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1. Introduction. Consider a Galois extension K/k of global fields with
Galois group G, and a set S of places of K which is G-invariant, contains the
infinite and the ramified primes, and is “large”, which means that the S-class
group of K is trivial. In this setting, Tate constructed a class of 2-extensions
with typical representative 0 → US(K) → P → Q → XS → 0. Here P
is G-cohomologically trivial and Q is Z[G]-projective; XS is the kernel of
augmentation on YS , the free Z-module with basis S, and US = US(K) is
the group of S-units of K. The Yoneda class of this 2-extension is determined
by local and global class field theory. For more details we refer the reader
to [Ta].

These “Tate sequences” are extremely important in much of contempo-
rary research in number theory, e.g. on leading term conjectures and their
applications. But they continue to be somewhat elusive, since it is very hard
to work back through all the necessary ingredients from local and global
class field theory. In this note, we start from the observation that one can
say a lot about the structure of Tate sequences just by algebraic methods.
We use this to deduce lower bounds on the ranks of class groups. For totally
real fields, these reprove results of Cornell–Rosen and earlier work of several
authors. (A sharpening of these earlier results does not seem possible.) In
the situation of CM fields, working in the minus part throughout, we re-
trieve and generalise results of R. Kučera and the author. Everything will
be done `-adically, where ` is a fixed odd prime; this also means that we
only look at A(K), which is by definition the `-primary part of the class
group Cl(K) of K. We make the further restrictive assumption that G is an
`-group, since this seems to be the most interesting case. Most of the time
we will allow G to be nonabelian.
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2. “Identifying” the Tate sequence. Recall that we always assume
G to be a finite `-group for a fixed prime `. The algebra Λ = Z`[G] is then
local, and Λ is Λ-isomorphic to its Z`-linear dual. A lattice will mean a
finitely generated Λ-module without Z`-torsion.

The Krull–Schmidt theorem holds over Λ: every lattice is the direct sum
of indecomposable ones, uniquely up to isomorphism and ordering, and the
endomorphism ring of every indecomposable lattice is local. There is a spe-
cial class of lattices, the so-called permutation lattices Z`[G/H], with H ≤ G
any subgroup; they are all cyclic over Λ and hence indecomposable.

There is Heller’s Ω operator : given a lattice M , one takes a free cover
F → M (that is, an epimorphism f : F → M such that F is free over Λ
and f maps a minimal set of generators of F to a minimal set of generators
of M), and sets ΩM = ker(f). It is well known that Ω commutes with di-
rect sums, and ΩM is nonfree indecomposable whenever M is. Note that for
the free indecomposable module M = Λ, we have ΩM = 0. There are also
the iterated Heller operators Ωi for i = 2, 3, . . . , and the inverse operators
Ω−iM = (ΩiM∗)∗. (This latter construction uses the duality property men-
tioned in the first paragraph of this section; M∗ denotes the Z`-dual of M .)
We will mainly be concerned with the operator Ω2, which is closely linked
to the theory of Tate sequences. The initial stage of the following arguments
can already be found, in a similar form, in [Ri, pp. 144 f.].

Schanuel’s lemma states the following: If F and F0 are free and f :
F →M and f0 : F0 →M are epimorphisms which are not necessarily covers,
then ker(f0)⊕F is isomorphic to ker(f)⊕F0. Thus the Heller operator Ω is
also defined if one waives the requirement of f being a cover, but this time
only up to free direct summands. The same is true for the iterations Ωi: if we
calculate up to free summands, then any free resolution of length i will do.
Let us state this explicitly for Ω2: Suppose 0→ Ω2M → F ′ → F →M → 0
is a minimal free resolution of M , and 0 → N → F1 → F0 → M → 0 is
another free resolution. Then Ω2M and N become isomorphic after adding
free summands to both of them. But by Krull–Schmidt and the fact that
Ω2M has no nonzero free summands, we infer that N ∼= Ω2M ⊕ F̃ for some
free module F̃ .

Now let us assume that K does not contain any nontrivial `th roots of
unity. The theory of Tate sequences produces a 2-extension

0→ U → A→ B → X → 0,

where X = Z`⊗XS and U = Z`⊗US ; the modules A and B are free. (In gen-
eral we only have B projective and A cohomologically trivial; but here A has
no torsion, so it is projective, and all projective modules over the local ring
Λ are free.) This 2-extension has a precisely specified class c in Ext2Λ(X,U),
and it induces isomorphisms on cohomology groups Hq+2(V,U)→ Hq(V,X)
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for all q ∈ Z and all V ≤ G. (We always use Tate cohomology in this pa-
per.) Let us now look at a second 2-extension given by a 2-step minimal free
resolution:

0→ Ω2X → F ′ → F → X → 0.

We remark already at this point that X is completely explicit (very close
to a direct sum of permutation lattices), so everything in this sequence can
also been written down explicitly, at least in principle. Then we know, as
explained above:

Proposition 2.1. Ω2X is isomorphic to a direct summand of U , and
the complementary summand in U is free.

This is completely independent of knowing the class c. One can actually
go much further (which we are not going to need in this note). Indeed, using
work of Bley–Burns [BB] (Prop. 2.1) and of Holland [Ho] one can show:

Theorem 2.2. After changing the Tate sequence without changing its
class c, there exists an injective morphism ϕ : Ω2X → U = Z`US that
represents c under the identification Ext2(X,U) ∼= Hom(Ω2, U). This map
ϕ gives rise to a pushout diagram

0 −−−−→ Ω2X −−−−→ F ′ −−−−→ F −−−−→ X −−−−→ 0

ϕ

y y =

y =

y
0 −−−−→ U −−−−→ A −−−−→ F −−−−→ X −−−−→ 0

in which U is the direct sum of ϕ(Ω2X) and a Λ-free complement.

Already Proposition 2.1, which does not identify the map ϕ via the
canonical class, gives a lot of information on the `-adified Tate sequence,
and this is all we are going to use.

3. From Tate sequences to class number bounds. We need a little
notation. Let IG denote the augmentation ideal in Z[G]. For any finitely
generated Λ-module M let µ(M) be the minimal number of generators of M .
By Nakayama’s lemma, this is the same as the Fp-dimension of M/mM ,
where m = pΛ + Z`IG is the radical of the local ring Λ = Z`[G]. Let us
assume until further notice that K/k is ramified somewhere. Then we split
up S into the set Sd of k-places that are totally decomposed in K and the
nonempty complement S0. Let r(k) denote the number of infinite places
of k. If Cl(K) can be generated by m elements as a Z[G]-module, then one
can always find S such that Sd has r(k) + m elements: r(k) to account for
the places at infinity, and m finite places which are totally split in K/k,
such that each given generator of Cl(K) is the class of one of them, to make
the set S large. (This of course uses the theorem of Chebotarev.) Actually
one does not quite need S to be large for the existence of a Tate sequence;
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it suffices to have the S-class group G-cohomologically trivial. A fortiori, it
suffices that the S-class group has order prime to `. Thus we can find S such
that Sd has r(k) + µ(A(K)) elements (recall A(K) is the `-part of Cl(K)).
Turning this around we find:

Whenever we can establish a lower bound B(K/k) on the cardinality
of Sd, we get the lower bound B(K/k)− r(k) for µ(A(K)).

This will be our program. Let µ1(M) denote the minimal number of
generators of Ω1M , and let

ε(M) = µ1(M)− µ(M)

for every finitely generated Λ-module M (a kind of truncated Euler char-
acteristic). In the following, rk denotes either Z-rank or Z`-rank, depending
on context. We note that rk(US) = rk(XS). In the minimal resolution used
above to define Ω2X (recall X = Z` ⊗XS) we have rk(F ) = |G|µ(X) and
rk(F ′) = |G|µ1(X). The first inequality in the following chain uses the ob-
servation that Ω2X is a direct summand of Z` ⊗ US by Prop. 2.1:

rk(US) ≥ rk(Ω2X) = |G|(µ1(X)− µ(X)) + rk(X)
= |G| · ε(X) + rk(US).

From these simple relations we infer the basic fact that

ε(X) ≤ 0.

If we now let X0 = Z`XS0 (the augmentation kernel on the free Z`-
module Y0 with basis S0(K)), then X splits up in the form X = X0⊕YSd(K),
and YSd(K) is Λ-free of rank |Sd|. Since ε(Λ) = −1 (note that Λ needs one

generator and Ω1Λ = 0), and since ε is certainly additive on direct sums,
we find from the last inequality:

Proposition 3.1. Whenever the set S is large, then |Sd| ≥ ε(X0).

As a consequence we obtain

Theorem 3.2. The quantity ε(X0)− r(k) is an a priori lower bound for
µ(A(K)).

Remark. The module X0 is not an invariant of the extension K/k: there
is some ambiguity, but not too much. We have X0 = Z`XS0 , where S0 must
contain all ramified places, and it may contain some unramified but not
totally split places. (The case K/k unramified everywhere is special and will
be discussed later.)

4. Determining the bound. Now we simply have to determine the
number ε(X0), or at least find a good lower bound for it. After doing this in
general, we will also consider minus parts in a CM situation, where things
are considerably simpler, as the difference between the modules XS and
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YS disappears. The methods are very algebraic and standard, using the
functors TorΛi (−,−). The supercript Λ will usually be omitted, since most
of our modules will be over Λ, and we further abbreviate:

Tori(M) := Tori(M,F`).
Then Tor0(M) = M/mM .

In what follows, dim will always mean Fp-dimension.

Lemma 4.1.

(a) dim Tori(M) = µ(ΩiM) for all i ∈ N.
(b) ε(M) = dim Tor1(M)− dim Tor0(M).

Proof. (a) We will only need this for i = 0, where the statement is
clear, and for i = 1. (The other cases are also easy.) So let us prove the
lemma for i = 1. Take a minimal resolution 0 → N → F → M → 0. Then
Tor1(F ) = 0 since F is free, and hence flat. We do not have Tor0(F ) = 0,
but by minimality of the resolution, the map

Tor0(N) = N/mN →M/mM = Tor0(M)

is zero. So the long exact sequence for Tor gives Tor1(M) ∼= Tor0(N) =
N/mN . As N = Ω1M , this proves what we want.

(b) This follows from (a) and the definition of ε.

Now let s(G) be the minimal number of generators of the group G. Note
this is equal to the rank of the Frattini quotient of G, and also to µ(IG).
Recall that by definition we have a s.e.s. 0 → X0 → Y0 → Z` → 0, and Y0
is the direct sum of permutation modules Z`[G/Gv], v running over S0. Let
C := coker(Tor2(Y0)→ Tor2(Z`)), and define ρ = dim(C). We then have:

Proposition 4.2. ε(X0) = ε(Y0)− s(G) + 1 + ρ.

Proof. Consider the exact sequence

0→ C → Tor1(X0)→ Tor1(Y0)→ Tor1(Z`)
→ Tor0(X0)→ Tor0(Y0)→ Tor0(Z`)→ 0.

This gives
ε(X0) = ε(Y0)− ε(Z`) + ρ.

But it is easy to determine ε(Z`): its value is s(G) − 1 since Tor0(Z`) is
1-dimensional and Tor1(Z`) = Tor0(IG) is s(G)-dimensional.

It remains to deal with the right hand terms in Prop. 4.2. Let us start
with ε(Y0); this is the sum

∑
v∈S0

ε(Z`[G/Gv]), and the vth summand is
s(Gv) − 1, by a similar argument to the last proof. The hardest part is of
course determining ρ.

For this we need to understand the terms Tor2(Z`[G/Gv]) (we recall that

this is shorthand for Tor
Z`[G]
2 (Z`[G/Gv],F`)). Note that Z`[G/Gv] can also be



60 C. Greither

seen as the induction of the trivial module Z` from Gv to G. We are going to
link up the Tor groups with cohomology. It follows from the construction of
homology and the universal property of the higher Tor’s that Tor2(M,Z`) =
H2(G,M). This holds in particular for M = Z`[G/V ] with V < G being any
subgroup; by Shapiro’s lemma, then, H2(G,M) = H2(V,Z`). On the other
hand, H2(V,Z`) is functorially (in V ) isomorphic to

∧2 V ab (via H2
∼= H−3).

In a similar vein we get

Tor1(Z`[G/V ],Z`) ∼= H1(G,Z`[G/V ]) ∼= H−2(V,Z`) ∼= V ab.

Actually it is tempting here to write
∧1 V ab instead of V ab! We will soon

put V = Gv and take the direct sum over v.

The obvious short exact sequence 0 → Z` → Z` → F` → 0 now gives a
short exact sequence:

0→Tor2(Z`[G/V ],Z`)/`→Tor2(Z`[G/V ],F`)→Tor1(Z`[G/V ],Z`)[`]→0.

(Here of course . . . /` means cokernel of multiplication by `, and . . . [`] means
its kernel.) Rewriting the outer terms we get

(∗) 0→
∧2(V ab/`)→ Tor2(Z`[G/V ],F`)→ V ab[`]→ 0.

The canonical map η : Tor2(Y0,F`) → Tor2(Z`,F`) now arises from tak-
ing V = Gv for each v ∈ S0 in (∗), using functoriality via the inclu-
sions Gv ⊂ G, and taking the direct sum over v of all the resulting maps
Tor2(Z`[G/Gv],F`) → Tor2(Z`[G/G],F`) = Tor2(Z`,F`). We want to show
that η can actually be described in more explicit terms. It is clear that the
restriction of η to the respective left hand terms in the s.e.s. (∗) is well de-
fined, and gives the natural map η+ (say) :

⊕
v

∧2Gab
v /` →

∧2Gab/` that
was already studied by several authors, for example Cornell and Rosen. It is
likewise clear that η induces a map η− on the right hand terms of (∗), which
is again the natural map

⊕
v G

ab
v [`] → Gab[`]. But we want to understand

the entire map η; remember that we need the dimension of its cokernel C.

Fortunately, since ` > 2, it will be possible to split up η into η+ and η−

in a functorial way. We claim that inversion of group elements induces an
automorphism ι on all Tor groups involved. It is clear that inversion induces
the identity on the left hand term

∧2(V ab/`) in (∗), and minus identity
on the right hand term V ab[`] in (∗). (It would not even be necessary to
take the cokernel and kernel of ` respectively.) The main point to show is
that inversion of group elements induces some automorphism ι of the middle
term Tor2(Z`[G/V ],F`) in (∗) in a natural way. First we identify this middle
term with H2(V,F`). (We briefly explain this identification. First, an easy
spectral sequence argument shows that

Tor
Z`[G]
2 (Z`[G/V ],F`) = Tor

Z`[V ]
2 (Z`,F`).
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The main point in this is that the forgetful functor from G-modules to V -

modules is exact and takes projectives to projectives. Second, Tor
Z`[V ]
∗ (Z`,M)

is the left-derived functor of M 7→ Z` ⊗Z`[V ] M , and H∗(V,M) is the left-
derived functor of M 7→ MV ; since MV is nothing else but Z` ⊗Z`[V ] M ,
these two derived functors are canonically identified, and we just have to
put M = F`.) If V is abelian, then inversion on V and identity on the
trivial V -module F` induce the desired involution ι. (Compare the general
discussion of functoriality of (co)homology on pp. 45 ff. of [NSW].) We now
reduce to the case that V is abelian. Let π : V → V ab be the canonical
group epimorphism. Then π and idF`

define a morphism π∗ : H2(V,F`) →
H2(V

ab,F`). (Note the arrow is indeed going this way; in [NSW] we have
a reversal of direction, but there cohomology is discussed, not homology.)
Now by looking at two copies of the short exact sequence (∗), one for V and
one for V ab, and by the 5-lemma, one sees that π∗ is an isomorphism. This
shows that the involution ι (arising from inversion of group elements) exists
on homology, even if V is not abelian.

As we said, ι acts as identity on all terms
∧2Gab

v , and as minus identity
on all terms Gab

v . Hence all sequences (∗) with V = Gv split functorially,
and coker(η) is the direct sum of coker(η+) (the cokernel studied by Cornell–
Rosen et al.), and of coker(η−), which is a much simpler object. Let ρ± be
the dimension of coker(η±).

By combining Theorem 3.2 with Proposition 4.2 and the discussion fol-
lowing it, we end up with the following result (let us repeat all our hypotheses
for the sake of clarity):

Theorem 4.3. Suppose ` is a fixed odd prime and K/k is a Galois
`-extension of global fields, which is ramified somewhere. Assume that K
contains no `th root of unity. Then we have the following lower bound on
the number of Galois generators of the `-part of the class group of K:

µ(A(K)) ≥
∑
v∈S0

(s(Gv)− 1) + 1− s(G) + ρ+ + ρ− − r(k).

Here r(k) is the number of infinite places of k, and the nonnegative integers
ρ+, ρ− are defined above.

It is not hard to see exactly when the inequality of the theorem is an
equality. It suffices to go back to §2; to be consistent with §2 we have to
assume that S is the disjoint union S0 ∪S∞ ∪ {v1, . . . , vµ}, where the vi are
totally split primes, whose classes are a minimal generating set of cl(K){`}.
Now in all inequalities of §2, the difference between the larger and the smaller
term is f(Z`⊗US), which is defined as the rank of the Λ-free part of Z`⊗US
= U . Thus we have equality in the above theorem iff U has no nontrivial
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Λ-free summand. In other words, we have U ∼= Ω2X in this case. If Ω2X is
itself indecomposable, then so is U in this case.

As an example take k = Q and K a bicyclic tame extension of degree `2.
Then exactly two primes p1 and p2 are ramified, both congruent 1 modulo `.
If we further assume that both of the pi have nontrivial inertia, then `
does not divide hK (see next paragraph), and one can also check that the
right hand side in the theorem is zero (hence equality in the theorem). So
S = S0 ∪ S∞, and one quickly calculates that X ∼= Z`[G]⊕ Z`; therefore

U ∼= Ω2X = Ω2Z`.

One can write down an explicit presentation for the latter module, and com-
pare it directly with an explicit presentation for U coming from cyclotomic
units. In detail (of course the reader is welcome to skip this, and we are
not claiming this is new): let σ, τ be generators of G = Gal(K/Q) such
that the fixed field of σ (resp. τ) is the cyclic subfield K1 (resp. K2) of
conductor p1 (resp. p2). Here Ω2X ⊂ Λ2 is generated by three elements:
ω1 = (Nσ, 0), ω2 = (0, Nτ ), and ω′ = (τ − 1, 1− σ). Then ω′ corresponds to
the “conductor-level” cyclotomic unit in K; ωi corresponds to the standard
cyclotomic pi-unit belonging to Ki (i = 1, 2). The obvious relations be-
tween these three elements of Ω2X just mirror the Euler relations between
cyclotomic numbers.

After these side remarks, let us now look at a family of fields that was
also studied by Cornell and Rosen in [CR]. Let G be `-elementary of rank
m (hence of order `m), and let K/Q be G-Galois and (totally) real. Then G
is generated by the Gv with v ramified, so ρ− is zero. On the other hand,
ρ+ is exactly the quantity which Cornell and Rosen show to be equal to
the `-rank of the “central class group” of K over its genus field (see [CR,
p. 457]). As k = Q, the right hand side in the theorem is∑

v∈S0

(s(Gv)− 1)−m+ ρ+.

It is known that the `-rank of the central class field equals the minimal num-
ber of generators of the class group. So if K is its own genus field, the result
in [CR] says exactly µ(A(K)) ≥ ρ+. Our term (s(Gv) − 1) −m is in that
case never positive, since every term s(Gv) − 1 is either 1 or 0, and there
are m terms. Its value is −m′, where m′ is the number of primes pi having
trivial inertia. That is: our result is a little weaker than the one in [CR] in
general. However, ρ+ is hard to evaluate; Cornell and Rosen consider the
obvious lower bound m(m − 1)/2 − m = m(m − 3)/2. (Here m(m − 1)/2
is the dimension of

∧2G, and every
∧2Gv is at most one-dimensional.)

But we can replace this lower bound by m(m − 1)/2 − (m − m′), since∧2Gpi = 0 if pi has no inertia. Hence our lower bound also comes out as
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m(m − 1)/2 − (m −m′) −m′ = m(m − 1)/2 −m, and this is exactly the
explicit bound given by Cornell and Rosen.

This class of examples can be generalised to any base field k; in the
above formula one has to add the extra term 1− r(k). The resulting bound
could also be deduced from [CR], using work of Furuta as well (see [Fu],
in particular eqn. (7)). Our approach is less involved, once one accepts the
existence and standard properties of Tate sequences, and it says a lot about
the Galois module structure of units.

We finish this section with some remarks on the case where K/k is
everywhere unramified. Then we can take S to consist of µ(A(K)) + r(k)
places of k which are totally split in K. We pick one v0 ∈ S and let Sd =
S \ {v0}, so S0 = {v0}. Then X0 is defined as before, but here it is easy
to grasp: it is isomorphic to the augmentation ideal in Z`[G]. As before, we
have |Sd| ≥ ε(X0) and hence µ(A(K)) ≥ ε(X0)−r(k)+1. On the other hand
we can determine ε(X0) exactly. One can either use the approach described
above (involving ρ), but for a change we can also say that it is well known
from a kind of bar resolution that X0

∼= Z`IG requires s(G) generators, and
the first syzygy Ω1(X0) requires s(G)(s(G) + 1)/2 generators, so ε(X0) =
s(G)(s(G)− 1)/2. We end up with the bound

µ(A(K)) ≥ s(G)(s(G)− 1)

2
+ 1− r(k).

Whilst this lower bound seems to be far too weak to produce infinite
class field towers because r(k) grows too quickly, it is easy to obtain some
explicit results; we give two examples. Assume k is imaginary quadratic and
the class group of k has `-rank 2. (For ` = 3 one can take k = Q(

√
−4027).)

So we get an `-elementary unramified extension K/k of degree `2, that
is, s(G) = 2. Our bound then says that the `-rank of Cl(K) is at least
2 · 1/2 + 1 − 1 = 1. The same holds if one replaces K by the full Hilbert
3-class field of k, or the full Hilbert class field. (With specialised methods
one can show more: generalising work of Scholz and Taussky, Arrigoni [Ar]
proves that the `-rank in question is at least 3.) Now take k imaginary
quadratic such that the `-rank of the class group is 5. (Example for ` = 3:
k = Q(

√
−5393946914743).) Then k has an `-elementary unramified exten-

sion k of degree `5, and our bound shows that the `-rank of Cl(K) is at least
5 · 4/2 + 1 − 1 = 10. As the reader can see, our bound does not allow us
to continue in either case, since the term r(K) is too big. At least in the
first case discussed above, this fits with reality: Arrigoni demonstrates that
it is possible for the `-class field tower to be finite. In the second case it is
unsatisfactory since one knows for odd ` and imaginary quadratic k that if
the `-rank of Cl(K) is at least 3, then the `-class field tower is infinite. (See
[Sch].)
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5. The CM case. We assume here that k is a totally real number
field, and K is CM (a totally imaginary extension of a totally real number
field K+). Then Gal(K/k) contains a unique, central element j inducing
complex conjugation on K (whatever the embedding into C). For the sake
of simplicity let us assume that the Galois group of K/k splits as {1, j}×G,
with G an `-group. Note that this involves a slight change in the meaning of
the letter G. For every Gal(K/k)-module M on which 2 acts invertibly, we
let M− be the kernel of 1 + j on M , as is customary. We call M− the minus
part of M ; taking the minus part is an exact functor. Let U = Z`⊗US(K)−

and X = Z` ⊗XS , just as before.
There are minus versions of the results in the earlier sections. Let S∗ be

the subset of S consisting of those places v not having j in their decompo-
sition group, and let S∗d = S∗ ∩Sd, S∗0 = S∗ ∩S0. Then X− is isomorphic to
Y −S∗ (the effect of taking the augmentation kernel disappears in the minus
part), and if we let X−0 = X−S∗

0
= Y −S∗

0
, then X− is the direct sum of X−0

and a free Z`[G]-module of rank |S∗d | (on which j acts as −1). It is now
very important to note that S∗ contains no infinite place. There is also the
module Xram := XSram and its minus part, where Sram denotes the set of
finite places of k which ramify in K.

We now obtain an analog of Theorem 2.1 in the minus part. Note that
the term −r(k) has disappeared.

Theorem 5.1. The quantity ε(X−ram) is a lower bound for µ(A(K)−).
(Note that X−ram = Y −Sram

.)

Proof. Suppose A(K)− is minimally gerated by m elements. We try to
imitate the proof of 3.1, asking ourselves how many places have to go into
a large set S. We certainly need S∞ ∪ Sram ⊂ S. In contrast to the proof
of 3.1, it will not suffice to put in a set Sd of m totally split finite places,
one place for each generator of A(K)−; we need more places in S to get rid
of A(K)+ as well. By Chebotarev and the fact that K/K+ is ramified (at
infinity), we see that for each element x of A(K)+ one can find a prime Px

of K+ that stays inert in K and represents x. We let px be the prime of k
below Px and S′ be the set of all these px with x running through a set of
generators of A(K)+ = A(K+). Now we put

S = Sd ∪ S′ ∪ Sram ∪ S∞.
Only the places in Sd are totally split, so S0 = S′ ∪ Sram ∪ S∞. The same
reasoning as in the proof of 3.1 (with appropriate exponents “minus”) shows
that |Sd| = m ≥ ε(X−S0

). But no places in S′ and in S∞ are in S∗ (i.e., split

from K+ to K), and hence X−S0
= X−ram.

Now ε(X−ram) is much easier to calculate than without the minus sign.
By definition, the decomposition group Gv of any v ∈ S∗ is contained in G
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(which is the `-part of Gal(K/k)), and we get

X−ram = Y −Sram
=

⊕
v∈S∗

ram

Z`[G/Gv].

We already calculated ε of these permutation modules. Indeed, we found
that ε(Z`[G/Gv]) = s(Gv)− 1. Thus we get:

Theorem 5.2. Under the assumptions described above, we have

µ(A(K)−) ≥
∑

v∈S∗
ram

(s(Gv)− 1).

Again, this gives in certain special situations a somewhat weaker version
of a known result, this time a considerably more recent one than quoted from
[CR] in §3). To wit, in [GK] we considered the following setup: k = Q and
K = FK1 . . .Ks, where F/Q is imaginary quadratic, and every Ki is cyclic
of degree ` over Q, with conductor pi ≡ 1 modulo `, and all pi are distinct
and split in F . It is proved in [GK] that cl(K){`}− needs at least s generators
as a Galois module. Our present result is weaker in that setting since the
right hand sum in Theorem 5.2 is exactly the number of pi with nontrivial
inertia in K/Q, hence at most s. (Recall that decomposition groups cannot
require more than two generators in this tame absolutely abelian situation
with `-elementary Galois group, and they are cyclic iff there is not both
ramification and inertia.) But the theorem just above applies not only to
this special kind of absolutely abelian situation.

Acknowledgments. The author would like to thank his audiences at
Oujda (Morocco) and Waseda (Japan) for their valuable input, and the
referee for his helpful report.

References

[Ar] M. Arrigoni, On Schur σ-groups, Math. Nachr. 192 (1998), 71–89.
[BB] W. Bley and D. Burns, Explicit units and the equivariant Tamagawa number

conjecture, Amer. J. Math. 123 (2001), 931–949.
[CR] G. Cornell and M. Rosen, The class group of an absolutely Abelian l-extension,

Illinois J. Math. 32 (1988), 453–461.
[Fu] Y. Furuta, On class field towers and the rank of ideal class groups, Nagoya

Math. J. 48 (1972), 147–157.
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