
ACTA ARITHMETICA

155.2 (2012)
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1. Introduction. Given natural numbers n,∆, a hypersurface of type
S(n,∆) will be a hypersurface in Cn defined over the rationals, and of total
degree at most ∆. Such a surface is the set of zeros of a nonzero polynomial
with rational coefficients, and of total degree ≤ ∆.

Recently Philippon and Schlickewei [1] proved a result about simultane-
ous approximation by algebraic n-tuples of bounded degree. Their result is
as follows.

Theorem A. Let n, d be natural numbers, and set

c =
n+ 1

n
((n+ 1)!)1/n,(1.1)

∆ = b((n+ 1)!d)1/nc.(1.2)

Let α = (α1, . . . , αn) in Cn have algebraic components, and lie on no hyper-
surface of type S(n,∆). Then given

(1.3) B > cd(n+1)/n,

there are only finitely many points β = (β1, . . . , βn) with

(1.4) [Q(β1, . . . , βn);Q] ≤ d

and

(1.5) |αi − βi| < H(β)−B (i = 1, . . . , n),

where H(β) is the absolute Weil height of the projective point (1 :β1 : . . . :βn).

We will recall the definition of this height in Section 2. In the case of
simultaneous approximation by rational n-tuples, there is a “dual” result on
linear forms. For Theorem A there appears to be no simple duality. We will
only be able to prove the following.
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By a hypersurface of type Sh(n, d) we will understand a homogeneous
hypersurface in Cn+1 defined over the rationals, and of degree at most d.
Such a hypersurface is the zero set of a nonzero homogeneous polynomial
f(X0, X1, . . . , Xn) with rational coefficients, and of total degree at most d.

Theorem B. Suppose α = (α0, α1, . . . , αn) has algebraic components,
and does not lie on a surface of type Sh(n, d). Then given

(1.6) B > d

(
d+ n

n

)
+ d,

there are only finitely many points β = (β1, . . . , βn) with (1.4) and

(1.7) |α0 + α1β1 + · · ·+ αnβn| < H(β)−B.

Note that the condition (1.6) is independent of the degree of Q(α0, α1,
. . . , αn). But there is little doubt that it is more restrictive than need be.

Corollary. Suppose α = (α1, . . . , αn) has algebraic components, and
if n > 1, does not lie on a hypersurface of type Sh(n− 1, d). Then given

(1.8) B > d

(
d+ n− 1

n− 1

)
+ 2d,

there are only finitely many β = (β1, . . . , βn) with (1.4) and

(1.9) |α1β1 + · · ·+ αnβn| < H(β)−B.

2. Proofs. For a number field K, let M(K) be the set of its places, and
M∞(K) the set of its archimedean places. For v ∈ M(K) let | · |v denote
the absolute value induced by v normalized to extend the standard or a
p-adic absolute value of Q. Further if D = degK and Dv is the local degree

associated with v, set ‖ · ‖v = | · |Dv/D
v . When β ∈ Kn, then we define

H(β) =
∏

v∈M(K)

‖β‖v

where

‖β‖v = max(1, ‖β1‖v, . . . , ‖βn‖v).

Suppose k = Q(β1, . . . , βn) is a number field of degree d. Let x 7→ x(i)

(i = 1, . . . , d) be the embeddings of k into C. When P is a subset of
{1, . . . , d}, put

x(P ) =
∏
i∈P

x(i).

This is understood to be 1 when P is empty. It will be convenient to set
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β0 = 1. Given α0, α1, . . . , αn, we have

(2.1)
d∏

i=1

(α0β
(i)
0 + · · ·+ αnβ

(i)
n ) =

∑
j0,...,jn∈Z≥0

j0+···+jn=d

αj0
0 · · ·α

jn
n qj0···jn

with

(2.2) qj0···jn =
∑∗

β
(P0)
0 · · ·β(Pn)

n ,

where
∑∗ is the sum over all partitions of {1, . . . , d} into (not necessarily

nonempty) subsets P0, . . . , Pn with |P`| = j` (` = 0, . . . , n). The numbers
qj0···jn are easily seen to be rational. The point q with coordinates qj0···jn
(where j0 + · · ·+ jn = d) lies in QN with N =

(
d+n
n

)
.

Lemma 2.1. H(q) ≤ d!H(β)d.

Proof. Set K = Q(β(1), . . . ,β(d)) = Q(β
(1)
0 , . . . , β

(1)
n , . . . , β

(d)
0 , . . . , β

(d)
n ).

For v ∈M(K),

‖β(P`)
` ‖v =

∏
i∈P`

‖β(i)` ‖v ≤
∏
i∈P`

‖β(i)‖v,

hence

‖β(P0)
0 · · ·β(Pn)

n ‖v ≤
d∏

i=1

‖β(i)‖v.

The sum
∑∗ in (2.2) has ≤ d! summands, so that

(2.3) ‖qj0···jn‖v ≤ cDv/D
v

d∏
i=1

‖β(i)‖v,

where cv = d! when v ∈M∞(K), and cv = 1 otherwise.

The estimate (2.3) also holds for ‖q‖v. We obtain

H(q) =
∏

v∈M(K)

‖q‖v ≤ d!

d∏
i=1

∏
v∈M(K)

‖β(i)‖v = d!

d∏
i=1

H(β(i)) = d!H(β)d.

Lemma 2.2. Suppose α = (α0, α1, . . . , αn) has algebraic components and
does not lie on a surface of type Sh(n, d). Then given B > dN + d, the
points β with (1.4) and (1.7) give rise to only finitely many points q ∈ QN

as described above.

Proof. We may suppose that x(1) = x for x ∈ k. Then

H(β) ≥
∏

u∈M∞(K)

‖β‖u =

d∏
i=1

|β(i)|1/d ≥
d∏

i=2

|β(i)|1/d
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where |β(i)| = max(1, |β(i)1 |, . . . , |β
(i)
n |). We clearly have

|α0 + α1β
(i)
1 + · · ·+ αnβ

(i)
n | ≤ c(α)|β(i)|,

in particular for i = 2, . . . , d. In conjunction with (1.7), this yields∣∣∣ d∏
i=1

(α0 + α1β
(i)
1 + · · ·+ αnβ

(i)
n )
∣∣∣ < c(α)d−1H(β)−B+d,

and therefore, by virtue of (2.1) and Lemma 2.1,

(2.4)
∣∣∣ ∑
j0+···+jn=d

αj0
0 · · ·α

jn
n qj0···jn

∣∣∣ < c(α)d−1dB−dH(q)−(B−d)/d.

Before proceeding further, consider an inequality

(2.5) |α1q1 + · · ·+ αNqN | < H(q)−C

where q = (q1, . . . , qN ) ∈ QN \ {0}. Say qi := ai/b with gcd(b, a1, . . . , aN )
= 1, so that H(q) = max(|b|, |a1|, . . . , |aN |). Then (2.5) gives

|α1a1 + · · ·+ αNaN | < |b|H(q)−C ≤ H(q)1−C ≤ max(|a1|, . . . , |aN |)1−C ,

provided C ≥ 1. If α1, . . . , αN are algebraic and linearly independent over Q,
it follows from the Subspace Theorem that if C > N , then there are only
finitely many such (a1, . . . , aN ). Given a1, . . . , aN , the left hand side of (2.5)
becomes |a/b| with a = α1a1 + · · ·+αnaN , and the right hand side for large
|b| becomes |b|−C . Therefore |b| is bounded, and (2.5) has only finitely many
solutions.

Now α as in Theorem B and Lemma 2.2 has the numbers αj0
0 · · ·α

jn
n

with j0 + · · · + jn = d linearly independent over Q. Returning to (2.4), we
may conclude that when B > dN+d, hence (B−d)/d > N , then (2.4) leads
to finitely many points q (1).

Proof of Theorem B. Let `, t with 1 ≤ ` ≤ n and 1 ≤ t ≤ d be given. Set
j0 = d− t, j` = t, and jm = 0 for m /∈ {0, `}. Then

q`t := qj0···jn =
∑∗

1(P0)β
(P`)
`

where the sum
∑∗ is over the partitions of {1, . . . , d} into sets P0, P` with

|P0| = d− t, |P`| = t. Therefore

q`t =
∑

β
(u1)
` · · ·β(ut)

` = st(β
(1)
` , . . . , β

(d)
` ),

with the sum over the subsets {u1, . . . , ut} of {1, . . . , d}, and st the tth el-
ementary symmetric polynomial. Therefore the symmetric polynomials in

(1) The components of q satisfy certain polynomial equations independent of β. There-
fore presumably a better result than the one given by the Subspace Theorem should apply.
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β
(1)
` , . . . , β

(d)
` are determined by q. For given q, there are at most d possi-

bilities for β` (` = 1, . . . , n), hence at most dn possibilities for β. Theorem
B now is a consequence of Lemma 2.2.

Proof of the Corollary. We may suppose that β1 6= 0. Assume first that
n = 1. Since H(β1) = H(1/β1) ≥ 1/|β1|1/d, (1.9) gives H(β1)

−B ≥ |α1β1| ≥
|α1|H(β1)

−d. Therefore H(β1) is bounded, and there are only finitely many
choices for β1.

When n > 1, write β` = β1γ` (` = 2, . . . , n). Since H(β) ≥ H(β1) ≥
1/|β1|1/d, (1.9) yields

(2.6) |α1 + α2γ2 + · · ·+ αnγn| ≤ |β1|−1H(β)−B ≤ H(β)d−B.

By (1.8), and by the case n− 1 of Theorem B, there are only finitely many
γ2, . . . , γn with (2.6). Given γ2, . . . , γn, set γ = α1 + α2γ2 + · · · + αnγn, so
that (1.9) becomes |γβ1| < H(β)−B. Here γ 6= 0, for otherwise we have∏d

i=1(α1 +α2γ
(i)
2 + · · ·+αnγ

(i)
n ) = 0, and (α1, . . . , αn) lies on a hypersurface

of type Sh(n − 1, d). By the case n = 1, with γ in place of α1, we obtain
only finitely many choices for β1. The Corollary follows.
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