
ACTA ARITHMETICA
112.3 (2004)

On the Tate–Shafarevich group of
semistable elliptic curves with a rational 3-torsion

by

Noboru Aoki (Tokyo)

1. Introduction. Let E be an elliptic curve defined over the rational
number field Q and E(Q) the Mordell–Weil group of Q-rational points on E.
Let n be an integer greater than one and En the group of n-torsion points
on E. The n-Selmer group Sel(n)(E/Q) of E/Q is defined to be the kernel
of the composite map

H1(Q, En)→
∏

p

H1(Qp, En)→
∏

p

H1(Qp, E),

where the first map is the direct product of restriction maps for all places
p of Q and the second map is the one induced from the inclusion En ↪→ E.
Then Sel(n)(E/Q) is known to be finite for any n, and there is an injection
from the quotient group E(Q)/nE(Q) into Sel(n)(E/Q). Thus Sel(n)(E/Q)
gives an upper bound for the rank of E(Q). Therefore, if rank(E(Q)) is
unbounded when E varies over the elliptic curves over Q, then the order of
Sel(n)(E/Q) with n fixed can be arbitrarily large. The converse, however, is
not necessarily true because of the presence of the Tate–Shafarevich group

X(E/Q) = Ker
(
H1(Q, E)→

∏

p

H1(Qp, E)
)
.

The n-torsion subgroup X(E/Q)n of X(E/Q) fits into the exact sequence

0→ E(Q)/nE(Q)→ Sel(n)(E/Q)→X(E/Q)n → 0.

Thus we are naturally led to the following problem: Given a prime num-
ber n and a family E of elliptic curves over Q, determine whether

sup{#(X(E/Q)n) | E ∈ E } =∞
or not. This problem has been studied for n = 2 by Bölling [3], Kramer [8],
Lemmermeyer [9] and Atake [1], for n = 3 by Cassels [6], and for n = 5
by Fisher [7]. The families of elliptic curves considered in those works may
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be divided into two types: one is the family of (quadratic ([3], [9], [1]) or
cubic ([6])) twists of a fixed elliptic curve, and the other is a one-parameter
family of semistable elliptic curves with non-constant j-invariant ([8], [7]).

In this paper we will be mainly interested in two types of elliptic curves:

E = E(a,b) : y2 + axy + by = x3,

F = F(a,b) : y2 + axy + by = x3 − 5abx− a3b− 7b2,

where a, b are relatively prime non-zero integers such that a3−27b 6= 0. One
can easily see that E has a rational point S = (0, 0) ∈ E(Q) of order 3, and F
is the quotient of E by the cyclic subgroup 〈S〉 generated by S. We consider
the problem above for n = 3 and the family of such elliptic curves Fa,b. We
should remark that the assumption on a and b ensures that E and F are
semistable elliptic curves, and so CM elliptic curves are excluded from our
family in contrast to the work of Cassels mentioned above, where he treated
the CM elliptic curves x3 + y3 + dz3 = 0. The purpose of this paper is to
prove the following theorem.

Theorem 1.1. Let E be the set of elliptic curves F(a,b) defined above.
Then

sup{#(X(F/Q)3) | F ∈ E } =∞.
In the proof of Theorem 1.1 we will assume that a3−27b is a prime num-

ber and b is not a cube in Q, hence neither E3 nor F3 splits over Q. (Note
that the discriminants of our curves are given by ∆E = (a3 − 27b)b3 and
∆F = (a3 − 27b)3b.) Therefore we cannot use the method of [4] and [7] to
prove Theorem 1.1. We will instead compute a restriction of the Cassels–Tate
pairing to a subgroup of X(F/Q(E3)) using McCallum’s formula (see Theo-
rem 6.5). This part was strongly influenced by the recent work of Beaver [2]
and Fisher [7].

2. The Selmer group and the Tate–Shafarevich group. Let n
be a positive integer greater than one. Let E be an elliptic curve defined
over a number field k. Suppose E(k) contains a point S of order n and let
F = E/〈S〉 be the quotient of E by the cyclic group generated by S. Then F
is also defined over k and the natural surjection ϕ : E → F is a (k-rational)
cyclic n-isogeny such that Eϕ := Ker(ϕ) = 〈S〉. Since S is rational over k,
we have Eϕ ∼= Z/nZ as Gal(k/k)-modules. Let ψ : F → E be the dual
isogeny of ϕ. Then Fψ := Ker(ψ) is isomorphic to µn as a Gal(k/k)-module.

Now, let L be a field containing k and consider the exact sequence

0→ Fψ → F
ψ→ E → 0

of Gal(L/L)-modules. Taking Galois cohomology, we obtain the exact se-
quence
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0→ E(L)/ψ(F (L))
δ
(ψ)
L−→ H1(L,Fψ)→ H1(L,F )ψ → 0.(1)

Let Mk be the set of places of k. For each v ∈ Mk, we denote by kv the
completion of k at v. Taking kv for L, we then obtain the exact sequence

0→ E(kv)/ψ(F (kv))
δ
(ψ)
v−→ H1(kv, Fψ)→ H1(kv, F )ψ → 0,

where δ(ψ)
v = δ

(ψ)
kv

. Let resv : H1(k, ∗) → H1(kv, ∗) denote the restriction
map. We define the ψ-Selmer group by

Sel(ψ)(F/k) = Ker
(
H1(k, Fψ)

∏
resv−→

∏

v∈Mk

H1(kv, Fψ)→
∏

v∈Mk

H1(kv, F )
)

= {x ∈ H1(k, Fψ) | resv(x) ∈ Im(δ(ψ)
v ) for all v ∈Mk}.

Since Fψ ∼= µn, Kummer theory implies that H1(k, Fψ) ∼= k×/k×n. In what
follows we will identify H1(k, Fψ) with k×/k×n by this isomorphism. Thus
Sel(ψ)(F/k) may be viewed as a subgroup of k×/k×n. The following propo-
sition will be useful when we give an explicit description of Im(δ(ψ)

k ).

Proposition 2.1. There exists a rational function f ∈ k(E)× such that

div(f) = n((S)− (O)) and f ◦ [n] ∈ (k(E)×)n,

where [n] denotes the multiplication-by-n map. Then

δ
(ψ)
k (P ) ≡ f(P ) (modk×n)

for any P ∈ E(k) \ {O,S}.
Proof. See [13, Chapter X, Theorem 1.1].

Define the Tate–Shafarevich group of F/k by

X(F/k) = Ker
(
H1(k, F )→

∏

v∈Mk

H1(kv, F )
)
.

It is conjectured that X(F/k) is finite. Let

〈 , 〉 : X(F/k)×X(F/k)→ Q/Z

be the Cassels–Tate pairing on X(F/k). (See [5], [15] or [11] for the defini-
tion.) It is well known that this pairing is non-degenerate if and only if the
divisible part of X(F/k) is trivial. Let X(F/k)ψ be the kernel of the map
X(F/k)→X(E/k) induced from ψ, and let

〈 , 〉ψ : X(F/k)ψ ×X(F/k)ψ →
1
n
Z/Z ∼= Z/nZ
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be the restriction of 〈 , 〉 to the subgroup X(F/k)ψ. The group X(F/k)ψ
fits into the exact sequence

0→ E(k)/ψ(F (k))
δ
(ψ)
k−→ Sel(ψ)(F/k)→X(F/k)ψ → 0.

Pulling back the pairing to Sel(ψ)(F/k) using the surjection Sel(ψ)(F/k)→
X(F/k)ψ, we obtain a pairing on Sel(ψ)(F/k), which we denote by the same
symbols:

〈 , 〉ψ : Sel(ψ)(F/k)× Sel(ψ)(F/k)→ Z/nZ.(2)

In Section 6 we will prove an explicit formula for the pairing 〈 , 〉ψ when E is
a semistable elliptic curve satisfying a certain condition on the discriminant
of E.

3. Tate curves. Let p be a prime number. Throughout this section k
will denote a p-adic field, that is, a finite extension of Qp. Let v denote the
valuation of k such that v(k×) = Z and q a non-zero element of k with
v(q) > 0. Let E = Eq be the Tate curve over k defined by the equation

y2 + xy = x3 + a4(q)x+ a6(q),(3)

where a4(q) and a6(q) are convergent power series in k[[u]] defined by

a4 = −
∞∑

n=1

n4qn

1− qn , a6 = − 1
12

(
5
∞∑

n=1

n3qn

1− qn + 7
∞∑

n=1

n5qn

1− qn
)
.

(For more details on the Tate curve see [14, Chapter V].) Then we have an
isomorphism of Gal(k/k)-modules called the Tate parametrization:

τ : k×/qZ → E(k), u 7→ (X(u), Y (u)),

where X(u) and Y (u) are convergent power series in k[[u]] defined by

X(u) =
u

(1− u)2 +
∞∑

n=1

(
qnu

(1− qnu)2 +
qnu−1

(1− qnu−1)2 − 2
qn

(1− qn)2

)
,(4)

Y (u) =
u2

(1− u)3 +
∞∑

n=1

(
(qnu)2

(1− qnu)3 −
qnu−1

(1− qnu−1)3 +
qn

(1− qn)2

)
.(5)

Let n be a prime number, and fix an nth root of unity ζ ∈ µn and an
nth root q1 = q1/n of q in k. Then for any P ∈ En, we define two elements
µ(P ) and ν(P ) of Z/nZ by

τ(ζµ(P )q
ν(P )
1 ) = P.

Clearly both µ and ν are homomorphisms from En to Z/nZ.
Now, let S be a k-rational point of E of order n. As in the preceding

section we consider the quotient F of E by the cyclic subgroup generated
by S and the cyclic isogeny ψ : F → E.
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Proposition 3.1. Let δ(ψ)
k : E(k) → H1(k, Fψ) = k×/k×n be the map

defined in (1). Then

Im(δ(ψ)
k ) =

{
k×/k×n if ν(S) 6= 0,

{1} if ν(S) = 0.

This fact is well known; for example it is proved in [2] in the case of n = 5
and the proof works for any n. However, we will give another proof using
an explicit description of the rational function f defined in Proposition 2.1.
This proof is a generalization of that of Brumer and Kramer [4], where the
case n = 2 is treated. We consider the following theta function:

θ(u) = (1− u)
∞∏

n=1

(1− qnu)(1− qnu−1)
(1− qn)2 (u ∈ k×).

Lemma 3.2. Let x1, . . . , xr ∈ k× and m0,m1, . . . ,mr ∈ Z. Let f be a
function on k× defined by

f(u) = u−m0

r∏

i=1

θ(u/xi)mi (u ∈ k×).

Then the equation f(qu) = f(u) holds for all u ∈ k× if and only if the
following two conditions are satisfied :

r∑

i=1

mi = 0 and
r∏

i=1

xmii = qm0 .

Moreover , if these conditions are satisfied (hence f ◦ τ−1 may be viewed as
a rational function on the Tate curve E), then the divisor of the rational
function f on E is given by

div(f ◦ τ−1) =
r∑

i=1

mi(τ(xi)).

Proof. See [12, §1, Proposition 1].

Proof of Proposition 3.1. We want to construct a rational function f
on E which satisfies the condition of Proposition 2.1. Let µ = µ(S), ν = ν(S)
and define a function f on E by

f(τ(u)) = u−ν
(
θ(ζ−µq−ν1 u)

θ(u)

)n
(u ∈ k×).(6)

Then Lemma 3.2 implies that f is a rational function on E defined over k
such that div(f) = n((S)− (O)). Moreover, we define a function g on E by

g(τ(u)) = u−ν
θ(ζ−µq−ν1 un)

θ(un)
.
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Then g is also a rational function on E defined over k and satisfies the
relation

f(τ(un)) = g(τ(u))n.

Therefore f ◦ [n] = gn, so f satisfies the condition in Proposition 2.1. Hence

δ
(ψ)
k (τ(u)) ≡ f(τ(u)) ≡ u−ν (modk×n)(7)

for all u ∈ k×. Proposition 3.1 now easily follows from (7).

In the next proposition we identify Z/nZ with the subset {0, 1, . . . , n−1}
of Z. Thus we regard ν(P ) as an integer such that 0 ≤ ν(P ) < n.

Proposition 3.3. Suppose q1 ∈ k. Let f ∈ k(E)× be the rational func-
tion on E defined by (6). Then for any P ∈ E(k)n\{O,S}, v(f(P )) is given
by the formula

v(f(P )) = −(ν(S)ν(P )− nmax{ν(S)− ν(P ), 0})v(q1)− δν(S),ν(P )v(1− ζ),

where δ∗,∗ denotes Kronecker’s delta.

Proof. For any α, β ∈ k×, we write α ∼ β if v(α/β) = 0. Take u, z ∈ k×
such that τ(u) = S, τ(z) = P . Clearly one can take u, z so that 0 ≤
v(u), v(z) < v(q). Then by (6) we have

f(P ) = z−ν(S)
(
θ(u−1z)
θ(z)

)n
.

Since v(z) = ν(P )v(q1), this shows that

v(f(P )) = −ν(S)ν(P )v(q1) + n · v
(
θ(u−1z)
θ(z)

)
.(8)

To calculate the second term, notice that −v(q) < v(z/u) < v(q) and 0 ≤
v(z) < v(q). Hence 1− qn(z/u)±1 ∼ 1 and 1− qnz±1 ∼ 1 for all n ≥ 1. Thus

θ(u−1z)
θ(z)

∼ 1− u−1z

1− z .

First, suppose ν(P ) 6= 0. Then 1− z ∼ 1 and

1− u−1z ∼





1 if ν(P ) > ν(S),

u−1z if ν(P ) < ν(S),

1− ζ if ν(P ) = ν(S).

Here we have used the fact that 1− ζs ∼ 1− ζ for any 0 < s < n. Therefore,

v

(
θ(u−1z)
θ(z)

)
= −max{ν(S)− ν(P ), 0}v(q1) + δν(S),ν(P )v(1− ζ).(9)

From (8) and (9) we obtain the desired formula.
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Next, suppose ν(P ) = 0. Then µ(P ) 6= 0, hence 1−z ∼ 1−ζµ(P ) ∼ 1−ζ.
Moreover, if ν(P ) = 0, then µ(S) 6= µ(P ), and

1− u−1z ∼
{
u−1 if ν(S) 6= 0,

1− ζ if ν(S) = 0.

Therefore,

v

(
θ(u−1z)
θ(z)

)
= −max{ν(S), 0}v(q1) + δν(S),0v(1− ζ).(10)

From (8) and (10), we find that the formula of the proposition also holds in
this case. This completes the proof.

Corollary 3.4. Suppose n is a prime and q1 ∈ k. If v(n) = 0, then
v(f(P )) is divisible by v(q1) and the integer v(f(P ))/v(q1) satisfies the con-
gruence

v(f(P ))
v(q1)

≡ −ν(S)ν(P ) (modn).

Further , if v(n) > 0 and v(q1) 6≡ 0 (modn) (hence v(q1) is an n-adic unit),
then the same congruence holds.

Proof. If v(n) = 0, then Proposition 3.3 implies that

v(f(P )) = −[ν(S)ν(P ) + n ·max{ν(S)− ν(P ), 0}]v(q1).

Hence the assertion of the proposition holds. If v(n) > 0 and v(q1) 6≡ 0
(modn), then v(q1) is an n-adic unit, hence we get the congruence of the
proposition again.

4. The Selmer group of a semistable elliptic curve. We return
to the situation where k is a number field. In the remainder of this paper
we will assume that n is an odd prime number. Let Mk,0 denote the set of
prime ideals of k. For any α ∈ k× let Σk(α) denote the set of prime ideals
p of k such that ordp(α) 6= 0. Let E be a semistable elliptic curve defined
over k. Thus Σ(E/k) := Σk(∆E) is the set of bad prime ideals for E. We
assume that E has split multiplicative reduction at every prime in Σ(E/k).
For p ∈ Σ(E/k), let q = qp be a non-zero element of kp with ordp(q) > 0
such that E is isomorphic to the Tate curve Eq/kp defined by (3). We fix an
isomorphism φp : Eq → E. We write µp, νp and τp for µ, ν and τ defined in
the previous section for Eq/kp. Let

Ak = {p ∈ Σ(E/k) | νp(S) 6= 0}, Bk = Σ(E/k) \ Ak.
Consider the following condition:

Σk(n) ⊂ Σ(E/k).(11)

Clearly this is equivalent to requiring that ordp(∆E) > 0 for all p ∈ Σk(n).
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For any subset X of Mk,0, we define a subgroup V (X) of k×/k×n by

V (X) = {x ∈ k×/k×n | ordp(x) ≡ 0 (modn) (∀p ∈Mk,0 \X)}.
Moreover, if Y is another subset of Mk,0 such that X ∩ Y = ∅, we define a
subgroup V (X,Y ) of k×/k×n by

V (X,Y ) = {x ∈ V (X) | x = 1 in k×p /k
×n
p (∀p ∈ Y )}.

Proposition 4.1. If the condition (11) holds, then

Sel(ψ)(F/k) = V (Ak, Bk).

Proof. Let x ∈ k×/k×n. Then x belongs to Sel(ψ)(F/k) if and only if
x ∈ Im(δ(ψ)

p ) for all p ∈ Mk. Since we are assuming that n is odd, it is not
necessary to consider the local condition at infinite places. If p is a finite
place not in Σ(E/k) and therefore not dividing n, then it is well known that
Im(δ(ψ)

p ) = O×p /O
×n
p ⊂ k×p /k

×n
p , where Op denotes the integer ring of kp.

This shows that Sel(ψ)(F/k) is a subgroup of V (Σ(E/k)). If p ∈ Σ(E/k),
then E has split multiplicative reduction at p, and so by Proposition 3.1 we
have

Im(δ(ψ)
p ) =

{
k×p /k

×n
p if p ∈ Ak,

{1} if p ∈ Bk.
Therefore the equality Sel(ψ)(F/k) = V (Ak, Bk) holds.

Corollary 4.2. Assume that the condition (11) holds. If Np 6≡ 1
(modn) for all p ∈ Bk, then

Sel(ψ)(F/k) = V (Ak).

Proof. Let x ∈ V (Ak). Then resp(x) ∈ O×p /O
×n
p for any p ∈ Bk. But,

since n is a prime number, the assumption that Np 6≡ 1 (modn) implies
that O×np = O×p . Therefore, x = 1 in k×p /k

×n
p . This proves that V (Ak) ⊂

Sel(ψ)(F/k). Thus the assertion follows from Proposition 4.1.

We will henceforth assume that k contains µn. For any p ∈Mk,0 \Σk(n)
and x ∈ k with ordp(x) = 0, let

(
x
p

)
n

be the nth power residue symbol,
namely

(
x
p

)
n

is the nth root of unity such that
(
x

p

)

n

≡ x(Np−1)/n (mod p).

Note that
(
x
p

)
n

= 1 if and only if x ∈ O×np . Thus the following corollary
immediately follows from Proposition 4.1.

Corollary 4.3. Assume that k contains µn and the condition (11)
holds. Then

Sel(ψ)(F/k) =
{
x ∈ V (Ak)

∣∣∣∣
(
x

p

)

n

= 1 (∀p ∈ Bk)
}
.
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Now, we will give an explicit description of the set Ak. For this purpose,
divide the set Σ(E/k) into two subsets:

Σ(1)(E/k) = {p ∈ Σ(E/k) | ordp(∆E) 6≡ 0 (modn)},
Σ(2)(E/k) = {p ∈ Σ(E/k) | ordp(∆E) ≡ 0 (modn)}.

Let fS be a rational function on E satisfying the condition of Proposition 3.1.
For any p ∈ Σ(E/k) let fp,S denote the rational function on Eq defined
by (6). Since two rational functions φ∗p(fS) and fp,S on E have the same
divisor, they differ only by non-zero constant multiple:

φ∗p(fS) = cpfp,S (cp ∈ k×p ).

But in view of Proposition 2.1 the commutative diagram

E(k)
δ
(ψ)
k //

��

H1(k, Fψ)
∼= //

��

k×/k×n

��
E(kp)

δ
(ψ)
kp // H1(kp, Fψ)

∼= // k×p /k
×n
p

shows that cp ∈ k×np . Hence, when we compute Im(δ(ψ)
p ), we may use fS

instead of fp,S .
Let P ∈ En \ {O,S}. Then the above remark shows that

ordp(φ∗p(fS(P ))) = ordp(fp,S)

for any p ∈ Σ(E/k). For each p ∈ Σ(2)(E/k), define the rational number

ip(S, P ) =
ordp(fS(P ))
1
n ordp(∆E)

.

Consider the following condition:

ordp(∆E) 6≡ 0 (modn) for all p ∈ Σk(n).(12)

Obviously (12) implies (11).

Proposition 4.4. Assume that k contains µn and the condition (12)
holds. Then for any prime p ∈ Σ(E/k) the following assertions hold :

(i) If p ∈ Σ(1)(E/k), then νp(S) = 0.
(ii) If p ∈ Σ(2)(E/k) \ Σk(n) (resp. p ∈ Σk(n)), then ip(S, P ) is an

integer (resp. an n-adic integer) and the congruence

ip(S, P ) ≡ −νp(S)νp(P ) (modn)

holds for any P ∈ E(k)n \ {O,S}.
Proof. If ordp(∆E) 6≡ 0 (modn), then q1 = q1/n does not belong to kp.

Let σ be an element of Gal(kp/kp) such that qσ1 6= q1. Since the Tate
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parametrization τp is Galois equivariant and S is k-rational, we have

τp(ζµp(S)q
νp(S)
1 ) = τp(ζµp(S)(qσ1 )νp(S)).

Hence νp(S)τp(qσ−1
1 ) = 0. Since qσ−1

1 is an nth root of unity other than 1,
we have τp(qσ−1

1 ) 6= 0. Therefore, νp(S) = 0. This proves (i).
To prove (ii), suppose that ordp(∆E) ≡ 0 (modn) and p does not di-

vide n. Then Corollary 3.4 shows that
ordp(fS(P ))

ordp(q1)
≡ −νp(S)νp(P ) (modn).

Since 1
n ordp(∆E) = ordp(q1), (ii) follows.

Corollary 4.5. Assume that k contains µn and the condition (12)
holds. Then

Ak = {p ∈ Σ(2)(E/k) | ip(S,−S) 6≡ 0 (modn)}.
Proof. By Proposition 4.4(i), Ak is a subset of Σ(2)(E/k). Let p ∈

Σ(2)(E/k). Applying Proposition 4.4(ii) for P = −S and noticing that
νp(−S) ≡ −νp(S) (modn), we obtain

ip(S,−S) ≡ νp(S)2 (modn).

This implies that p ∈ Ak if and only if ip(S,−S) 6≡ 0 (modn). The corollary
then follows.

5. The Cassels–Tate pairing. We begin with a theorem proved by
McCallum [10], which is fundamental in our calculation. It enables us to
describe the Cassels–Tate pairing 〈 , 〉ψ defined in (2) in terms of the Hilbert
norm residue symbol

( , )p : k×p /k
×n
p × k×p /k×np → µn

of kp.

Theorem 5.1. Suppose E(k)n ∼= Z/nZ×Z/nZ and let {S, T} be a basis
of E(k)n. Let en denote the Weil pairing on En and put ζ = en(S, T ). Let
F = E/〈S〉 be the cyclic quotient of E by the subgroup 〈S〉 generated by S.
Let x, x′ ∈ Sel(ψ)(F/k). For each p ∈ Mk let Pp ∈ E(kp) be a local point
such that resp(x) = δ

(ψ)
p (Pp). Then

〈x, x′〉ψ =
∑

p∈Mk

Indζ(fT (Pp), x′)p,

where Indζ : µn → Z/nZ denotes the isomorphism sending ζ ∈ µn to 1 ∈
Z/nZ and fT is a rational function on E defined in Proposition 2.1.

Proof. One can prove this in a quite similar way to [10, Theorem 1.4].
See also [2] and [7], where the case n = 5 is treated.
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The next theorem is proved by Beaver [2] when n = 5, but the proof
works for general n. Here we will give a proof based on the result in Section 2.

Theorem 5.2. Let the notation and assumption be as in Theorem 5.1.
Suppose E/k (and hence F/k) is a semistable elliptic curve with split multi-
plicative reduction at every prime in Σ(E/k). Let Ak be as in Section 3
and assume that the condition (11) holds. For each p ∈ Ak put λp =
νp(T )/νp(S) ∈ Z/nZ. Then for x, x′ ∈ Sel(ψ)(F/k) we have

〈x, x′〉ψ =
∑

p∈Ak
λp Indζ(x, x′)p.

Proof. Let τp : k×p /q
Z
p → E(kp) be the Tate parametrization. For each

p ∈Mk there exists a point Pp ∈ E(kp) such that δ(ψ)
p (Pp) = resp(x). Choose

up ∈ k×p so that τp(up) = Pp. Then by the same argument as in the proof
of Proposition 3.1 one can prove that

fT (Pp) = fT (τp(up)) ≡ u−νp(T )
p (modk×np ).

Hence by Theorem 5.1 we have

〈x, x′〉ψ =
∑

p∈Mk

Indζ(u
−νp(T )
p , x′)p.(13)

If νp(S) = 0, then Im(δ(ψ)
p ) = {1} by Proposition 3.1, and so (u−νp(T )

p , x′)p =1.

If νp(S) 6= 0, then u
−νp(T )
p ≡ (u−νp(S)

p )λp (modk×np ). Therefore

(u−νp(T )
p , x′)p = (u−νp(S)

p , x′)λp

p = (x, x′)λp

p .(14)

The assertion now immediately follows from (13) and (14).

The following theorem shows that one can compute the value of λp once
the values of the function fS on En have been known.

Theorem 5.3. Let the notation and assumption be as in Theorem 5.1.
Assume, in addition, that the condition (12) holds. Then for any p ∈ Ak the
value of λp is given by the following formula:

λp ≡ −
ip(S, T )
ip(S,−S)

(modn).

Proof. Applying Proposition 4.4(ii) for P = T , we obtain

ip(S, T ) ≡ −νp(S)νp(T ) (modn).

Since ip(S,−S) ≡ νp(S)2 (modn), it follows that

ip(S, T )
ip(S,−S)

≡ −λp (modn),

which proves the theorem.
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6. The case of n = 3. Let E be a semistable elliptic curve defined over
Q with a rational point S of order 3. After a change of coordinates, we may
assume that S = (0, 0) and E is defined by the Weierstraß equation

y2 + axy + by = x3,(15)

where a and b are integers such that (a, b) = 1 and (a3 − 27b)b 6= 0. The
discriminant of E is given by ∆E = (a3 − 27b)b3, and E has split multi-
plicative reduction at every prime in Σ(E/Q) = ΣQ((a3 − 27b)b). Let k be
a number field containing a cubic root of unity ζ. One can easily see that
for any p ∈ Σ(E/k) our elliptic curve E considered over kp is isomorphic to
the Tate curve

Eq : y2 + xy = x3 +
b

2a3 x+
b2

4a6

with a non-zero element q = qp ∈ kp such that j(Eq) = j(E). The isomor-
phism φp : E → Eq is given by

φp((x, y)) = (a2x, a3y − b/2).(16)

Note that the rational function y on E has the divisor div(y) = 3((S)−(O)).
Thus we can take y for the rational function fS on E.

Now, let F = E/〈S〉 be the quotient of E by the cyclic group generated
by S and ϕ : E → F the natural surjection. Then F is defined over Q by

y2 + axy + by = x3 − 5abx− a3b− 7b2.(17)

Let ψ : F → E be the dual isogeny of the isogeny ϕ.

Proposition 6.1. Let k be a number field containing µ3 and assume
that ordp(3) 6≡ 0 (mod 3) for all p ∈ Σk(3). Then Ak = Σk(b) and Bk =
Σk(a3 − 27b). Moreover the ψ-Selmer group Sel(ψ)(F/k) is given by

Sel(ψ)(F/k) = V (Σk(b), Σk(a3 − 27b)).

Proof. The assumption on k ensures that the condition (12) is satisfied.
Let p ∈ Σ(2)(E/k). Since fS(−S) = y(−S) = −b, we have

ip(S,−S) =
ordp(b)

1
3 ordp(∆E)

.

It follows that ip(S,−S) = 1 or 0 according as p divides b or not. Therefore
Ak = Vk(b) (hence Bk = Vk(a3−27b)) by Corollary 4.5. Thus the proposition
follows from Proposition 4.1.

Corollary 6.2. If every prime factor of a3 − 27b is congruent to 2
modulo 3 and ord3(b) 6≡ 0 (mod 3), then

Sel(ψ)(F/Q) = V (ΣQ(b)).

Proof. The assertion follows from Proposition 6.1 and Corollary 4.2.
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Let K = Q(E3). Then it is easy to see that K = Q(
√
−3, 3√a3 − 27b).

We remark that if ord3(b) 6≡ 0 (mod 3), then ordp(b) 6≡ 0 (mod 3) for all
p ∈ ΣK(3) since the absolute ramification index of p is 2.

Corollary 6.3. Assume that ord3(b) 6≡ 0 (mod 3). Then

Sel(ψ)(F/K) =
{
x ∈ V (ΣK(b))

∣∣∣∣
(
x

p

)

3
= 1 for all p ∈ ΣK(a3 − 27b)

}
.

Proof. The assertion follows from Proposition 6.1 and Corollary 4.3.

Put ` = a3− 27b, hence K = Q(
√
−3, 3√`). It is not hard to compute all

the points of E3 explicitly. First, note that

〈S〉 = {O, (0, 0), (0,−b)}.
The coordinates of the points of E3 \ 〈S〉 are given as follows:

Lemma 6.4. Let T be a point of order 3 which does not belong to 〈S〉.
Then we have

T =
(
−(a− ωξ)(a− ω2ξ)

9
,−(a− ωξ)2(a− ω2ξ)

27

)
,

where ξ is a cubic root of ` and ω is a primitive cubic root of unity. (The
number of possible choices of the pair (ξ, ω) is 6 = #(E3 \ 〈S〉).)

Proof. Let P ∈ E3 \ {O}. Then the x-coordinate x(P ) of P is a root of
the quadric equation

3x4 + a2x3 + 3abx2 + 3b2x = 0.

The trivial root x = 0 of this equation corresponds to the points S = (0, 0)
and 2S = (0,−b). Thus x(T ) is a root of the cubic equation

3x3 + a2x2 + 3abx+ 3b2 = 0.

Solving this equation, we obtain

x(T ) = − 3b
a− ξ = −(a− ωξ)(a− ω2ξ)

9

with some ξ such that ξ3 = `. Here the second equality holds since

27b = (a− ξ)(a− ωξ)(a− ω2ξ).(18)

Solving the quadratic equation y2 + (ax(T ) + b)y − x(T )3 = 0, we obtain
the description of the y-coordinate y(T ) of T in the lemma.

In the following we fix ξ and consider three (mutually disjoint) subsets
A

(i)
K (i = 0, 1, 2) of AK defined by

A
(i)
K = {p ∈ AK | a ≡ ωiξ (modpεp)},
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where εp = 2 or 1 according as p divides 3 or not. If b ≡ 0 (mod 3), then

AK = A
(0)
K ∪A

(1)
K ∪A

(2)
K

by (18).

Theorem 6.5. Suppose ord3(b) 6≡ 0 (mod 3). Let x, x′ ∈ Sel(ψ)(F/K).
Then

〈x, x′〉ψ =
∑

p∈A(1)
K

Indζ(x, x′)p + 2
∑

p∈A(2)
K

Indζ(x, x′)p,

where ζ = e3(S, T ).

Proof. It follows from Theorem 5.3 that

λp ≡
ordp(y(T ))

ordp(b)
(mod 3)(19)

for all p ∈ AK . By Lemma 6.4 we have

ordp(y(T )) = 2 ordp(a− ωξ) + ordp(a− ω2ξ).

First, suppose p does not divide 3. Then p does not divide simultaneously
any two factors of the right hand side of (18). Therefore, if a ≡ ξ (mod p),
then ordp(a − ωξ) = ordp(a − ω2ξ) = 0. Hence ordp(y(T )) = 0. If a ≡ ωξ
(modp), then ordp(a− ξ) = ordp(a− ω2ξ) = 0. Hence

ordp(y(T )) = 2 ordp(a− ωξ) = 2 ordp(b).

Similarly, if a ≡ ω2ξ (modp), then ordp(a− ξ) = ordp(a− ωξ) = 0. Hence

ordp(y(T )) = ordp(a− ωξ) = ordp(b).

Consequently, if p does not divide 3, then

ordp(y(T )) =





0 if a ≡ ξ (modp),

2 ordp(b) if a ≡ ωξ (modp),

ordp(b) if a ≡ ω2ξ (modp).

(20)

Next, suppose p divides 3. Then ordp(a−ωiξ) > 0 for any i = 0, 1, 2 and
equation (18) shows that

ordp(y(T )) = −6 + 2 ordp(a− ωξ) + ordp(a− ω2ξ).

(Note that ordp(3) = 3.) Moreover, one of the three factors a−ωi (i = 0, 1, 2)
of the right hand side of (18) is divisible by p2 and the others are not.
Therefore, if a ≡ ξ (mod p2), then ordp(a− ωξ) = ordp(a− ω2ξ) = 1. Hence
ordp(y(T )) = −3. If a ≡ ωξ (mod p2), then ordp(a− ξ) = ordp(a−ω2ξ) = 1.
Hence

ordp(a− ωξ) = ordp

(
27b

(a− ξ)(a− ω2ξ)

)
= ordp(b) + 4.
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Therefore,

ordp(y(T )) = 2(ordp(b) + 4) + 1− 6 = 2 ordp(b) + 3.

Similarly, if a ≡ ω2ξ (modp2), then ordp(a − ω2ξ) = ordp(b) + 4 and
ordp(a− ωξ) = 1. Hence

ordp(y(T )) = 2 + ordp(b) + 4− 6 = ordp(b).

Consequently, if p divides 3, then

ordp(y(T )) =





−3 if a ≡ ξ (mod p2),

2 ordp(b) + 3 if a ≡ ωξ (modp2),

ordp(b) if a ≡ ω2ξ (modp2).

(21)

By (20) and (21), for any p ∈ A(i)
K (i = 0, 1, 2) we have

ordp(y(T )) ≡ −i · ordp(b) (mod 3).

It then follows from (19) that

λp ≡ −i (mod 3)

for any p ∈ A(i)
K . Moreover, if p ∈ MK,0 \ AK , then ordp(x) ≡ ordp(x′) ≡ 0

(mod 3), and so (x, x′)p = 1. Therefore

〈x, x′〉ψ =
2∑

i=0

i
∑

p∈A(i)
K

Indζ(x, x′)p.

This proves the theorem.

7. Proof of Theorem 1.1. We want to show that for a given positive
integer r we can find two integers a and b with (a, b) = 1 and (a3−27b)b 6= 0
for which

dimZ/3ZX(F(a,b)/Q)3 ≥ r.(22)

Let ` be an odd prime number with ` ≡ −1 (mod 9). Thus ` remains prime
in k := Q(

√
−3). Let ξ be a cubic root of ` in Q and put K = Q(

√
−3, ξ).

Since ` ≡ −1 (mod 9), ` is a cube in Q3, hence ξ ∈ Q3. Moreover, by genus
theory we know that the class number h of K is not divisible by 3, since the
base field k has class number one and K/k is a cyclic extension of degree 3
unramified outside the prime ideal generated by `.

We choose r prime numbers p1, . . . , pr with pi ≡ −1 (mod 9) so that the
unique prime ideal of k lying above pi decomposes completely in K. This is
possible because Q(ζ9) ∩K = k. Let

L = k( 3√p1, . . . , 3√pr).
Then L/k is a Kummer extension whose Galois group may be described as
follows: For each i, we can naturally view Gal(k( 3√pi)/k) as a subgroup of
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Gal(L/k), and we have an isomorphism

Gal(L/k) ∼=
r∏

i=1

Gal(k( 3√pi)/k).

Choose and fix a primitive cubic root of unity ω, and let gi be the generator
of Gal(k( 3√pi)/k) such that

3√pi gi = ω 3√pi.(23)

Lemma 7.1. There exist prime ideals q1, . . . , qr of K such that(
ξ

qj

)

3
= 1 and

(
pi
qj

)

3
= ωδij

for all i, j, where
(∗
∗
)

3 denotes the cubic power residue symbol of K and δij
denotes Kronecker’s delta.

Proof. The extension KL/k is a Kummer extension of exponent 3. Since
` is relatively prime to p1, . . . , pr, we have an isomorphism

Gal(KL/k) ∼= Gal(K/k)×Gal(L/k).

Therefore, by Chebotarev’s density theorem, there exist prime ideals
Q1, . . . , Qr of KL such that

{
FrobKL/k(Qi)|K = 1,

FrobKL/k(Qi)|L = gi.
(24)

Let qi be the prime ideal of K lying under Qi. The first condition of (24)
implies that FrobK/k(qi) = 1 since FrobK/k(qi) = FrobKL/k(Qi)|K . This
shows that

( ξ
qj

)
3 = 1. Moreover the second condition of (24) implies that

3√piFrobKL/k(Qj) = ωδij 3√pi,
which is equivalent to

( pi
qj

)
3 = ωδij . Thus the prime ideals q1, . . . , qr have

the desired properties.

Letting pi and qi be as above, choose an integer a such that




ord3(a− ξ) = 3,

a ≡ ξ (modp1 . . . pr),

a ≡ ωξ (mod q1 . . . qr).

(25)

The existence of such an integer is ensured by the fact that ξ ∈ Q3 and
the prime ideals pi, qi (i = 1, . . . , r) decompose completely in K for all i.
Moreover the first condition of (25) shows that

ΣK(3) ⊂ A(1)
K .

Since ordp((a − ξ) − (a − ωiξ)) = ordp((ωi − 1)) = 1 for any p ∈ ΣK(3)
and i = 1, 2, this shows that ordp(a − ωiξ) = 1 for i = 1, 2. Therefore,
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ordp((a − ωξ)(a − ω2ξ)) = 2. In particular, regarding (a − ωξ)(a− ω2ξ) as
an element of Q3, we have ord3((a− ωξ)(a− ω2ξ)) = 1. Hence the relation

ord3(a3 − `) = ord3(a− ξ) + ord3((a− ωξ)(a− ω2ξ))

shows that ord3(a3 − `) = 4. Therefore, if we put

b =
a3 − `

27
,

then b is an integer such that (a, b) = 1 and ord3(b) = 1.
Let E = E(a,b) and F = F(a,b) be two elliptic curves defined by the

equation in (15) and (17) respectively. Then K coincides with Q(E3). Let
S = (0, 0) ∈ E3 and choose T ∈ E3 \ 〈S〉 so that e3(S, T ) = ω, where ω is
the primitive cubic root of unity defined in (23). We claim that

dimZ/3Z(X(F/Q)ψ) ≥ r.(26)

Since X(F/Q)ψ ⊂X(F/Q)3, this proves the claim (22). To prove (26), let
βj be a generator of the principal ideal qhj for each j = 1, . . . , r. (Recall that
h is the class number of K.) Before proving (26) itself, we prove a lemma.

Lemma 7.2. Let the notation be as above. Then p1, . . . , pr ∈ Sel(ψ)(F/Q)
and β1, . . . , βr ∈ Sel(ψ)(F/K).

Proof. Since ` = a3 − 27b is a prime number with ` ≡ 2 (mod 3),
Corollary 6.2 shows that

Sel(ψ)(F/Q) = V (ΣQ(b)).

In particular, p1, . . . , pr ∈ Sel(ψ)(F/Q).
To prove the second statement, notice that K ⊃ µ3. Let l = (ξ) denote

the unique prime ideal in K lying above `. Then by Corollary 6.3 we have

Sel(ψ)(F/K) =
{
x ∈ V (ΣK(b))

∣∣∣∣
(
x

l

)

3
= 1
}
.

Thus, in order to prove that βi ∈ Sel(ψ)(F/K), we have to show that(βi
l

)
3 = 1. But this is equivalent to (ξ, βi)l = 1. To compute (ξ, βi)l, note

that

(ξ, βi)qi =
(
ξ

qi

)h

3
= 1.

The first equality holds because ordqi(ξ) = 0 and ordqi(βi) = h, and the
second one holds by Lemma 7.1. Moreover, since ξ ≡ −1 (mod 9), we have
(ξ, βi)p = 1 for all p ∈ ΣK(3). Then the product formula implies that
(ξ, βi)l = 1. This proves that βi ∈ Sel(ψ)(F/K), completing the proof.

We return to the proof of (26). For this, it suffices to show that the
images of p1, . . . , pr ∈ Sel(ψ)(F/Q) in X(F/Q)ψ are linearly independent.
Since we have a homomorphism Sel(ψ)(F/Q) → Sel(ψ)(F/K) induced from
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the natural map Q×/Q×3 → K×/K×3, it is enough to show that the images
of p1, . . . , pr ∈ Sel(ψ)(F/K) in X(F/K)ψ are linearly independent. For this
purpose, we calculate the Cassels–Tate pairing 〈pi, βj〉ψ on Sel(ψ)(E/K) for
all i, j.

We first note that (pi, βj)p = 1 for all p ∈ ΣK(3) because pi ≡ −1
(mod 9). For each i there are three conjugate ideals of pi in K. We number
them so that

ΣK(pi) ∩ A(ν)
K = {p(ν)

i } (ν = 0, 1, 2).

Thus p
(0)
i = pi. Moreover, by the choice of the integer a in (25) we have

{
ΣK(βi) ∩ A(1)

K = {qi},
ΣK(βi) ∩ A(ν)

K = ∅ (ν = 0, 2).

Therefore, applying Theorem 6.5, we obtain

〈pi, βj〉ψ = Indω(pi, βj)p
(1)
i

+ 2 Indω(pi, βj)p
(2)
i

+ Indω(pi, βj)qj .(27)

Since pi is in k, we have

(pi, βj)p
(1)
i

= (pi, βj)p
(2)
i

= (pi, NK/k(βj))pi .

Hence the sum of the first two terms of the right hand side of (27) is equal
to zero. On the other hand, we have

(pi, βj)qj =
(
pi
qj

)h

3
= ωhδij

by Lemma 7.1. Consequently, we obtain the following simple description of
the pairing 〈pi, βj〉ψ:

〈pi, βj〉ψ ≡ hδij (mod 3).

Since h is not divisible by 3, the equality 〈pi, βj〉ψ = 0 holds if and only if
i 6= j, which proves that p1, . . . , pr are independent in Sel(ψ)(E/K). This
proves (26), completing the proof of Theorem 1.1.
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