160.1 (2013)

A remark on Tate's algorithm and Kodaira types

by
Tim Dokchitser (Bristol) and Vladimir Dokchitser (Cambridge)

Let R be a complete discrete valuation ring with perfect residue field, fraction field K and valuation $v=v_{K}$. If E / K is an elliptic curve in Weierstrass form,

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad\left(a_{i} \in K\right)
$$

the celebrated algorithm of Tate ([3], [2, §IV.9]) determines the minimal model and the local invariants of E. In this paper we gently tweak the resulting models so that the Kodaira type can be simply read off from the valuations of the a_{i} :

Theorem 1. An elliptic curve E / K with additive reduction has a minimal Weierstrass model over R which depends on its Kodaira type as follows:

	II	III	IV	I_{0}^{*}	$\mathrm{I}_{n>0}^{*}$	IV^{*}	III^{*}	II^{*}
$\min \frac{v\left(a_{i}\right)}{i}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{5}{6}$
extra condition			$v\left(b_{6}\right)=2$	$v(d)=6$	$v(d)>6$	$v\left(b_{6}\right)=4$		

Here

$$
b_{6}=a_{3}^{2}+4 a_{6}=\operatorname{Disc}\left(y^{2}+a_{3} y-a_{6}\right), \quad d=\operatorname{Disc}\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)
$$

Conversely, a Weierstrass model satisfying one of these conditions is minimal, with the corresponding Kodaira type.

There is a refinement for type I_{n}^{*} that recovers n as well:
Proposition 2. An elliptic curve E / K with Kodaira type $\mathrm{I}_{n}^{*}, n>0$, has a minimal model with
$v\left(a_{2}\right)=1, v\left(a_{i}\right) \geq \frac{i}{2}+\left\lfloor\frac{i-1}{2}\right\rfloor \frac{n}{2}, \begin{cases}v(d)=n+6, v\left(b_{6}\right) \geq n+3 & \text { if } 2 \mid n, \\ v(d) \geq n+6, v\left(b_{6}\right)=n+3 & \text { if } 2 \nmid n .\end{cases}$
2010 Mathematics Subject Classification: Primary 11G07.
Key words and phrases: Tate's algorithm, minimal model, elliptic curve, Kodaira type, minimal discriminant.

Conversely, a Weierstrass equation satisfying these conditions is minimal and defines an elliptic curve with Kodaira type I_{n}^{*}.

As an application, we deduce the behaviour of minimal discriminants and Kodaira types in tame extensions of local fields; our motivation came from Iwasawa theory of elliptic curves, where it is necessary to control local invariants of elliptic curves in towers of number fields (see [1]).

Theorem 3. Let F / K be a tame extension of ramification degree e, and let E / K be an elliptic curve.
(1) If E / K has Kodaira type I_{n}, then E / F has type $\mathrm{I}_{e n}$.
(2) If E / K has Kodaira type I_{n}^{*}, then E / F has type $\mathrm{I}_{\text {en }}^{*}$ if e is odd and type $\mathrm{I}_{\text {en }}$ if e is even.
(3) In all other cases, the type of E / F is determined by

$$
\partial_{E / F} \equiv e \partial_{E / K} \bmod 12,
$$

where $\partial=0,2,3,4,6,8,9,10$ if E has Kodaira type I_{0}, II, III, IV, I_{0}^{*}, IV*, III*, II* respectively.

The valuations of minimal discriminants for E / K and E / F are related by

$$
v_{F}\left(\Delta_{E / F}\right)=e v_{K}\left(\Delta_{E / K}\right)-12\left\lfloor e \partial_{E / K} / 12\right\rfloor,
$$

where $\partial_{E / K}=0$ for I_{0} and $\mathrm{I}_{n}, 6$ for I_{n}^{*} and is as in (3) otherwise.
Remark. If the residue characteristic is at least 5 and E / K has potentially good reduction, the fraction in the table in Theorem 1 is just $v\left(\Delta_{E / K}\right) / 12$, and $ذ_{E / K}=v\left(\Delta_{E / K}\right)$ in Theorem 3. The conclusion of Theorem 3 is then equivalent to the standard fact that $v_{F}\left(\Delta_{E / F}\right)<12$. The point is that ∂ gives the correct replacement for $v(\Delta)$ in residue characteristics 2 and 3 . Note, however, that in residue characteristics 2 and 3 neither the Kodaira type nor the minimal discriminant behave as in Theorem 3 in wild extensions.

Example 4. The curve $E: y^{2}=x^{3}-2 x$ over $K=\mathbb{Q}_{2}$ has Kodaira type III (as $\min v\left(a_{i}\right) / i=1 / 4$) and $v(\Delta)=9$. By Theorem 3, over the tame extensions $F_{n}=\mathbb{Q}_{2}(\sqrt[5^{n}]{2})$ the reduction remains of Type III, and the valuations are

$$
v_{F_{n}}\left(\Delta_{E / F_{n}}\right) 9 \cdot 5^{n}-12\left\lfloor\frac{3 \cdot 5^{n}}{12}\right\rfloor=6 \cdot 5^{n}+3=33,153,753, \ldots .
$$

In particular, they are not bounded by 12 (or by anything) as they would be in residue characteristics ≥ 5. Over the wild quartic extensions $\mathbb{Q}_{2}(\sqrt[4]{2})$, $\mathbb{Q}_{2}(\sqrt[4]{-2}), \mathbb{Q}_{2}\left(\zeta_{8}\right)$, the Kodaira types of E are $\mathrm{III}^{*}, \mathrm{I}_{3}^{*}, \mathrm{I}_{4}^{*}$, and the valuations of the minimal discriminants are $12,12,24$, respectively. So these cannot be recovered just from E / \mathbb{Q}_{2} and the ramification degree.

In the proofs below we follow the steps of Tate's algorithm, numbered as in [3] and [2, §IV.9].

1. Proof of Theorem 1, Let π be a uniformiser of K.

By Steps 1-2 of Tate's algorithm, an elliptic curve with additive reduction over K has an integral model with $\pi\left|a_{3}, a_{4}, a_{6}, \pi\right| b_{2}=a_{1}^{2}+4 a_{2}$. If K has residue characteristic 2 , this means $\pi \mid a_{1}$, and, shifting $y \mapsto y-\alpha x$ for any $\alpha \in R$ with $\alpha^{2} \equiv a_{2} \bmod \pi$, we can get $\pi \mid a_{2}$ as well. Similarly, if K has odd residue characteristic, the substitution $y \mapsto y-\left(a_{1} / 2\right) x$ makes both a_{1} and a_{2} divisible by π. Now we run Tate's algorithm through this equation, and inspect the model that comes out of it:

Type II (Step 3): Here $\pi^{2} \nmid a_{6}$ and the valuations of the a_{i} are $\geq 1, \geq 1$, $\geq 1, \geq 1,=1$, so $\min v\left(a_{i}\right) / i=1 / 6$.

Type III (Step 4): Here $\pi^{2} \mid a_{6}$ and

$$
\pi^{3} \nmid b_{8}=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \equiv-a_{4}^{2} \bmod \pi^{3}
$$

So $\pi^{2} \nmid a_{4}$, the valuations of the a_{i} are $\geq 1, \geq 1, \geq 1,=1, \geq 2$ and $\min v\left(a_{i}\right) / i=1 / 4$.

Type IV (Step 5): Here $\pi^{2}\left|a_{6}, \pi^{3}\right| b_{8} \Rightarrow \pi^{2} \mid a_{4}$, and $\pi^{3} \nmid b_{6}=a_{3}^{2}+4 a_{6}$. The valuations of the a_{i} are $\geq 1, \geq 1, \geq 1, \geq 2, \geq 2$, and either $v\left(a_{3}\right)=1$ or $v\left(a_{6}\right)=2$ since $\pi^{3} \nmid a_{3}^{2}+4 a_{6}$. So $\min v\left(a_{i}\right) / i=1 / 3$.

Type I_{0}^{*} (Step 6): Here $\pi^{2}\left|a_{3}, \pi^{2}\right| a_{4}, \pi^{3} \mid a_{6}, v(d)=6$, the valuations of the a_{i} are $\geq 1, \geq 1, \geq 2, \geq 2, \geq 3$, so $\min v\left(a_{i}\right) / i \geq 1 / 2$. Because

$$
6=v(d)=\pi^{6} \operatorname{Disc}\left(x^{3}+\frac{a_{2}}{\pi} x^{2}+\frac{a_{4}}{\pi^{2}} x+\frac{a_{6}}{\pi^{3}}\right)
$$

at least one of $a_{2} / \pi, a_{4} / \pi^{2}$ and a_{6} / π^{3} is a unit, so the minimum is exactly $1 / 2$.

Type $I_{n}^{*}, n \geq 1$ (Step 7): Here $\pi^{2}\left|a_{3}, \pi^{2}\right| a_{4}, \pi^{3} \mid a_{6}, v(d)>6$ and $\pi^{2} \nmid a_{2}$, so $\min v\left(a_{i}\right) / i=1 / 2$, attained for $i=2$. Moreover, the cubic $x^{3}+\left(a_{2} / \pi\right) x^{2}+\left(a_{4} / \pi^{2}\right) x+\left(a_{6} / \pi^{3}\right)$ has a double root which is not a triple root. A cubic polynomial $x^{3}+a x^{2}+b x+c$ has a triple root if and only if its discriminant is 0 and $a^{2}-3 b=0$, and this gives the two extra stated conditions $\left(^{1}\right)$.

Type IV* (Step 8): Here $\pi^{2}\left|a_{2}, \pi^{2}\right| a_{3}, \pi^{3}\left|a_{4}, \pi^{4}\right| a_{6}$ and $\pi^{5} \nmid b_{6}=$ $a_{3}^{2}+4 a_{6}$. The valuations of the a_{i} are $\geq 1, \geq 2, \geq 2, \geq 3, \geq 4$, and either $v\left(a_{3}\right)=2$ or $v\left(a_{6}\right)=4$ since $\pi^{5} \nmid a_{3}^{2}+4 a_{6}$. So $\min v\left(a_{i}\right) / i=2 / 3$.

[^0]Type III* (Step 9): Here $\pi^{2}\left|a_{2}, \pi^{3}\right| a_{3}, \pi^{3}\left|a_{4}, \pi^{5}\right| a_{6}$ and $\pi^{4} \nmid a_{4}$. The valuations of the a_{i} are $\geq 1, \geq 2, \geq 3,=3, \geq 5$, so $\min v\left(a_{i}\right) / i=3 / 4$.

Type II* (Step 10): Here $\pi^{2}\left|a_{2}, \pi^{3}\right| a_{3}, \pi^{4}\left|a_{4}, \pi^{5}\right| a_{6}$ and $\pi^{6} \nmid a_{6}$. The valuations of the a_{i} are $\geq 1, \geq 2, \geq 3, \geq 4,=5$, so $\min v\left(a_{i}\right) / i=5 / 6$.

Conversely, any model satisfying one of the conditions in the table is minimal with the right Kodaira type, which is immediate from the corresponding step of Tate's algorithm. (The steps do not change such a model.)
2. Proof of Proposition 2. From Step 7 of Tate's algorithm it follows readily that a curve E / K of type I_{n}^{*} has a minimal model with
$v\left(a_{2}\right)=1, \quad v\left(a_{i}\right) \geq \frac{i}{2}+\left\lfloor\frac{i-1}{2}\right\rfloor \frac{n}{2}, \begin{cases}v(D)=n+4, v\left(b_{6}\right) \geq n+3 & \text { if } 2 \mid n, \\ v(D) \geq n+4, v\left(b_{6}\right)=n+3 & \text { if } 2 \nmid n,\end{cases}$
where $D=\operatorname{Disc}\left(a_{2} x^{2}+a_{4} x+a_{6}\right)$. Because $n \geq 1$,

$$
d=-4 a_{2}^{3} a_{6}+a_{2}^{2} a_{4}^{2}-4 a_{4}^{3}-27 a_{6}^{2}+18 a_{2} a_{4} a_{6} \equiv a_{2}^{2} D \bmod \pi^{n+7},
$$

the conditions on D are equivalent to those on d in the proposition.
Conversely, such a model has $v\left(a_{2}^{2}-3 a_{4}\right)=2$, and so the polynomial $x^{3}+\left(a_{2} / \pi\right) x^{2}+\left(a_{4} / \pi^{2}\right) x+a_{6} / \pi^{3}$ has a double root, but not a triple root. Step 7 of Tate's algorithm shows the model to be minimal of type I_{n}^{*}.
3. Proof of Theorem 3. (1) If E has good or multiplicative reduction (types $\mathrm{I}_{0}, \mathrm{I}_{n>0}$), the minimal model stays minimal in all extensions, and the reduction stays good, respectively multiplicative. In the multiplicative case, $-n$ is the valuation of the j-invariant of E, so it gets scaled by e in F / K; cf. [2, §IV.9, Table 4.1].
(2), (3) Fix a uniformiser π of F, and write l for the residue characteristic. As F / K is tame, $l \nmid e$.

Assume that E / K has additive reduction, and is in Weierstrass form as in Theorem 11 (and as in Proposition 2 for type I_{n}^{*}). Then $\min v_{K}\left(a_{i}\right) / i=$ $\coprod_{E / K} / 12$ and $\min v_{F}\left(a_{i}\right) / i=e \partial_{E / K} / 12$. Over F this model can be rescaled $\left\lfloor e \check{ð}_{E / K} / 12\right\rfloor$ times with the standard substitution $y \mapsto \pi^{3} y, x \mapsto \pi^{2} x$; call the new Weierstrass coefficients $A_{1}, A_{2}, A_{3}, A_{4}, A_{6}$. So now

$$
\min _{i} \frac{v_{F}\left(A_{i}\right)}{i} \in\left\{0, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}\right\} .
$$

We proceed to show that the resulting equation satisfies the 'extra conditons' of Theorem 1, and, if $\min v_{F}\left(A_{i}\right) / i=0$, that E / F has good reduction (Type I_{0}). This implies all the claims in Theorem 3.

It is a simple consequence of the fact that the tame inertia is cyclic that tame extensions can be built up from unramified ones and ramified extensions of prime degree. If F / K is unramified $(e=1)$, there is nothing
to prove. So for simplicity we may and will assume that $[F: K]=e=p$ is prime, $p \neq l$.

We first deal with the cases when E acquires good reduction:
Type IV, $\mathrm{IV}^{*}, p=3, l \neq 3$: the valuations of the a_{i} are $>1 / 3,>2 / 3, \geq$ $1,>4 / 3, \geq 2$ for Type IV and $>2 / 3,>4 / 3, \geq 2,>8 / 3, \geq 4$ for Type IV*. The valuations of the A_{i} are therefore $>0,>0, \geq 0,>0, \geq 0$, so the model reduces to $y^{2}+\alpha y=x^{3}+\beta$ over the residue field of F. It has discriminant $-27\left(\alpha^{2}+4 \beta\right)^{2}$, which is non-zero, since $l \neq 3$ and $\alpha^{2}+4 \beta \neq 0$ from the b_{6} condition for E / K. So E / F has good reduction.

Type $I_{0}^{*}, p=2, l \neq 2$: In the same manner, the valuations of the A_{i} are $>0, \geq 0,>0, \geq 0, \geq 0$, the model reduces to $y^{2}=x^{3}+\alpha x^{2}+\beta x+\gamma$ and this has non-zero discriminant since $l \neq 2$ and $v_{K}(d)=6$ for E / K.

Now we look at the remaining cases, all entirely similar.
Type IV, $\mathrm{IV}^{*}, p \neq 3$: The extra condition in the table for E / K automatically rescales to give the one for E / F.

Type $I_{0}^{*}, p \neq 2$: The condition for E / K rescales to give the one for E / F.
Type II, $p=2, l \neq 2: v_{K}\left(a_{3}\right) \geq 1, v_{K}\left(a_{6}\right)=1$ gives $v_{F}\left(A_{3}\right) \geq 2$, $v_{F}\left(A_{6}\right)=2$. So $\pi^{3} \nmid A_{3}^{2}+4 A_{6}=B_{6}$, which is the condition for type IV.

Type $\mathrm{II}^{*}, p=2, l \neq 2: v_{K}\left(a_{3}\right) \geq 3, v_{K}\left(a_{6}\right)=5$ gives (after one rescaling) $v_{F}\left(A_{3}\right) \geq 3, v_{F}\left(A_{6}\right)=4$. So $\pi^{5} \nmid A_{3}^{2}+4 A_{6}=B_{6}$, which is the conditon for IV*.

Type II, $p=3, l \neq 3: v_{K}\left(a_{2}\right) \geq 1, v_{K}\left(a_{4}\right) \geq 1, v_{K}\left(a_{6}\right)=1$ gives $v_{F}\left(A_{2}\right) \geq 3, v_{F}\left(A_{4}\right) \geq 3, v_{F}\left(A_{6}\right)=3$, so

$$
x^{3}+\frac{A_{2}}{\pi} x^{2}+\frac{A_{4}}{\pi^{2}} x+\frac{A_{6}}{\pi^{3}} \equiv x^{3}+\text { unit } \quad \bmod \pi
$$

which has non-zero discriminant as $l \neq 3$. So $v_{F}\left(\operatorname{Disc}\left(x^{3}+A_{2} x^{2}+A_{4} x+\right.\right.$ $\left.\left.A_{6}\right)\right)=6$ as required for type I_{0}^{*}. Type $\mathrm{II}^{*}, p=3$ is similar.

Type III, $p=2, l \neq 2: v_{K}\left(a_{2}\right) \geq 1, v_{K}\left(a_{4}\right)=1, v_{K}\left(a_{6}\right) \geq 2$ gives $v_{F}\left(A_{2}\right) \geq 2, v_{F}\left(A_{4}\right)=2, v_{F}\left(A_{6}\right) \geq 4$, so

$$
x^{3}+\frac{A_{2}}{\pi} x^{2}+\frac{A_{4}}{\pi^{2}} x+\frac{A_{6}}{\pi^{3}} \equiv x^{3}+\text { unit } \cdot x \quad \bmod \pi
$$

which has non-zero discriminant as $l \neq 2$. So $v_{F}\left(\operatorname{Disc}\left(x^{3}+A_{2} x^{2}+A_{4} x+\right.\right.$ $\left.\left.A_{6}\right)\right)=6$ as required for type I_{0}^{*}. Type III $^{*}, p=2$ is similar.

Type $I_{n}^{*}, p=2, l \neq 2$: E has non-integral j-invariant ($[2, \S$ IV.9, Table 4.1]), and so acquires multiplicative reduction over F ([2, Thm. V.5.3]).

Comparing the valuations of the j-invariants and the discriminants, we find that E / F has type $\mathrm{I}_{2 n}$, and the A_{i} define a minimal equation.

Type $I_{n}^{*}, p \neq 2$: The valuations of $a_{1}, \ldots, a_{6}, b_{6}, d$ are $\geq 1,=1$, $\geq(n+3) / 2, \geq(n+4) / 2, \geq n+3, \geq n+3, \geq n+6$ with equality for one of the last two (depending on whether n is even or odd). Over F they become $\geq p,=p, \geq p \frac{n+3}{2}, \geq p \frac{n+4}{2}, \geq p(n+3), \geq p(n+3), \geq p(n+6)$. After rescaling the model $\lfloor 6 e / 12\rfloor=(p-1) / 2$ times, we see that the valuations of $A_{1}, \ldots, A_{6}, B_{6}, D$ for the new model are $\geq(p+1) / 2,=1, \geq(p n+3) / 2$, $\geq(p n+4) / 2, \geq p n+3, \geq p n+3, \geq p n+6$, again with equality for one of the last two. In other words, the model satisfies the conditions of Proposition 2 for Type $I_{p n}^{*}$.

Acknowledgements. The first author is supported by a Royal Society University Research Fellowship. We would like to thank Matthias Schuett and the referee for carefully reading the manuscript.

References

[1] T. Dokchitser and V. Dokchitser, Growth of W in towers for isogenous curves, arXiv:1301.4257, 2013.
[2] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer, New York, 1994.
[3] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in: Modular Functions of One Variable IV, B. J. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, Berlin, 1975, 33-52.

Tim Dokchitser
Department of Mathematics
University of Bristol
University Walk
Bristol BS8 1TW, United Kingdom
E-mail: tim.dokchitser@bristol.ac.uk

Vladimir Dokchitser
Emmanuel College
Cambridge CB2 3AP, United Kingdom
E-mail: v.dokchitser@dpmms.cam.ac.uk

[^0]: $\left({ }^{1}\right)$ If the roots of $x^{3}+a x^{2}+b x+c$ are α, β, γ, then the discriminant condition is equivalent to two of them being equal, say $\alpha=\beta$, in which case $a^{2}-3 b=(\alpha-\gamma)^{2}$ measures whether it is a triple root.

