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1. Introduction. Let α be an irrational real number. Denote by ‖·‖ the
distance to the nearest integer. A famous 1907 result of Minkowski [Min57]
showed that if y 6∈ Z+ αZ, then for infinitely many n ∈ Z, we have

‖nα− y‖ < 1

4|n|
.

If n is restricted to positive integers only, Khintchine [Khi26] proved in 1926
that for any real number y, there exist infinitely many n ∈ N satisfying the
Diophantine inequalities

(1.1) ‖nα− y‖ < 1√
5n

.

We shall always restrict n to positive integers. Khintchine’s result is equiv-
alent to saying that the set

E(α, c) := {y ∈ R : ‖nα− y‖ < c/n for infinitely many n}

is the whole space R when the constant c equals 1/
√
5. It was shown by

Cassels [Cas50] in 1950 that the set E(α, c) is of full measure for any constant
c > 0.

The generalization of this question to more general error functions was
first considered by Bernik and Dodson [BD99] in 1999. Define

ω(α) := sup{θ ≥ 1 : lim inf
n→∞

nθ‖nα‖ = 0}.

(Observe that α is a Liouville number if ω(α) = ∞.) Bernik and Dodson
proved that the Hausdorff dimension, denoted by dimH, of the set

Eγ(α) := {y ∈ R : ‖nα− y‖ < 1/nγ for infinitely many n} (γ ≥ 1),
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satisfies
1

ω(α) · γ
≤ dimHEγ(α) ≤

1

γ
.

In 2003, Bugeaud [Bug03], and independently Schmeling and Troubetzkoy
[TS03], improved the above result. They showed that for any irrational α,

dimHEγ(α) = 1/γ.

Now let ϕ : N→ R+ be a function decreasing to zero. Consider the set

Eϕ(α) := {y ∈ R : ‖nα− y‖ < ϕ(n) for infinitely many n}.
This is the set of well-approximated numbers with a general error function ϕ.
It easily follows from the Borel–Cantelli lemma that the Lebesgue measure
of Eϕ(α) is zero whenever the series

∑∞
n=1 ϕ(n) converges. But on the other

hand, it seems hard to obtain a lower bound of the Lebesgue measure of
Eϕ(α) ∩ [0, 1] when the series

∑∞
n=1 ϕ(n) diverges. For results on this mea-

sure, we refer the readers to [Kur55], [LN12], [Kim12], and the references
therein.

In this paper, we are concerned with the Hausdorff dimension of the set
Eϕ(α). As in [Dod92] and [Dic94], for an increasing function ψ : N → R+,
we define the lower and upper orders at infinity by

λ(ψ) := lim inf
n→∞

logψ(n)

log n
and κ(ψ) := lim sup

n→∞

logψ(n)

log n
.

For simplicity, let us denote

uϕ :=
1

λ(1/ϕ)
and lϕ :=

1

κ(1/ϕ)
.

The results of Bugeaud, Schmeling and Troubetzkoy imply the inequality

lϕ ≤ dimHEϕ(α) ≤ uϕ.
The upper bound was considered a good candidate to be the precise

formula for the dimension of Eϕ(α). It would not be sharp without the
monotonicity of ϕ: for any irrational α one can easily find a function ϕ with
uϕ = 1 but with Eϕ(α) = ∅. But when ϕ is nonincreasing, we actually have

dimHEϕ(α) = uϕ

for all α of bounded type (see [FW06]). This result was further strengthened
by Xu [Xu10] (see below).

However, in [FW06], Fan and Wu constructed an example which shows
that the equality is not always true. In fact, they found a Liouville number
α and constructed an error function ϕ such that

dimHEϕ(α) = lϕ < uϕ.

In the general case, the dimension formula seems a mystery.
Recently, Xu [Xu10] made a progress by proving the following theorem.
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Theorem 1.1 (Xu). For any α,

lim sup
n→∞

log qn
− logϕ(qn)

≤ dimHEϕ(α) ≤ uϕ,

where qn denotes the denominator of the nth convergent of the continued
fraction of α.

As a corollary, Xu proved that

dimHEϕ(α) = uϕ

for any irrational number α with ω(α) = 1.
In this paper, we prove the following results.

Theorem 1.2. For any α with ω(α) = w ∈ [1,∞], we have

min

{
uϕ,max

{
lϕ,

1 + uϕ
1 + w

}}
≤ dimHEϕ(α) ≤ uϕ.

Corollary 1.3. If w ≤ 1/uϕ, then

dimHEϕ(α) = uϕ.

Example 1.4. Take w = 2, u = 1/2 and l = 1/3. We can construct an
irrational α such that q2n ≤ qn+1 ≤ 2q2n for all n. Define

ϕ(n) = max{n−1/l, q−1/lk } if qu/lk−1 < n ≤ qu/lk .

Then by Corollary 1.3, we have

lim
n→∞

log qn
− logϕ(qn)

= l < u = dimH(Eϕ(α)).

Thus the lower bound of Xu (Theorem 1.1) is not optimal.

The next two theorems show that the estimates in Theorem 1.2 are sharp.

Theorem 1.5. For any irrational α and for any 0 ≤ l < u ≤ 1 with
u > 1/w, there exists a decreasing function ϕ : N → R+ with lϕ = l and
uϕ = u such that

dimHEϕ(α) = max

{
l,
1 + u

1 + w

}
< u.

Theorem 1.6. Suppose 0 ≤ l < u ≤ 1. There exists a decreasing func-
tion ϕ : N→ R+ with lϕ = l and uϕ = u such that for any α which is not a
Liouville number,

dimHEϕ(α) = u.

2. Three steps dimension. The goal of this section is to prove Propo-
sition 2.3 which will be the base of our dimension estimation (compare [Xu10,
Section 3]).

Let us start with a technical lemma.
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Lemma 2.1. Let 1 > a > b and 1 > c > d. Then for any δ ∈ [0, 1] we
have

log(δa+ (1− δ)c)
log(δb+ (1− δ)d)

≥ min

(
log a

log b
,
log c

log d

)
.

Proof. Denote

s := min

(
log a

log b
,
log c

log d

)
.

Then
log(δa+ (1− δ)c)
log(δb+ (1− δ)d)

≥ log(δbs + (1− δ)ds)
log(δb+ (1− δ)d)

.

By concavity of the function x 7→ xs, we have

δbs + (1− δ)ds ≤ (δb+ (1− δ)d)s,
and the assertion follows.

We will also need the following result, which can be found in any standard
textbook on geometric measure theory (see for example [F95, Proposition
4.9]). Given a probability measure µ on R, the lower density of µ at a point
x ∈ R is defined by

dµ(x) = lim inf
r→0

logµ(B(x, r))

log r
.

Lemma 2.2 (Frostman). Let E ⊂ R. Assume we can find a measure µ
supported on E such that

dµ(x) ≥ s for µ-almost every x ∈ E.
Then dimHE ≥ s.

Let α be an irrational number with ω(α) > 1. Recall that qn is the
denominator of the nth convergent of the continued fraction of α. Let B ≥ 1
and suppose there exists a sequence {ni} of natural numbers such that

(2.1)
log qni+1

log qni

→ B.

Let {mi} be a sequence of natural numbers such that qni < mi ≤ qni+1. By
passing to subsequences, we suppose the limit

N := lim
i→∞

logmi

log qni

exists. Then obviously, 1 ≤ N ≤ B.
Let K > 1. Denote

Ei :=
{
y ∈ R : ‖nα− y‖ < 1

2q
−K
ni

for some n ∈ (mi−1,mi]
}
,

E :=

∞⋂
i=1

Ei and F :=

∞⋂
j=1

∞⋃
i=j

Ei.
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Proposition 2.3. Suppose N > 1. If {ni} is increasing sufficiently fast
then

dimHE = dimH F = S,

where

S = S(N,B,K) := min

(
N

K
,max

(
1

K
,

1

1 +B −N

))
.

We remark that Proposition 2.3 is a generalization of Xu’s result, so it
could also be used to prove Xu’s theorem (Theorem 1.1). However, we would
need some modifications to include the case N = 1 in Proposition 2.3, which
we skip.

Proof of Proposition 2.3. As F ⊃ E, we only need to get the lower bound
for dimHE and the upper bound for dimH F . For the former, we will use the
Frostman Lemma, and for the latter, we will use a natural cover.

We will distinguish two cases: B ≥ K and B < K. Notice the following
fact.

Fact. If B ≥ K then

N

K
>

1

1 +B −N
and S = max

(
1

K
,

1

1 +B −N

)
.

If B < K, then

1

K
<

1

1 +B −N
and S = min

(
N

K
,

1

1 +B −N

)
.

Indeed, the second statement follows by noting 1/K < 1/B. For the first
statement, if N ≥ K then it is obviously true because the right hand side is
smaller than 1. Otherwise, we have

K −N
N

< K −N,

hence
K

N
< 1 +K −N.

Since B ≥ K, we have

1 +B −N ≥ 1 +K −N > K/N.

Distribution of the points. Now, let us study the distribution of the points
{nα (mod 1)}. Let {ni} be a fast increasing sequence satisfying (2.1). By
passing to a subsequence, we can always assume that {ni} grows as fast as
we wish; the exact rate of growth will be clear later. Denote

Ni := mi −mi−1.
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Since N > 1, by passing to a subsequence, we can suppose that Ni ≥ qni .
As N will not change when we change mi to the closest greater or closest
smaller multiple of qni , it is enough to prove the statement for qni |Ni.

The three steps theorem tells us how the points {nα (mod 1)}mi
n=mi−1+1

are distributed on the unit circle: there are qni groups of points, each con-
sisting of Ni/qni points, the distances between points inside each group
are equal to ξi := ‖qniα‖ and the distances between groups are ζi :=
‖qni−1α‖ − (Ni/qni − 1)‖qniα‖ (except for one distance which is equal to
ζi + ξi).

Let ε be fixed and small. In the first case, i.e., B ≥ K, we have ξi ≤ q−Kni

for all i large enough, hence the intervals [nα−q−Kni
/2, nα+q−Kni

/2] intersect
each other (within each group). So Ei consists ofMi := qni intervals of length
yi := (Ni/qni − 1)ξi + q−Kni

. By noting that ‖qnα‖ is comparable with q−1n+1,
we have

yi = (Ni/qni − 1)ξi + q−Kni
= q−min(K,1+B−N)+ε

ni

for i large enough.
In the second case, i.e., B < K, for large i, Ei consists of Ni intervals of

length zi := q−Kni
.

As qni+1 � qni+1, we can freely assume that for i large enough each
component of Ei contains at least M1−ε

i+1 (in the first case) or N1−ε
i+1 (in the

second case) components of Ei+1.

Calculations. We will distribute a probability measure µ in the most
natural way: the measure assigned to each component of Fi = E1 ∩ · · · ∩Ei
is the same. Here we distribute the measure only on those components of
Fi that are components of Ei, i.e., at all stages we count only components
completely contained in previous generation sets.

Case 1: B ≥ K. At level i we have at least M1−ε
i components of Fi,

each of size yi, and inside each component of Fi−1, the components of Fi are
at equal distance ci := ζi − q−Kni

.
Let x ∈ E. For yi ≤ r < yi−1, consider

(2.2) f(r) =
logµ(Br(x))

log r
.

Notice that the convex hull of components of Fi intersecting Br(x) has mea-
sure at most 3µ(Br(x)) and length at most 6r. Hence, it is enough to consider
the case when the interval Br(x) is the convex hull of some components of
Fi contained in one component of Fi−1. Denoting the number of components
of Fi contained in one component of Fi−1 by n, we get

(2.3) f(nyi + (n− 1)ci) ≥
log(nM

−(1−ε)
i )

log(nyi + (n− 1)ci)
.
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As the right hand side of (2.3) is the ratio of logarithms of two functions,
both linear in n and smaller than 1, by Lemma 2.1 the minimum of f(r) in
(yi, yi−1) is achieved at one of the endpoints. We have

(2.4) f(yi) ≥ (1− ε)− logMi

log yi
= max

(
1

K
,

1

1 +B −N

)
+O(ε)

and the same holds for f(yi−1). Recalling the fact at the beginning of the
proof, we get the lower bound by Lemma 2.2.

The upper bound is simpler: for any i, F is contained in
⋃
n>iEn. Hence,

we can use the components of all En, n > i, as a cover for F . For any s the
sum of the sth powers of the diameters of the components of En is bounded
by Mny

s
n, and for s > max

(
1
K ,

1
1+B−N

)
+O(ε) it is exponentially decreasing

in n. The upper bound then follows by the definition of Hausdorff dimension.
Case 2: B < K. Once again to obtain the lower bound we will consider

the function f(r) given by (2.2). However, in this case the components of
Fi are not uniformly distributed inside a component of Fi−1 but they are
in groups. There are at least si groups at distance ci from each other, each
group is of size yi and contains at least N1−ε

i components. Inside each group
the components of size zi are at distance di := ξi − q−Kni

from each other.
We need to consider zi ≤ r < zi−1. This range can be divided into two

subranges. The inequality (2.3) works for yi ≤ r < zi−1, while for zi ≤ r < yi
the same reasoning gives

(2.5) f(nzi + (n− 1)di) ≥
log(nN

−(1−ε)
i )

log(nzi + (n− 1)di)
.

As in the first case, Lemma 2.1 implies that the minimum of f(r) in each
subrange is achieved at one of the endpoints. We have

f(zi) ≥ (1− ε)− logNi

log zi
=
N

K
+O(ε)

and the same for f(zi−1), while f(yi) is still given by (2.4). Together with
Lemma 2.2 and the fact at the beginning of the proof, this gives the lower
bound.

To get the upper bound for the dimension of F we can use two covers. One
is given by using the convex hulls of groups of components of Fn with n > i.
As in the first case (taking into account the fact that 1/K < 1/(1+B−N)),
this cover gives

dimH F ≤
1

1 +B −N
+O(ε).

The other cover consists of the components of En with n > i. For any s the
sum of the sth powers of the diameters of the components of En is bounded
by Nnz

s
n, and for s > N/K + O(ε) it is exponentially decreasing in n. We

choose one of the two covers that gives us the smaller Hausdorff dimension.
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The statement of Proposition 2.3 could also be written in the following
way, fixing B and N and varying K:

S(N,B,K) =


1/K, K < 1 +B −N,
1/(1 +B −N), 1 +B −N ≤ K ≤ N(1 +B −N),

N/K, K > N(1 +B −N).

3. Proof of Theorem 1.2. Note that the lower bound in Theorem 1.2
can be written as

max

{
lϕ,min

{
uϕ,

1 + uϕ
1 + w

}}
.

We remind the reader that by the result of Bugeaud [Bug03] and Schmel-
ing and Troubetzkoy [TS03], the Hausdorff dimension of Eϕ is between lϕ
and uϕ. So for the case of Liouville numbers, i.e., ω(α) =∞, the result triv-
ially holds and we can assume w < ∞. For the same reason, we only need
to prove the lower bound. Moreover, we just need to show it is not smaller
than min(uϕ, (1 + uϕ)/(1 + w)) and we can assume that lϕ < uϕ. We shall
suppose that lϕ > 0; the case lϕ = 0 can be obtained by a limiting argument.

For any irrational number α, ω(α) can be defined alternatively by

ω(α) = lim sup
n→∞

log qn+1(α)

log qn(α)
.

Choose a sequence mi of natural numbers such that

lim
i→∞

logmi

− logϕ(mi)
= uϕ.

Let ni be such that qni < mi ≤ qni+1. By passing to a subsequence we can
assume that

• the sequence log qni+1/log qni has a limit B ∈ [1, w],
• the sequence logmi/log qni has a limit N ∈ [1, B],
• the sequence {ni} grows fast enough for Proposition 2.3.

Moreover, we can freely assume that N > 1: otherwise, by the monotonicity
of ϕ, we would have

lim
i→∞

log qni

− logϕ(qni)
= uϕ,

and the assertion would follow from Theorem 1.1.
Take K = N/uϕ. By the definition of mi, for any small δ > 0, we have

ϕ(mi) ≥ (mi)
−1/uϕ−δ ≥ q−Kni

for all large i.

Thus by monotonicity of ϕ,

(3.1) ϕ(n) ≥ q−Kni
∀n ≤ mi.
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The assumptions of Proposition 2.3 are satisfied, so we can calculate the
Hausdorff dimension of the set E defined in the previous section. By (3.1),
E ⊂ Eϕ, so this gives the lower bound for the Hausdorff dimension of Eϕ:

dimHEϕ ≥M(N,B) := min

(
uϕ,max

(
uϕ
N
,

1

1 +B −N

))
,

and we want to estimate the minimal value of M for B ∈ [1, w], N ∈ [1, B].
First note that increasing B not only decreases M(B,N) for a fixed N

but also increases the range of possibleN ’s. Hence, the minimum ofM(N,B)
is achieved for B = w. Denote M(N) =M(N,w).

We are then left with a simple optimization problem for a function of
one variable. We can write

M(N) = min

(
uϕ,max

(
uϕ
N
,

1

1 + w −N

))
.

If wuϕ ≤ 1 then uϕ ≤ 1/(1 + w −N) for all N , hence

min
N

M(N) = uϕ ≤
1 + uϕ
1 + w

.

Otherwise, as uϕ/N is a decreasing and 1/(1+w−N) an increasing function
of N , the global minimum over N of the maximum of the two is achieved at
the point N0 where they are equal: uϕ/N0 = 1/(1 + w −N0), that is, for

N0 =
uϕ(1 + w)

1 + uϕ
.

As wuϕ > 1 implies 1 < N0 < wuϕ ≤ w, N0 is inside the interval [1, w],
hence this global minimum is the local minimum we are looking for. Thus,
in this case

min
N

M(N) =M(N0) =
1 + uϕ
1 + w

< uϕ.

We are done.

4. Proofs of Theorems 1.5 and 1.6

Proof of Theorem 1.5. Let α be of Diophantine type w > 1/u. Let qni

be a sparse subsequence of denominators of convergents such that

w = lim
i→∞

log qni+1

log qni

.

For any 0 ≤ l < u ≤ 1, define

z = max

(
l,
1 + u

1 + w

)
.

Note that z < u.
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Define also a function ϕ : N→ R as follows:

ϕ(n) := max{n−1/l, k−1/uni
} if kni−1 < n ≤ kni , where kni = qu/zni

.

Let

D1={y∈R : for infinitely many i, ‖nα−y‖<k−1/uni
for somen∈(kni−1,kni ]},

D2={y∈R : ‖nα− y‖ < n−1/l for infinitely many n}.
Clearly, Eϕ(α) = D1 ∪ D2. The Hausdorff dimension of D1 is given by
Proposition 2.3 (with B = w,K = 1/z,N = u/z):

dimHD1 = min

(
u,max

(
z,

z

(1 + w)z − u

))
= z

(the equality is valid both when z = l and z = (1 + u)/(1 + w)).
By [Bug03] and [TS03] we have dimHD2 = l. Thus the proof is complete.

Proof of Theorem 1.6. Construct a sequence {ni}i≥1 by recurrence:

n1 = 2, ni+1 = 2ni (i ≥ 1).

Define a function ϕ : N → R as ϕ(n) = n
−1/l
i for n ∈ (ni, n

u/l
i ) and ϕ(n) =

n−1/u elsewhere.
Now we show that for this ϕ, dimHEϕ(α) = u if α is not a Liouville

number. Suppose for contradiction that dimHEϕ(α) < u. By Theorem 1.1,
no qm could be between ni and n

l/u
i+1. Since ni goes to infinity very fast,

α cannot be of finite type. Hence, α must be a Liouville number, which is a
contradiction.
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