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On the error term of the mean square formula for
the Riemann zeta-function in the critical strip 3/4 < σ < 1

by

Yuk-Kam Lau (Nancy and Hong Kong)

1. Introduction. For 1/2 < σ < 1, define

Eσ(t) =
t�

0

|ζ(σ + iu)|2 du−
(
ζ(2σ)t+ (2π)2σ−1 ζ(2− 2σ)

2− 2σ
t2−2σ

)

where ζ(s) is the Riemann zeta-function. This is an analogue of E(t) for the
case σ = 1/2, which was extensively studied. Comparatively, Eσ(t) is new
and the following mean square formula was obtained by Matsumoto and
Meurman [8] and [9] within this decade:

T�

1

Eσ(t)2 dt =




A1(σ)T 5/2−2σ +O(T ) if 1/2 < σ < 3/4,
A0T log T +O(T ) if σ = 3/4,
O(T ) if 3/4 < σ < 1.

(1.1)

The O-term in the case σ = 3/4 in [8] was given with a slightly weaker
estimate O(T

√
log T ) and Lam [5] improved it to O(T ). Then it is natural

to wonder whether the O-terms are sharp. This question is meaningful,
especially in the last case, because it provides the information how large
Eσ(t) (3/4 < σ < 1) can be. In fact, if we denote the error term O(T ) by
Fσ(T ), it is conjectured that Fσ(T ) = A(σ)T +o(T ) (see [4] and [7] for more
details).

Concerning the case 3/4 < σ < 1, in addition to the mean square esti-
mate in (1.1), Ivić and Matsumoto [2] proved that

Eσ(t)� t4κ(1−σ)/(1+4κ(1−σ)) log T

where (κ, λ) is an exponent pair such that λ = κ+ 1/2. It is the best upper
bound to date. Furthermore, we found in [6] that

T�

1

Eσ(t) dt = −2πζ(2σ − 1)T +O(
√
T ).
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This immediately implies that Fσ(T ) = � T1 Eσ(t)2 dt� T and partly answers
the above-mentioned question (on whether the O-term in (1.1) is sharp).
However, at the same time, it suggests that Eσ(t) may consist of two parts:
one is the constant −2πζ(2σ − 1) and the other has a small mean value
O(
√
T ). This was also pointed out in Matsumoto [7, p. 256]. Thus we carry

out this splitting, or in other words, we consider

E∗σ(t) =
t�

0

|ζ(σ+iu)|2 du−
(
ζ(2σ)t+(2π)2σ−1ζ(2− 2σ)

2− 2σ
t2−2σ−2πζ(2σ−1)

)
.

Then we have Eσ(t) = −2πζ(2σ − 1) + E∗σ(t), � T1 E∗σ(t) dt �
√
T and

� T1 E∗σ(t)2 dt� T by (1.1).

Our purpose here is to study the size of the last integral � T1 E∗σ(t)2 dt. It
is interesting because if the integral is o(T ), then the conjecture (for the last
case) is settled; otherwise, in view of its mean value, this shows that E∗σ(t)
is highly oscillating and so is Eσ(t). We find that the latter case occurs, as
is anticipated (see the remark below).

Theorem. Let 3/4 < σ < 1 and T0 be a sufficiently large constant.
Then, for all T ≥ T0, we have � T1 E∗σ(t)2 dt�σ T where the implied constant
depends on σ only.

Remark. Let σa(n) =
∑

d|n d
a, and for −1 < a < 0 define

∆a(x) =
∑

n≤x
σa(n)− ζ(1− a)x− ζ(1 + a)

1 + a
x1+a +

1
2
ζ(−a).

This is a generalization of the classical error term ∆(x) in Dirichlet’s
divisor problem. It is well known that there is an analogy between the er-
ror terms ∆(x) and E(t). Such an analogy also appears between ∆1−2σ(x)
and Eσ(t) (or more appropriately, E∗σ(t)). (This was also discussed in [4] and
[7].) Indeed, there is a mean square result for ∆1−2σ(x), parallel to (1.1), ob-
tained by Meurman [10] with a truncated Voronoi-type formula and delicate
analysis. On the other hand, starting with another (finite) series represen-
tation, an asymptotic formula for � T1 ∆1−2σ(x)2 dx with 3/4 < σ < 1 can be
derived. This was worked out in [1] and [12] and, therefore, a similar result
for E∗σ(t) is expected. The series representation used in [1] and [12], however,
highly depends on the arithmetic nature of the divisor function and there is
no counterpart of that for Eσ(t) yet. (Our result is perhaps not insignificant
in view of this difficulty.)

Finally, let us outline our approach. Define Gσ(t) = � t1E∗σ(u) du. Then

Gσ(t+ h)−Gσ(t) = � t+ht E∗σ(u) du can be regarded as an approximation of

hE∗σ(t). Thus, it leads to evaluate the mean square � 2T
T (Gσ(t+h)−Gσ(t))2 dt
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which can be treated by Jutila’s argument in [3] and techniques in [9]. How-
ever, in order to make small h admissible, we need a series representation of
Gσ(t) with a sufficiently small error term. To this end, we apply the argu-
ment in [8] to derive an averaged form of the series representation. However,
we can only obtain a formula for Gσ(2t)−Gσ(t) instead of Gσ(t). This needs
a little extra effort to handle (see Section 4).

In what follows, 3/4 < σ < 1 and ci (i = 1, 2, . . .) denote unspecified
positive constants which depend on σ only.

2. Averaged formula. We start with the formula
2T�

T

E∗σ(t) dt = Σ1(t,X)|2TT + π−1/2t5/2I(t)|2TT +O(1)

where X ∈ [AT, T ] is not an integer with a constant 0 < A < 1, and

I(t) =
∞�

X

∆̃1−2σ(ξ) cos(tV + 2πξU − πξ + π/4)
ξ3V 2U1/2(U − 1/2)σ(U + 1/2)σ+2

dξ.

The function Σ1(t,X) is defined at the beginning of [6, Section 2] while
∆̃1−2σ(ξ) is defined in [6, Lemma 3.2]. U and V are functions defined as in
[6, Lemma 3.1] with k replaced by ξ.

This formula comes from [6, (3.3)–(3.5), (3.8) and (3.14)], and a simple
refinement of [6, (3.9)]

2T�

T

G∗4(t) dt� T r−1/2 log T �σ 1.

The last upper bound relies on the fact that r < 1/2 when 3/4 < σ < 1.
(Note that r = −(4σ2 − 7σ + 2)/(4σ − 1), see [6, Lemma 3.2].)

To deal with I(t), it can be observed that I(t) is essentially the same as
the integral J in [8, p. 368] except that the exponent of V is replaced by 2
and sin by cos in our case. We proceed with the argument in [8, Section 6]
by replacing ∆̃1−2σ(ξ) with its Voronoi-type series. The components corre-
sponding to J2(n, b) and O(T−σ−7/4) in [8, (6.1)] are treated in the same
way. Then we carry out the smoothing process described in [8, Section 7],
with X = (L+ µ)2 (0 ≤ µ ≤ M) and L = M =

√
T/2. It is easy to handle

Σ1(t,X) but the remaining part in I(t) needs a more complicated treatment,
following the same lines of argument of the evaluation of Kn in [8, p. 372].
Finally, we can obtain

2T�

T

E∗σ(t) dt = Σ∗1(t)|2TT −Σ∗2(t)|2TT +O(1).(2.1)
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Here, corresponding to Σ∗1,σ(t, L,M) in [8], we have

Σ∗1(t) =
√

2
(
t

2π

)5/4−σ∑

n≤T
(−1)nw1(n)

σ1−2σ(n)
n7/4−σ e2(t, n) sin f(t, n)

where w1(n) = 1 if n ≤ T/4 and 2(1−
√
n/T ) if T/4 < n ≤ T ,

e2(t, n) =
(

1 +
πn

2t

)−1/4(√ 2t
πn

arsinh

√
πn

2t

)−2

,

f(t, n) = 2t arsinh

√
πn

2t
+ (2πnt+ π2n2)1/2 − π

4

with σa(n) =
∑

d|n d
a and arsinhx = log(x+

√
x2 + 1). Moreover, following

the proof of [8, (8.2)] (i.e. [8, p. 375]), Σ∗2(t) analogous to Σ∗2,σ(t, L,M)
satisfies

2T�

T

Σ∗2(t)2 dt� T(2.2)

because Σ∗2(t) only differs from Σ∗2,σ(t, L,M) in the exponent of log(t/(2πn))
(the exponent is −2 in Σ∗2(t)) and the trigonometric function cos g(t, n)
(sin g(t, n) in Σ∗2(t)).

Define

S(t) = Σ∗1(t)−Σ∗2(t) and Gσ(t) =
t�

1

E∗σ(u) du.

Then from (2.1) we get

Gσ(2T )−Gσ(T ) =
2T�

T

E∗σ(t) dt = S(2T )− S(T ) + E(2.3)

where |E| ≤ c1. Our next section is to study the mean square of the difference
S(t+ h)− S(t).

3. Mean square of S(t+ h)− S(t). We prove the following.

Lemma 3.1. Let B and B′ be sufficiently large but fixed constants. Then

K1Th
5−4σ ≤

2T�

T

(S(t+ h)− S(t))2 dt ≤ K2Th
5−4σ

uniformly for B ≤ h ≤
√
T/B′, where K1 and K2 are positive constants

depending on σ only.



Mean square formula for the Riemann zeta-function 161

Proof. Using (t+ h)5/4−σ − t5/4−σ � t1/4−σh and

e2(t+ h, n)− e2(t, n) = h
∂

∂t

∣∣∣∣
t=ξ

e2(t, n)� nht−2

with ξ ∈ [t, t+ h], we have, for t ∈ [T, 2T ],

Σ∗1(t+ h)−Σ∗1(t) =
√

2
(
t

2π

)5/4−σ
Im
∑

n≤T
ankn(t)eif(t,n) +O(T−1/2h)

where
an = (−1)nw1(n)σ1−2σ(n)nσ−7/4,

kn(t) = e2(t, n)(exp(i(f(t+ h, n)− f(t, n)))− 1).

This yields

S(t+ h)− S(t) =
√

2
(
t

2π

)5/4−σ
Im
∑

n≤T
ankn(t)eif(t,n) + F (t, h)(3.1)

where F (t, h) = Σ∗2(t + h) − Σ∗2(t) + O(1). In view of (2.2), it suffices to
evaluate

J = 2
2T�

T

(
t

2π

)5/2−2σ (
Im
∑

n≤T
ankn(t)eif(t,n)

)2
dt.

Plainly,

J =
2T�

T

(
t

2π

)5/2−2σ∣∣∣
∑

n≤T
ankn(t)eif(t,n)

∣∣∣
2
dt(3.2)

−Re
2T�

T

(
t

2π

)5/2−2σ(∑

n≤T
ankn(t)eif(t,n)

)2
dt

= (2π)2σ−5/2
∑

n≤T
a2
n

2T�

T

t5/2−2σ|kn(t)|2 dt+O(T 5/2−2σ(|J1|+ |J2|))

by the mean value theorem for integrals, where for some Ti ∈ [T, 2T ] (i =
1, 2, 3, 4),

J1 =
T2�

T1

∑

m6=n≤T
amankm(t)kn(t)ei(f(t,m)−f(t,n)) dt,

J2 =
T4�

T3

∑

m,n≤T
amankm(t)kn(t)ei(f(t,m)+f(t,n)) dt.

To bound J1, we write k(t) = km(t)kn(t) and φ(t) = f(t,m) − f(t, n).
Then

J1 =
∑

m6=n≤T
aman

{
k(t)

eiφ(t)

φ′(t)

∣∣∣∣
T2

T1

−
T2�

T1

(
k′(t)
φ′(t)

− k(t)
φ′′(t)
φ′(t)2

)
eiφ(t) dt

}
.
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Noting that

f(t+ h, n)− f(t, n) = 2h arsinh
√
πn

2ξ
where ξ ∈ [t, t+ h],(3.3)

we have kn(t) � min(1, h
√
n/t) as arsinhx � x for all x ≥ 0. Applying

Hilbert’s inequality (see [11]) and minm6=n |φ′(t)| �
√
nt, we get

∑

m6=n≤T
amank(t)

eiφ(t)

φ′(t)

∣∣∣∣
T2

T1

�
∑

n≤T
a2
n|kn(t)|2

√
nT

� T 1/2
∑

n≤T
σ1−2σ(n)2n2σ−3 min(1, h

√
n/T )2

� T 2σ−3/2h4−4σ.

Using the fact that k′n(t)� √nht−3/2, we have

T2�

T1

∑

m6=n≤T
amank

′(t)
eiφ(t)

φ′(t)
dt

� T
(∑

n≤T
a2
n|k′n(t)|2

√
nT
)1/2(∑

n≤T
a2
n|kn(t)|2

√
nT
)1/2

� T 2σ−3/2h3−2σ.

Finally, from [9, p. 379], we have

φ′′(t)
φ′(t)2 = − 1

2tφ′(t)

(
cosh

(
1
2
f ′(t,m)

))−2

+O(t−1).

Then we see that as coshx ≥ 1,

T2�

T1

∑

m6=n≤T
amank(t)

φ′′(t)
φ′(t)2 e

iφ(t) dt

�
∑

n≤T
a2
n|kn(t)|2

√
nT +

(∑

n≤T
|ankn(t)|

)2
� T 2σ−3/2h4−4σ.

To sum up, J1 � T 2σ−3/2h3−2σ. The estimation of J2 is easier. Taking
k(t) = km(t)kn(t) and φ(t) = f ′(t,m) + f ′(t, n), we then have k(t) �
min(1, h

√
n/T ), k′(t) � √nht−3/2, φ′(t) � (

√
m +

√
n)/
√
T and φ′′(t) �

(
√
m +

√
n)T−3/2. The same treatment yields J2 � T 2σ−3/2h and so (3.2)

becomes

J = (2π)2σ−5/2
∑

n≤T
a2
n

2T�

T

t5/2−2σ|kn(t)|2 dt+O(Th3−2σ).
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From this, we can deduce that

J ≤ c2T
7/2−2σ

∑

n≤T
σ1−2σ(n)2n2σ−7/2 min(1, h

√
n/T )2 + c3Th

3−2σ(3.4)

≤ c4Th
5−4σ.

Since x/2 ≤ arsinhx ≤ 2x when 0 ≤ x ≤ 1, we see from (3.3) that
c5h
√
n/T ≤ f(t + h, n) − f(t, n) ≤ π/2 when n ≤ δT/h2 for some small

constant δ > 0. Therefore, provided δB ′ ≥ c6 (> 1), we get

J ≥ c7T
5/2−2σh2

∑

n≤δT/h2

σ1−2σ(n)2n2σ−5/2 − c8Th
3−2σ(3.5)

≥
(
c9 −

c8

B2−2σ

)
Th5−4σ ≥ c10Th

5−4σ

provided B > c11. From (2.2), we see that � 2T
T F (t, h)2 dt � T , and thus

from (3.1) and (3.4),
2T�

T

(S(t+ h)− S(t))2 dt = J +O(T +
√
JT ) = J +O(Th5/2−2σ).

This completes the proof of Lemma 3.1, with (3.4), (3.5) and a sufficiently
large B.

4. Proof of Theorem. We choose an integer R such that 2R(5−4σ) ≥
4K2/K1 where K1 and K2 are defined as in Lemma 3.1. Let

h = max(B, (12(c1R)2/K2)1/(5−4σ))

and T be any sufficiently large number (in particular, T ≥ 2R(B′h)2). From
(2.3), we have

(Gσ(2r(t+ h))−Gσ(2rt))− (Gσ(2r−1(t+ h))−Gσ(2r−1t))

= (Gσ(2r(t+ h))−Gσ(2r−1(t+ h)))− (Gσ(2rt)−Gσ(2r−1t))

= (S(2r(t+ h))− S(2r−1(t+ h)))− (S(2rt)− S(2r−1t)) + E ′r

= (S(2r(t+ h))− S(2rt))− (S(2r−1(t+ h))− S(2r−1t)) + E ′r
where |E ′r| ≤ 2c1. Summing over r = 1, . . . , R, yields

(Gσ(2R(t+ h))−Gσ(2Rt))− (Gσ(t+ h)−Gσ(t))

= (S(2R(t+ h))− S(2Rt))− (S(t+ h)− S(t)) +
R∑

r=1

E ′r.

Now, we square both sides and integrate over [T, 2T ]. Using the inequal-
ity 2(a2 + b2) ≥ (a− b)2 ≥ a2/2− b2, we infer that
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2T�

T

(Gσ(2R(t+ h))−Gσ(2Rt))2 dt+
2T�

T

(Gσ(t+ h)−Gσ(t))2 dt

≥ 4−1
2T�

T

((S(2R(t+ h))− S(2Rt))− (S(t+ h)− S(t)))2 dt− T

2

∣∣∣
R∑

r=1

E ′r
∣∣∣
2

≥ 4−1
(

1
2R+1

2R+1T�

2RT

(S(t+ 2Rh)− S(t))2 dt−
2T�

T

(S(t+ h)− S(t))2 dt

)

− 2(c1R)2T

≥ K2

4
Th5−4σ − 2(c1R)2T ≥ (c1R)2T

by Lemma 3.1 with our choices of R and h. Using the Cauchy–Schwarz
inequality, we see that

2T�

T

(Gσ(t+ h)−Gσ(t))2 dt =
2T�

T

∣∣∣
t+h�

t

E∗σ(u) du
∣∣∣
2
dt ≤ h2

2T+h�

T

E∗σ(u)2 du.

As R and h are fixed constants, we conclude that � 2R+2T
T E∗σ(u)2 du� T and

hence the result.
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