbb{Q}(\alpha_0, \alpha_1, \ldots, \alpha_n)$. But there is little doubt that it is more restrictive than need be.

COROLLARY. Suppose $\alpha = (\alpha_1, \dots, \alpha_n)$ has algebraic components, and if n > 1, does not lie on a hypersurface of type $S_h(n-1,d)$. Then given

(1.8)
$$B > d \binom{d+n-1}{n-1} + 2d,$$

there are only finitely many $\beta = (\beta_1, ..., \beta_n)$ with (1.4) and

$$(1.9) |\alpha_1 \beta_1 + \dots + \alpha_n \beta_n| < H(\beta)^{-B}.$$

2. Proofs. For a number field K, let M(K) be the set of its places, and $M_{\infty}(K)$ the set of its archimedean places. For $v \in M(K)$ let $|\cdot|_v$ denote the absolute value induced by v normalized to extend the standard or a p-adic absolute value of \mathbb{Q} . Further if $D = \deg K$ and D_v is the local degree associated with v, set $\|\cdot\|_v = |\cdot|_v^{D_v/D}$. When $\beta \in K^n$, then we define

$$H(\boldsymbol{\beta}) = \prod_{v \in M(K)} \|\boldsymbol{\beta}\|_v$$

where

$$\|\boldsymbol{\beta}\|_{v} = \max(1, \|\beta_{1}\|_{v}, \dots, \|\beta_{n}\|_{v}).$$

Suppose $k = \mathbb{Q}(\beta_1, \ldots, \beta_n)$ is a number field of degree d. Let $x \mapsto x^{(i)}$ $(i = 1, \ldots, d)$ be the embeddings of k into \mathbb{C} . When P is a subset of $\{1, \ldots, d\}$, put

$$x^{(P)} = \prod_{i \in P} x^{(i)}.$$

This is understood to be 1 when P is empty. It will be convenient to set

 $\beta_0 = 1$. Given $\alpha_0, \alpha_1, \dots, \alpha_n$, we have

(2.1)
$$\prod_{i=1}^{d} (\alpha_0 \beta_0^{(i)} + \dots + \alpha_n \beta_n^{(i)}) = \sum_{\substack{j_0, \dots, j_n \in \mathbb{Z}_{\geq 0} \\ j_0 + \dots + j_n = d}} \alpha_0^{j_0} \cdots \alpha_n^{j_n} q_{j_0 \cdots j_n}$$

with

(2.2)
$$q_{j_0\cdots j_n} = \sum^* \beta_0^{(P_0)} \cdots \beta_n^{(P_n)},$$

where \sum^* is the sum over all partitions of $\{1,\ldots,d\}$ into (not necessarily nonempty) subsets P_0,\ldots,P_n with $|P_\ell|=j_\ell$ ($\ell=0,\ldots,n$). The numbers $q_{j_0\cdots j_n}$ are easily seen to be rational. The point \mathbf{q} with coordinates $q_{j_0\cdots j_n}$ (where $j_0+\cdots+j_n=d$) lies in \mathbb{Q}^N with $N=\binom{d+n}{n}$.

LEMMA 2.1. $H(\mathbf{q}) \leq d!H(\boldsymbol{\beta})^d$.

Proof. Set $K = \mathbb{Q}(\beta^{(1)}, \dots, \beta^{(d)}) = \mathbb{Q}(\beta_0^{(1)}, \dots, \beta_n^{(1)}, \dots, \beta_0^{(d)}, \dots, \beta_n^{(d)}).$ For $v \in M(K)$,

$$\|\beta_{\ell}^{(P_{\ell})}\|_{v} = \prod_{i \in P_{\ell}} \|\beta_{\ell}^{(i)}\|_{v} \le \prod_{i \in P_{\ell}} \|\beta^{(i)}\|_{v},$$

hence

$$\|\beta_0^{(P_0)}\cdots\beta_n^{(P_n)}\|_v \leq \prod_{i=1}^d \|\boldsymbol{\beta}^{(i)}\|_v.$$

The sum \sum^* in (2.2) has $\leq d!$ summands, so that

(2.3)
$$||q_{j_0\cdots j_n}||_v \le c_v^{D_v/D} \prod_{i=1}^d ||\boldsymbol{\beta}^{(i)}||_v,$$

where $c_v = d!$ when $v \in M_{\infty}(K)$, and $c_v = 1$ otherwise.

The estimate (2.3) also holds for $\|\mathbf{q}\|_v$. We obtain

$$H(\mathbf{q}) = \prod_{v \in M(K)} \|\mathbf{q}\|_v \le d! \prod_{i=1}^d \prod_{v \in M(K)} \|\boldsymbol{\beta}^{(i)}\|_v = d! \prod_{i=1}^d H(\boldsymbol{\beta}^{(i)}) = d! H(\boldsymbol{\beta})^d. \blacksquare$$

LEMMA 2.2. Suppose $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n)$ has algebraic components and does not lie on a surface of type $S_h(n,d)$. Then given B > dN + d, the points β with (1.4) and (1.7) give rise to only finitely many points $\mathbf{q} \in \mathbb{Q}^N$ as described above.

Proof. We may suppose that $x^{(1)} = x$ for $x \in k$. Then

$$H(m{eta}) \geq \prod_{u \in M_{\infty}(\mathbb{K})} \|m{eta}\|_u = \prod_{i=1}^d |m{eta}^{(i)}|^{1/d} \geq \prod_{i=2}^d |m{eta}^{(i)}|^{1/d}$$

where $|\beta^{(i)}| = \max(1, |\beta_1^{(i)}|, \dots, |\beta_n^{(i)}|)$. We clearly have

$$|\alpha_0 + \alpha_1 \beta_1^{(i)} + \dots + \alpha_n \beta_n^{(i)}| \le c(\boldsymbol{\alpha}) |\boldsymbol{\beta}^{(i)}|.$$

in particular for $i = 2, \dots, d$. In conjunction with (1.7), this yields

$$\left| \prod_{i=1}^{d} (\alpha_0 + \alpha_1 \beta_1^{(i)} + \dots + \alpha_n \beta_n^{(i)}) \right| < c(\boldsymbol{\alpha})^{d-1} H(\boldsymbol{\beta})^{-B+d},$$

and therefore, by virtue of (2.1) and Lemma 2.1,

(2.4)
$$\left| \sum_{j_0 + \dots + j_n = d} \alpha_0^{j_0} \cdots \alpha_n^{j_n} q_{j_0 \dots j_n} \right| < c(\boldsymbol{\alpha})^{d-1} d^{B-d} H(\mathbf{q})^{-(B-d)/d}.$$

Before proceeding further, consider an inequality

$$(2.5) |\alpha_1 q_1 + \dots + \alpha_N q_N| < H(q)^{-C}$$

where $\mathbf{q} = (q_1, \dots, q_N) \in \mathbb{Q}^N \setminus \{\mathbf{0}\}$. Say $q_i := a_i/b$ with $gcd(b, a_1, \dots, a_N) = 1$, so that $H(\mathbf{q}) = \max(|b|, |a_1|, \dots, |a_N|)$. Then (2.5) gives

$$|\alpha_1 a_1 + \dots + \alpha_N a_N| < |b| H(\mathbf{q})^{-C} \le H(\mathbf{q})^{1-C} \le \max(|a_1|, \dots, |a_N|)^{1-C},$$

provided $C \geq 1$. If $\alpha_1, \ldots, \alpha_N$ are algebraic and linearly independent over \mathbb{Q} , it follows from the Subspace Theorem that if C > N, then there are only finitely many such (a_1, \ldots, a_N) . Given a_1, \ldots, a_N , the left hand side of (2.5) becomes |a/b| with $a = \alpha_1 a_1 + \cdots + \alpha_n a_N$, and the right hand side for large |b| becomes $|b|^{-C}$. Therefore |b| is bounded, and (2.5) has only finitely many solutions.

Now α as in Theorem B and Lemma 2.2 has the numbers $\alpha_0^{j_0} \cdots \alpha_n^{j_n}$ with $j_0 + \cdots + j_n = d$ linearly independent over \mathbb{Q} . Returning to (2.4), we may conclude that when B > dN + d, hence (B - d)/d > N, then (2.4) leads to finitely many points \mathbf{q} (1).

Proof of Theorem B. Let ℓ, t with $1 \le \ell \le n$ and $1 \le t \le d$ be given. Set $j_0 = d - t$, $j_\ell = t$, and $j_m = 0$ for $m \notin \{0, \ell\}$. Then

$$q_{\ell t} := q_{j_0 \cdots j_n} = \sum_{\ell}^* 1^{(P_0)} \beta_{\ell}^{(P_{\ell})}$$

where the sum \sum^* is over the partitions of $\{1,\ldots,d\}$ into sets P_0,P_ℓ with $|P_0|=d-t,\,|P_\ell|=t$. Therefore

$$q_{\ell t} = \sum \beta_{\ell}^{(u_1)} \cdots \beta_{\ell}^{(u_t)} = s_t(\beta_{\ell}^{(1)}, \dots, \beta_{\ell}^{(d)}),$$

with the sum over the subsets $\{u_1, \ldots, u_t\}$ of $\{1, \ldots, d\}$, and s_t the tth elementary symmetric polynomial. Therefore the symmetric polynomials in

⁽¹⁾ The components of \mathbf{q} satisfy certain polynomial equations independent of $\boldsymbol{\beta}$. Therefore presumably a better result than the one given by the Subspace Theorem should apply.

 $\beta_{\ell}^{(1)}, \ldots, \beta_{\ell}^{(d)}$ are determined by **q**. For given **q**, there are at most d possibilities for β_{ℓ} ($\ell = 1, \ldots, n$), hence at most d^n possibilities for $\boldsymbol{\beta}$. Theorem B now is a consequence of Lemma 2.2.

Proof of the Corollary. We may suppose that $\beta_1 \neq 0$. Assume first that n = 1. Since $H(\beta_1) = H(1/\beta_1) \geq 1/|\beta_1|^{1/d}$, (1.9) gives $H(\beta_1)^{-B} \geq |\alpha_1\beta_1| \geq |\alpha_1|H(\beta_1)^{-d}$. Therefore $H(\beta_1)$ is bounded, and there are only finitely many choices for β_1 .

When n > 1, write $\beta_{\ell} = \beta_1 \gamma_{\ell}$ ($\ell = 2, ..., n$). Since $H(\beta) \ge H(\beta_1) \ge 1/|\beta_1|^{1/d}$, (1.9) yields

$$(2.6) |\alpha_1 + \alpha_2 \gamma_2 + \dots + \alpha_n \gamma_n| \le |\beta_1|^{-1} H(\beta)^{-B} \le H(\beta)^{d-B}.$$

By (1.8), and by the case n-1 of Theorem B, there are only finitely many $\gamma_2, \ldots, \gamma_n$ with (2.6). Given $\gamma_2, \ldots, \gamma_n$, set $\gamma = \alpha_1 + \alpha_2 \gamma_2 + \cdots + \alpha_n \gamma_n$, so that (1.9) becomes $|\gamma \beta_1| < H(\beta)^{-B}$. Here $\gamma \neq 0$, for otherwise we have $\prod_{i=1}^d (\alpha_1 + \alpha_2 \gamma_2^{(i)} + \cdots + \alpha_n \gamma_n^{(i)}) = 0$, and $(\alpha_1, \ldots, \alpha_n)$ lies on a hypersurface of type $S_h(n-1,d)$. By the case n=1, with γ in place of α_1 , we obtain only finitely many choices for β_1 . The Corollary follows.

References

[1] P. Philippon and H. P. Schlickewei, Simultaneous approximation to algebraic numbers by algebraic numbers of bounded degree, to appear.

Wolfgang M. Schmidt Department of Mathematics University of Colorado Boulder, CO 80309-0395, U.S.A. E-mail: schmidt@euclid.colorado.edu