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1. Introduction. Denote, as usual, by π(x) the number of primes not
exceeding x, and by pn the nth prime. The prime number theorem says
π(x) ∼ x/ log x as x→∞, so that on average pn+1 − pn is about log pn. In
[GPY1] we proved

(1.1) lim inf
n→∞

pn+1 − pn
log pn

= 0,

that is, ‘small gaps’ (smaller than any positive constant times the average
gap) between primes exist ad infinitum. Concerning the distribution of gaps
between primes, it is conjectured (see [S1], [S2]) that

(1.2) #{pn ≤ x; pn+1 ∈ (pn + α log pn, pn + β log pn)} ∼ π(x)

β�

α

e−t dt

as x→∞, for any two fixed real numbers β > α ≥ 0. Gallagher’s calculation
[Ga] shows that this conjecture can be deduced from the Hardy–Littlewood
prime k-tuples conjecture (see [S2]). Hence an immediate query to be con-
ducted was whether the small gaps between primes attested to by the proof
of (1.1) constitute a positive proportion of the set of all gaps between con-
secutive primes.

The main result of this article is

Theorem 1. For sufficiently small but fixed η > 0,

(1.3)
∑

N<pj≤2N
pj+1−pj≤η logN

1 & e−cη
−6 N

logN
(N →∞),

with c = d65 · 46 · log 2e = 184544. Thus, for any fixed η > 0,

(1.4) #{pn ≤ x; pn+1 − pn ≤ η log pn} �η π(x).
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While dwelling upon how (1.1) was obtained in the next section, we will
introduce some concepts and notation. The proof of Theorem 1 is given
in the third and fourth sections. Theorem 2 in the fifth section expresses
that ‘very small gaps’ are sparse. In the last section we conditionally obtain
stronger results, by assuming more than what the Bombieri–Vinogradov
theorem supplies.

A rather qualitative concise version of the results of this paper was pre-
sented in [GPY3]. Here we carry out the calculations in full detail so that
in the results the dependence on η is explicit. This explicitness provides,
within the framework of our method, a new quantitative manifestation of
the effect of the extent of assumed information about how well the primes
are distributed in arithmetic progressions in addition to that provided by
the results in [GPY1]. To obtain the explicit estimates it was necessary to
develop the propositions given in the third section which may be useful in
various other problems.

2. Preliminaries. A bibliography of former results for the limit in (1.1)
was given in [GPY1]. Before [GPY1] the best known result for this limit was

lim inf
n→∞

pn+1 − pn
log pn

≤ 0.2484 . . . ,

due to Maier [M]. In his proof Maier constructed thin sets in which the
density of primes is larger by a factor of eγ than on average, and paralleling
the Bombieri–Davenport–Huxley method ([BD], [Hu]) with necessary mod-
ifications, he obtained this upper bound which is e−γ times the result of
the older method. Since Maier’s method involved working within a thin set
of integers, the gaps indicated by his result could not constitute a positive
proportion of all gaps between consecutive primes. The second best result
was the upper bound 1/4 by Goldston and Yıldırım [GY2]. The origin of its
method also being the Bombieri–Davenport proof, the gaps of [GY2] were
shown to make up a positive proportion. Another positive proportion re-
sult was obtained by Bazzanella, Languasco and Zaccagnini [BLZ] for larger
gaps. They showed that, as x → ∞, the number of primes p ≤ x for which
the interval (p, p+ η log x], where η is any constant > 1/2, contains at least
one prime is & ∆(η)x/log x with the distinction that an explicit expression
for ∆(η) was provided.

We now outline how the result (1.1) was attained. For a k-tuple

(2.1) H = {h1, . . . , hk} with distinct integers h1, . . . , hk ∈ [1, h],

and for a prime p, denote by νp(H) the number of distinct residue classes
modulo p occupied by the entries of H. The singular series associated with
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H is defined as

(2.2) S(H) :=
∏
p

(
1− 1

p

)−k(
1− νp(H)

p

)
,

the product being convergent because νp(H) = k for p > h. We say that H
is admissible if

(2.3) PH(n) := (n+ h1) · · · (n+ hk)

is not divisible by a fixed prime number for every n, which is equivalent to
νp(H) 6= p for all p and therefore also to S(H) 6= 0. That {n+h1, . . . , n+hk}
is a prime tuple, i.e. each entry is prime, is equivalent to PH(n) being a
product of k primes. Since the generalized von Mangoldt function

Λk(m) :=
∑
d|m

µ(d)

(
log

m

d

)k
vanishes when m has more than k distinct prime factors, the quantity

1

k!

∑
d|PH(n)
d≤R

µ(d)

(
log

R

d

)k
with the truncation d ≤ R may be employed in detecting prime tuples, albeit
roughly (the contribution from proper prime power factors is negligible; 1/k!
is a normalization factor). However, it turns out that an additional crucial
idea is needed, and that is to give up trying to count tuples consisting of
primes exclusively in favour of including tuples with primes in many entries.
This brings about the use of

(2.4) ΛR(n;H, `) :=
1

(k + `)!

∑
d|PH(n)
d≤R

µ(d)

(
log

R

d

)k+`
(0 ≤ ` ≤ k − 2).

Let

(2.5) θ(n) :=

{
log n if n is prime,

0 otherwise,

and

(2.6) Θ(n, h) :=
∑

1≤h0≤h
θ(n+ h0).

The proof of (1.1) is achieved by showing the positivity of the quantity

(2.7) SR(N, k, `, h) :=
∑

N<n≤2N
(Θ(n, h)− log 3N)

( ∑
H⊂[1,h]
|H|=k

ΛR(n;H, `)
)2
.

Here, as N →∞, for a result of the type (1.1) we need ε logN � h� logN
with an arbitrarily small but fixed ε > 0, and the larger the truncation level
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R is relative to N , the better detection will be provided by (2.4). The tuple
size k is taken to be arbitrarily large but fixed. In fact, for the proof of (1.1)
it suffices to consider the simpler expression where the inner sum consists
only of the diagonal terms ΛR(n;H, `)2, and a modified version of this will
be used in Section 4. The expression in (2.7) is needed to achieve a better
result in the case of the gaps pn+r − pn with r ≥ 2 in [GPY1] and for a
stronger quantitative version of (1.1) in [GPY2].

The essential information on primes we need beyond the prime number
theorem concerns the level of distribution of primes in arithmetic progres-
sions. We say that the primes have a level of distribution ϑ if

(2.8)
∑
q≤Q

max
a

(a,q)=1

∣∣∣∣ ∑
p prime
p≤N

p≡ a (mod q)

log p− N

φ(q)

∣∣∣∣�ε,A
N

(logN)A

for any A > 0 and any ε > 0 with

(2.9) Q = Nϑ−ε.

According to the Bombieri–Vinogradov theorem, for any A > 0 there is
a B = B(A) such that (2.8) holds with Q = N1/2(logN)−B, so that the
primes are known to have level of distribution 1/2. The Elliott–Halberstam
conjecture is that the primes have level of distribution 1.

The following are relevant special cases of the propositions from [GPY1].
For an admissible k-tuple H, we have

(2.10)
∑
n≤N

ΛR(n;H, `)2 ∼
(

2`

`

)
(logR)k+2`

(k + 2`)!
S(H)N

as R,N →∞, for R� N1/2(logN)−8M where M = k + `, and h ≤ RC for
any given constant C > 0. In the situation of weighting with the primes,
for 1 ≤ h0 ≤ h writing m = 1 when h0 ∈ H and m = 0 when h0 6∈ H, if
H ∪ {h0} is admissible we have

(2.11)
∑
N≤n

θ(n+ h0)ΛR(n;H, `)2

∼
(

2(`+m)

`+m

)
S(H ∪ {h0})
(k + 2`+m)!

N(logR)k+2`+m

as R,N → ∞, provided that R �M N1/4(logN)−B(M) for a sufficiently
large positive constant B(M), and h ≤ R. The upper bound for R is forced
by the dependence of the proof of (2.11) on the Bombieri–Vinogradov theo-
rem, and for the unconditional results in [GPY1], takingR = N1/4−ε suffices.
More generally, assuming that the primes have level of distribution ϑ with a
fixed ϑ ∈ [1/2, 1], (2.11) holds with R� Nϑ/2−ε and h ≤ Rε for any ε > 0.
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The proof of (2.10) and (2.11) may be summarized as follows. Upon
writing the left-hand sides explicitly by substituting (2.4), the sum over n is
carried to the innermost position and easily evaluated. Then a Mellin trans-
form converts the expressions into integrals over vertical lines in the complex
plane. The integrands contain Dirichlet series which encode the arithmetic
information from the tuples. The integrals are evaluated by shifting the lines
of integration appropriately and by calculating the residues and the bounds
for the integrals over the new contours.

For the calculation of SR(N, k, `, h), the general versions of (2.10) and
(2.11) are employed in the expression on the right-hand side of (2.7), and
then Gallagher’s [Ga] result

(2.12)
∑
H⊂[1,h]
|H|=k

S(H) ∼ hk for fixed k as h→∞

(where each set is counted k! times due to all of its permutations) is needed
to complete the calculation. The parameters which appear in this process
are chosen judiciously, in particular k has to be arbitrarily large but fixed
and the optimal order of magnitude of the integer ` turns out to be

√
k.

For a proof of (1.4) the weights ΛR(n;H, `)2 have to be removed, which
is customarily achieved by an application of the Cauchy–Schwarz inequality.
Straightforward adaptation of the argument in [GY2] brings in the fourth
moment of prime tuple approximants. Specifically, for a proof of (1.4), one
needs to show that

(2.13)
∑

N<n≤2N

( ∑
H⊂[1,h]
|H|=k

ΛR(n;H, `)
)4
� N(logN)4k+4`.

However, some calculations indicate that the truth of

(2.14)
∑

N<n≤2N

∑
H⊂[1,h]
|H|=k

ΛR(n;H, `)4 � N(logN)4k+4`

is questionable. It seems that there exist n having a lot of divisors for which
|ΛR(n;H, `)| becomes exceptionally large, thereby preventing an estimate
such as (2.14).

3. The modified propositions. The lack of success from a direct use
of results from [GPY1] for the proof of a positive proportion result notwith-
standing, a version of (2.10) and (2.11) in which the n with PH(n) having
small prime factors are discounted vouchsafes the solution. We define

(3.1) P(x) :=
∏
pn≤x

pn.
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We shall use the following results which are consequences of (2.10), (2.11)
and Lemmas 4 and 5 of Pintz’s work [P].

Proposition 1. For N c1 ≤ R ≤ N1/(2+δ)(logN)−c2 where c1 and c2
are suitably chosen constants depending on k and ` �

√
k (c1 can be taken

to be 1/5 and c2 is sufficiently large), δ > 0 small compared to k−3/2, and
H admissible with h� logR and h→∞ with N , we have

(3.2)
∑

N<n≤2N
(PH(n),P(Rδ))=1

ΛR(n;H, `)2

∼ (1 +O(k3δ2))

(
2`

`

)
S(H)

(k + 2`)!
N(logR)k+2`.

Proposition 2. Upon the conditions of Proposition 1 and the notation
introduced in connection with (2.11), if the level of distribution of primes
is ϑ ≥ 1/2, then for N c1 ≤ R ≤ N (ϑ−ε)/(2+δ)(logN)−c2 (ε > 0 arbitrarily
small but fixed) and H ∪ {h0} admissible, we have

(3.3)
∑

N<n≤2N
(PH(n),P(Rδ))=1

θ(n+ h0)ΛR(n;H, `)2

∼ (1 +O(k3δ2))

(
2(`+m)

`+m

)
S(H ∪ {h0})
(k + 2`+m)!

N(logR)k+2`+m;

in case H ∪ {h0} is not admissible, instead of the right-hand side of (3.3)
we have o(N(logR)k+2`+m).

Proof. From [P], along with (2.10) and (2.11), these results are obvious
except that the present error term O(k3δ2) meant with an absolute constant
comes out as O(δ) with the constant implied depending on k and `. Since
we shall use the dependence on k and ` of the error term, we give its proof.
An examination of the proof of Pintz’s Lemma 3 reveals that we need to
have more precise versions of formulas (6.17), (6.18), (6.25) and (6.26) of [P].
First we evaluate

Tq,1(1 + α) :=
1

`!

[(
d

dξ

)`((1 + α+ ξ)k+2`

(1 + ξ)k

)]
ξ=0

(3.4)

= (1 + α)k+`
∑̀
m=0

(
2`−m
`

)(
k +m− 1

m

)
(−α)m.

This indicates that it would be opportune to restrict |α| to values small
compared to 1/k. Assuming this, and recalling that ` �

√
k, from (3.4) we

see

(3.5) Tq,1(1 + α) =(
2`

`

)[
1+

(
k

2
+`

)
α+

(
k2

8
+
k`

2
− 3k

8
+
`2

2
− `

2
− k(k + 1)

8(2`− 1)

)
α2+O

(
(kα)3

)]
.
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We will denote by K the coefficient of α2 in the last line. This is used in (6.8)
of [P]. We recall that the prime number q has the value Rβ in the statement
of Lemma 3. In the last factor of the integrand of (6.8) there are four terms.
With the notation introduced in (6.11) of [P] we have the following. The
first term has R1 = R2 = R, so that α = 0, and we get the contribution(

2`

`

)
(logR)k+2`

(k + 2`)!
Gq(0, 0).

The second term has R1 = R/q, R2 = R, so that α = −β, and we get the
contribution(

2`

`

)
(logR)k+2`

(k + 2`)!
Gq(0, 0)

[
1−

(
k

2
+ `

)
β +Kβ2 +O((kβ)3)

]
.

The third term has R1 = R, R2 = R/q, so that α = β
1−β , and we get the

contribution(
2`

`

)
(logR1−β)k+2`

(k + 2`)!
Gq(0, 0)

[
1+

(
k

2
+ `

)
β

1− β
+K

(
β

1− β

)2

+O((kβ)3)

]
.

The fourth term has R1 = R2 = R/q, so that α = 0, and we get the
contribution (

2`

`

)
(logR1−β)k+2`

(k + 2`)!
Gq(0, 0).

Combining these as in (6.8) of [P] we obtain

(3.6)(
2`

`

)
(logR)k+2`

(k + 2`)!
Gq(0, 0)

[(
k2

4
+ k`+ `2 +

k

4
+
k(k + 1)

4(2`− 1)

)
β2 +O((kβ)3)

]
in place of the main term of (6.25) of [P]. Hence in the new version for (6.1)
of [P], instead of β/q we have

νq(H)

q

Gq(0, 0)

G(0, 0)

[(
k2

4
+ k`+ `2 +

k

4
+
k(k + 1)

4(2`− 1)

)
β2 +O((kβ)3)

]
=
νq(H)

q

(
1− νq(H)

q

)−1(k2β2
4

+ smaller terms

)
,

i.e. we can express the new version of Lemma 3 of [P] as

(3.7)
∑

N<n≤2N
q|PH(n)

ΛR(n;H, `)2 ≤ νq(H)

q − νq(H)

k2β2

3

∑
N<n≤2N

ΛR(n;H, `)2.

Here N c1 ≤ R ≤ N1/(2+δ)(logN)−c2 , q is a prime number for which we
write q = Rβ, with 0 < β ≤ δ where δ is small compared to k−3/2 say, k is
sufficiently large, and ` �

√
k.
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We know that νq(H) ≤ min(q−1, k) since H is admissible. For q ≤ k, we

have νq(H) ≤ q − 1, so that
νq(H)
q−νq(H) ≤ q − 1. For q > k, we take νq(H) ≤ k,

so that
νq(H)
q−νq(H) ≤

k
q−k . Summing over all primes q ≤ Rδ we obtain a new

version of Lemma 4 of [P] as

(3.8)
∑

N<n≤2N
(PH(n),P(Rδ))>1

ΛR(n;H, `)2 ≤ k3δ2

4

∑
N<n≤2N

ΛR(n;H, `)2

if k is large enough. We see that we have to choose δ small enough so
that k3δ2 will be small. Now by (2.10) and (2.11) we immediately obtain
(3.2). When there is the twisting with primes, the proof runs similarly and
Proposition 2 also follows.

4. Proof of Theorem 1. Our aim is to obtain an inequality of the
form

(4.1)
∑

N<pj≤2N
pj+1−pj≤h

1�η π(N) ∼ N

logN
(N →∞)

for

(4.2) h = η logN, η > 0 arbitrarily small but fixed.

Let

(4.3) Q(N,h) :=
∑

N<n≤2N
π(n+h)−π(n)>1

1.

If n is an integer for which π(n+h)−π(n) > 1, then there must be a j such
that n < pj and pj+1 ≤ n + h. Thus pj+1 − pj < h and pj+1 − h ≤ n < pj ,
so that there are less than bhc such integers n corresponding to each such
gap. Therefore

(4.4) Q(N,h) ≤ h
∑

N<pj≤2N
pj+1−pj≤h

1 +O(Ne−C
√
logN ),

where we have used the prime number theorem with error term to remove the
prime gaps which overlap the endpoints (this is explicitly shown in [GY1]).

Instead of SR which was defined in (2.7), we will work with

(4.5) S̃R :=
1

N(h logR)k

∑
N<n≤2N

(Θ(n, h)− log 3N)
(∑

*

H
ΛR(n;H, `)2

)
,

where

(4.6)
∑

*

H
:=

∑
H⊂[1,h], |H|=k
H admissible

(PH(n),P(Rδ))=1

.
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We note that, as a function of η, k and ` will be chosen sufficiently large
but fixed, and δ > 0 will be chosen sufficiently small but fixed (see (4.22)
below).

From (4.5) we have, when N is sufficiently large,

(4.7) S̃R ≤
1

N(h logR)k

∑
N<n≤2N

Θ(n,h)≥ 3
2
logN

Θ(n, h)
∑

*

H
ΛR(n;H, `)2

≤ 1

N(h logR)k

{ ∑
N<n≤2N

Θ(n,h)≥ 3
2
logN

1

}1/2{ ∑
N<n≤2N

Θ(n, h)2
(∑

*

H
ΛR(n;H, `)2

)2}1/2

=
Q(N,h)1/2

N(h logR)k
I1/2,

where

(4.8) I =
∑

1≤h′,h′′≤h

∑
Hi⊂[1,h], |Hi|=k
Hi admissible

i=1,2

∑
N<n≤2N

(PH1∪H2
(n),P(Rδ))=1

θ(n+ h′)θ(n+ h′′)

× ΛR(n;H1, `)
2ΛR(n;H2, `)

2.

Here for a number n to make a nonzero contribution, both of n + h′ and
n+ h′′ must be prime, so that ((n + h′)(n + h′′),P(Rδ)) = 1 and writ-
ing H0 = {h′} ∪ {h′′} ∪ H1 ∪ H2 we can re-express the condition on n as
(PH0(n),P(Rδ)) = 1. We also observe that, since all prime factors of PH(n)

in
∑

*
H are greater than Rδ, the number of squarefree divisors of PH(n) is

at most 2
k log 3N
δ logR . Hence for any term in

∑
*
H we have

(4.9) |ΛR(n;H, `)| ≤ 2
k log 3N
δ logR

(k + `)!
(logR)k+`.

Such an estimate could not be written if we had δ = 0, which is the case
with (2.10) and (2.11). Thus this is the crucial point which makes the current
argument work. Substituting (4.9) in (4.8), we have

(4.10)

I ≤ 2
4k log 3N
δ logR (logR)4(k+`)(log 3N)2

(k + `)!4

∑
1≤h′,h′′≤h

∑
Hi⊂[1,h], |Hi|=k
Hi admissible

i=1,2

∑
N<n≤2N

(PH0
(n),P(Rδ))=1

1.

For a given H0 ⊂ {1, . . . , h} with |H0| = k + r, 0 ≤ r ≤ k + 2, denoting
by D(k, r) the number of quadruples h′, h′′,H1,H2 corresponding to H0, we
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re-express (4.10) as

(4.11)

I ≤ 2
4k log 3N
δ logR (logR)4(k+`)(log 3N)2

(k + `)!4

k+2∑
r=0

D(k, r)
∑

|H0|=k+r

∑
N<n≤2N

(PH0
(n),P(Rδ))=1

1.

We now invoke the main theorem of Selberg’s upper bound sieve ([HR,
Theorem 5.1] or [Gr, §2.2.2, Theorem 2]) that for any set H and δ < 1/2,

(4.12)
∑

N<n≤2N
(PH(n),P(Rδ))=1

1 ≤ N |H|!S(H)

(logRδ)|H|
(1 + o(1)) (N →∞),

which gives upon using (2.11) that

I . N
2

4k log 3N
δ logR (logR)4(k+`)(logN)2

(k + `)!4

k+2∑
r=0

(k + r)!D(k, r)

(δ logR)k+r

∑
H0; |H0|=k+r

S(H0)

(4.13)

. N
2

4k log 3N
δ logR (logR)4(k+`)(logN)2

(k + `)!4

k+2∑
r=0

(k + r)!D(k, r)

(
h

δ logR

)k+r
.

To deal with the inner sum here, first note that

(4.14) D(k, r) =
k!2(k + r)!(k4 + 3k3 + (3r + 2)k2 + 4rk + r2)

r!2(k + 2− r)!

(here the factor k!2 comes from the ordering of the elements within the
k-tuples H1 and H2). We skip the proof of (4.14) since it follows from an
elementary combinatorial calculation, and after our choice of parameters the

order of magnitude is much smaller than that of the heftiest factor 2
4k log 3N
δ logR .

Now for u > 0, we have

(4.15)

k+2∑
r=0

(k+r)!D(k, r)uk+r ≤ uk(k+1)2(k + 2)2
k+2∑
r=0

k!2(k + r)!2

r!2(k+2−r)!
ur

= uk(k + 2)!

k+2∑
r=0

(k + r)!2

r!

(
k + 2

r

)
ur ≤ (2k + 2)!2uk(1 + u)k+2,

so that

(4.16)

I . N(logR)4(k+`)(logN)2
(2k + 2)!2

(k + `)!4
2

4k log 3N
δ logR

(
h

δ logR

)k(
1 +

h

δ logR

)k+2

.
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Using (4.16) and (4.4) in (4.7), we obtain

(4.17) S̃R .
(
h

∑
N<pj≤2N
pj+1−pj≤h

1 +O(Ne−C
√
logN )

)1/2

× (logR)(k+2`) logN

N1/2hk
(2k + 2)!

(k + `)!2
2

2k log 3N
δ logR

(
h

δ logR

)k/2(
1 +

h

δ logR

)(k+2)/2

.

Now we calculate S̃R using Propositions 1 and 2. From Proposition 1
and (2.12) we see that

(4.18)
∑

N<n≤2N
(log 3N)

∑
*

H
ΛR(n;H, `)2

∼
(
1 +O(k3δ2)

)(2`

`

)
hk

(k + 2`)!
N(logR)k+2` logN.

Similarly, Proposition 2 and (2.12) imply

(4.19)
∑

H⊂[1,h], |H|=k
H admissible

∑
hi∈H

∑
N<n≤2N

(PH(n),P(Rδ))=1

θ(n+ hi)ΛR(n;H, `)2

∼
(
1 +O(k3δ2)

)(2`+ 2

`+ 1

)
khk

(k + 2`+ 1)!
N(logR)k+2`+1,

and

(4.20)
∑

H⊂[1,h], |H|=k
H admissible

∑
1≤h0≤h
h0 6∈H

∑
N<n≤2N

(PH(n),P(Rδ))=1

θ(n+ h0)ΛR(n;H, `)2

&
(
1 +O(k3δ2)

)(2`

`

)
hk+1

(k + 2`)!
N(logR)k+2`.

Putting (4.18)–(4.20) in (4.5) we obtain

(4.21) S̃R &(
2`
`

)
(k + 2`)!

(logN)(logR)2`
{

k

k + 2`+ 1

2(2`+ 1)

`+ 1

logR

logN
+ η − 1 +O(k3δ2)

}
.

Now given a small fixed η > 0 if we take

(4.22) ` = b4/ηc, k = 2(`+ 1)(2`+ 1), δ = 1/`4, R = N1/4(1+δ),

then for the factor in brackets in (4.21) we see that

(4.23)
k

k + 2`+ 1

2(2`+ 1)

`+ 1

logR

logN
+ η − 1 +O(k3δ2) >

η

2

for sufficiently small η, so that S̃R > 0.
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Noting that (4.2) and (4.22) imply h
δ logR = 4η(`4 + 1) > 16 `

4+1
`+1 ≥ 16,

we will use 1+ h
δ logR < 2h

δ logR . Then, from (4.17), (4.21) and (4.23), we have

(4.24)
∑

N<pj≤2N
pj+1−pj≤h

1 &
N

logN

1

2
4k log 3N
δ logR

(
2`
`

)2
(k + `)!4δ2k+2

η(k + 2`)!2(2k + 2)!22k+10
.

With the values specified in (4.22), the dominating factor in the coefficient
on the right-hand side of (4.16) is

(4.25) 2
− 4k log 3N

δ logR > e−65(4/η)
6 log 2.

The other factors in (4.24) give rise to exponents which are O
(

1
η2

log 1
η

)
.

Thus the proof of Theorem 1 is finished. (This is not the strongest estimate
the present method yields. Taking δ = 1/`3+c3 with any fixed c3 > 1/2 leads
to an estimate of the type (1.3) with η−(5+c3) instead of η−6.)

Note that we could have kept Q(N,h)/h as the left-hand side of (4.24),
which yields Q(N,h) � N , meaning that the proportion of integers n ∈
[N, 2N ] for which one can find at least two primes within a distance of h
from n is positive.

5. Sparsity of very small gaps between primes. The following re-
sult expresses that very small gaps between consecutive primes occur rarely,
in the sense that such gaps do not constitute a positive proportion of all
gaps between consecutive primes.

Theorem 2. For any h > 2, as x→∞, we have

(5.1) #{pn ≤ x; pn+1 − pn ≤ h} � min(h/log x, 1)π(x).

In particular, if h = o(log x), then

(5.2) #{pn ≤ x; pn+1 − pn ≤ h} = o(π(x)).

We remark that for h = η log x, 0 < η < 1, the upper estimate for the
density of small gaps given by (5.1) corresponds to the conjectured density
1−e−η from (1.2) apart from the constant implied by the� symbol; i.e. the
simple upper estimate argument in the proof given below is optimal except
for this constant.

Proof. Given two prime numbers p, p′ satisfying 0 < p′ − p ≤ h, let
us write u + h1 = p, u + h2 = p′. There are h ordered pairs (u, h1) with
1 ≤ h1 ≤ h such that u+ h1 = p, and for any ordered pair (u, h1) the value
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of h2 with h1 < h2 ≤ 2h is fixed. Hence we see that

(5.3) h
∑

N<p,p′≤2N
0<p′−p≤h

1 <
∑

1≤h1,h2≤2h
h1 6=h2

∑
N/2<u<3N

u+h1, u+h2 prime

1

�
∑

1<h1,h2≤2h
h1 6=h2

S({h1, h2})
N

(logN)2
� h2N

(logN)2
,

where we have used the well-known (see [HR, Theorem 5.7] or [Gr, §2.3.3,
Theorem 4]) sieve bound for prime tuples

(5.4)
∑

N<n≤2N
θ(n+ h1) · · · θ(n+ hk) . 2kk!S(H)N

with k = 2, and Gallagher’s result (2.12). Thus we have obtained

(5.5)
∑

N<p,p′≤2N
0<p′−p≤h

1� hN

(logN)2
� h

logN
π(N).

Note that (5.4) used with k = 3 shows that of the p, p′ in (5.5), the
number of those which are not consecutive is � (h/logN)2π(N).

6. Conditional results. For the circumstance specified by (4.2) we
shall now consider the consequence of assuming that the level of distribution
of primes ϑ is greater than 1/2. The conditions of Propositions 1 and 2 allow
us to take

(6.1) R = N
ϑ−ε

2(1+δ)

with ε and δ arbitrarily small fixed positive numbers. We let

(6.2) ` = b
√
k/2c.

For a given ϑ > 1/2, we determine k = k(ϑ) sufficiently large and ε and

δ small enough so as to ensure that the quantity k
k+2`+1

2(2`+1)
`+1

logR
logN − 1

occurring in (4.21) is positive. Now k is not necessarily large enough to sat-
isfy (3.8) and the corresponding inequality when there is the twisting with
primes, so instead of the error term O(k3δ2) in Propositions 1 and 2, and in
(4.21) we will have the cruder Ok(δ) (or else we can re-do the calculation as
of (3.4) up until (3.8) without having error terms in what will correspond to
(3.5) and (3.6), but this will not be necessary for our purpose). By choosing
a smaller δ if necessary, we will have the factor in brackets in (4.21) (with
0 in place of η) greater than a positive quantity which ultimately depends
only on ϑ. Hence, comparing (4.17) and (4.21) we immediately obtain

Theorem 3. Assume that the primes have a level of distribution ϑ> 1/2.
Let η be a fixed positive small number. Then there exists an integer k(ϑ) and
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a constant c4(ϑ) such that

(6.3)
∑

N<pj≤2N
pj+1−pj≤η logN

1 & c4(ϑ)ηk(ϑ)−1
N

logN
(N →∞).

Notice that the unconditional estimate (1.3) in which η takes place ex-
ponentially, gets improved to estimates involving just powers of η when it
is assumed that the primes have a level of distribution greater than 1/2.
By comparing the factor in brackets in (4.21) with the corresponding factor
in the argument in [GPY1], we see that the smallest possible k(ϑ) we can
assert is either the smallest r = r(ϑ) such that every admissible r-tuple is
guaranteed by the proof of Theorem 1 of [GPY1] to contain at least two
primes infinitely often, or it is r + 1 (depending on the value of ϑ). The
greater the level of distribution, the smaller power of η will be needed in
(6.3). A table of values of r(ϑ) was provided between (3.4) and (3.5) of
[GPY1] (to avoid confusion, we have renamed the k of that table as r here).
Thus, if ϑ > 20

21 , then we can take k = 7, ` = 1, so that the η-dependent
factor on the right-hand side of (6.3) is η6. However, we recall that assum-
ing ϑ ≥ 0.971 and considering a linear combination of the ΛR(n;H, `) with
k = 6 and ` = 0, 1, the argument for proving Theorem 1 of [GPY1] still
works, so that under this assumption we can get a lower bound in (6.3)
which has η5. We also see from (1.2) that the true order of magnitude of
the η-dependent factor on the right-hand side of (6.3) is believed to be η.
Thus for this argument to lead to the true order of magnitude we need to
be able to work with admissible pairs (2-tuples). But this seems to require
improving the results of [GPY1] to the extent of proving the twin prime
conjecture assuming the Elliott–Halberstam conjecture.

When ϑ is slightly greater than 1/2, from the condition in Proposition 2
we write

(6.4) R = N
1/2+ξ
2(1+δ) ,

where we assume that ξ > 0 is small. We take

(6.5) k = 2(`+ 1)(2`+ 1), δ = 1/`4,

so that

(6.6)
k

k + 2`+ 1

2(2`+ 1)

`+ 1

logR

logN
+ η − 1 +O(k3δ2)

= η + 2ξ − 1

`
− 2ξ

`
+O

(
1

`2

)
.

For a given ξ, we determine ` by

(6.7) ` = d1/ξe,
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and then the quantity in (6.6) is > η + ξ/2 if ξ is sufficiently small. Hence
from (4.21) we now have

(6.8) S̃R >

(
2`
`

)
(k + 2`)!

(logN)(logR)2`
(
η +

ξ

2

)
.

As before, we derive an upper bound for S̃R starting from (4.7), together
with (4.8), (4.13) and (4.15). In our case u = h/(δ logR), and upon using
the relations in (4.2), (6.4), (6.5) and (6.7), we have

(6.9) u =
4(1 + d1/ξe4)

1 + 2ξ
η.

This is a small quantity if for a given small ξ we take η small enough, say
η ≤ ξ4/5, so that we can say (1 + u)k+2 < 2k+2. Using this in (4.15) and
(4.13) gives

(6.10) I < N(logR)4(k+`)(logN)2
(

h

δ logR

)k 2
4k log 3N
δ logR

+k+2
(2k + 2)!2

(k + `)!4
.

Plugging this in (4.7), and using that together with (4.4) and (6.8) we obtain

(6.11)∑
N<pj≤2N
pj+1−pj≤h

1 &
N

logN
ηk−1

(
ξ

3

)2(4δ(1+δ)

1 + 2ξ

)k (
2`
`

)2
(k + `)!4k!2

(k+2`)!2(2k+2)!22
4k log 3N
δ logR

+k+2
.

By (6.4), (6.5) and (6.7), all of the factors after ηk−1 can be expressed in
terms of ξ. What interests us most is the power of η, so we re-express (6.11)
as

(6.12)
∑

N<pj≤2N
pj+1−pj≤η logN

1 & c5(ξ)η
4ξ−2+14ξ−1+11 N

logN
(N →∞),

valid when the level of distribution of primes is assumed to allow us to take
R as in (6.4), which can be re-written as

(6.13) R = N
1+2ξ

4(1+d1/ξe−4) ,

for fixed η ∈ (0, ξ4/5]. Here ξ has to be sufficiently small, which ensures that
` and k are sufficiently large so as to permit the inequality (6.8).

In [GPY1, §3] it was shown that under the Elliott–Halberstam conjecture
we have

(6.14) lim inf
n→∞

pn+2 − pn
log pn

= 0.

Our method also shows that such gaps occur in positive proportion. To see
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this we consider

(6.15) S̃R,2 :=
1

N(h logR)k

∑
N<n≤2N

(Θ(n, h)−2 log 3N)
(∑

*

H
ΛR(n;H, `)2

)
.

As was done in [GPY1] along with the modification provided by (3.8), we find

(6.16)

S̃R,2 &

(
2`
`

)
(k + 2`)!

(logN)(logR)2`
{

k

k + 2`+ 1

2(2`+ 1)

`+ 1

logR

logN
+η−2−k3δ2

}
.

Here we are assuming that ϑ = 1, and so we can take R = N1/(2(1+δ)). In
the proof of (6.14), k is taken to be sufficiently large, and ` = b

√
k/2c. If δ

is taken to be accordingly small, say δ = 1/k2, then the quantity in brackets
in (6.16) is

> 2

(
1− 2`+ 1

k
− 1

2`

)
(1− δ) + η − 2− k3δ2(6.17)

> η − 2(2`+ 1)

k
− 1

`
− 2δ − k3δ2

> η − 2(
√
k + 1)

k
− 2√

k − 2
− 2

k2
− 1

k

> η − 5√
k
− 3

k
− 2

k2
(for k > 36)

> η − 6√
k

> η/2 (for k > 144/η2).

The rest of the argument is almost identical to what was done as of (4.7),
the only changes are that we now have the summation condition Θ(n, h) ≥
5
2 logN , and h

δ logR = 2η
(
1 + 1

δ

)
being not small we should use some bound

like (1+u)k+2 ≤ (2u)k+2 (cf. between (6.9) and (6.10)). The following is the
result of this calculation.

Theorem 4. Assuming the Elliott–Halberstam conjecture we have

(6.18)
∑

N<pj≤2N
pj+2−pj≤η logN

1 & ec6η
−2 log η N

logN
(N →∞)

(c6 = 5 gives a valid result if η is small enough).
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