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1. Introduction. Real numbers have several representations, such as
continued fraction expansions, Lüroth series, Engel series, Sylvester series
expansions and Cantor infinite products etc. (see [4] and [20]). Analogous
to continued fraction expansions, certain types of p-adic continued fractions
have been studied by many mathematicians; see for example, [15], [17], [13]
and [14] etc. In [8]–[10], A. Knopfmacher and J. Knopfmacher introduced
and studied some properties of various unique p-adic expansions as sums of
reciprocals of p-adic numbers with p-adic valuations not less than 1. These
expansions, including p-adic Lüroth series, Engel series, Sylvester series ex-
pansions and p-adic Cantor infinite products, were constructed to be analo-
gous to the so-called Oppenheim series expansions of real numbers discussed
in Galambos [4].

In the direction of metric and asymptotic results concerning digits, vari-
ous results were established; in particular, for expansions of real numbers,
by Jager and de Vroedt [6] and Salát [18] for real Lüroth series expan-
sions, Erdős, Rényi and Szüsz [2] for real Engel and Sylvester series expan-
sions, Rényi [16] for real Cantor infinite products and by Galambos [4] for
more general situations, called Oppenheim series expansions of real num-
bers. Ruban [17] established p-adic metric theorems analogous to some of
Khinchin [7] for real continued fractions. The corresponding results for p-adic
Lüroth and Engel series expansions have been derived by A. Knopfmacher
and J. Knopfmacher [11] and Grabner and A. Knopfmacher [5], respectively.

The main aim of this paper is to derive metric and asymptotic results
for p-adic Oppenheim series expansions. We generalize the results obtained
by A. Knopfmacher and J. Knopfmacher [11] and Grabner and A. Knopf-
macher [5] for p-adic Lüroth and Engel series expansions. Also as special
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cases of our results, we give metric results for p-adic Sylvester series ex-
pansions and p-adic Cantor infinite products. The corresponding results for
Oppenheim series expansions of Laurent series have been obtained by Fan
and the author [3].

2. The p-adic Oppenheim series expansions. In order to explain
the conclusions, we first fix some notations and describe the p-adic Oppen-
heim series expansions to be considered.

Let us give a brief account of p-adic numbers; more details can be found
in the books by Koblitz [12] and Schikhof [19].

Let p be a fixed prime number. Every non-zero rational number A can
be expressed uniquely in the form A = par/s, where (r, p) = (s, p) = 1 and
a ∈ Z. The p-adic valuation | |p on Q is defined to be

|A|p = p−a if A 6= 0, |0|p = 0.

The completion of Q with respect to the p-adic metric | |p gives rise to
the field Qp. Each element A ∈ Qp has a unique series representation

A =
∞∑

n=m

cnp
n,

where m ∈ Z and the coefficients cn are rational integers satisfying 0 ≤ cn
≤ p − 1 and cm 6= 0. The integer m is called the order of A and denoted
by v(A), and |A|p = p−m. The valuation | |p defined on Qp has the properties

|A|p ≥ 0, |A|p = 0 if and only if A = 0, |AB|p = |A|p|B|p,
|A+B|p ≤ max(|A|p, |B|p) with equality when |A|p 6= |B|p.

For v(A), we have

v(0) =∞, v(AB) = v(A) + v(B), v(A/B) = v(A)− v(B) if B 6= 0,

v(A+B) ≥ min(v(A), v(B)) with equality when v(A) 6= v(B).

It is well known that the above non-Archimedean valuation leads to an
ultrametric distance function %, with %(A,B) = |A−B|p, making Qp into a
complete metric space with respect to %.

Remark 2.1. Since the metric % is non-Archimedean, it follows that
each point of a disc may be considered its center and thus if two discs
intersect, then one contains the other.

For any A ∈ Qp, if A =
∑∞

n=v(A) cnp
n, we call the finite series 〈A〉 =∑

v(A)≤n≤0 cnp
n the fractional part of A. Then 〈A〉 ∈ Sp, where we define

Sp = {〈A〉 : A ∈ Qp} ⊂ Q. The set Sp is multiplicatively but not addi-
tively closed. The function 〈A〉 and set Sp have been used in the study of
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certain types of p-adic continued fractions by Mahler [15], Ruban [17] and
Laohakosol [13] in particular.

For any n ≥ 1, let rn, sn be maps from p−1(Sp\{0}) to Q\{0} satisfying,
for any a ∈ p−1(Sp\{0}),
(1) 2v(a)− v(sn(a)) + v(rn(a)) ≤ 0 for any n ≥ 1,

(2) v(rn(a)) = v(rn(a′)), v(sn(a)) = v(sn(a′)) if v(a) = v(a′).

Given any A ∈ Qp, note that 〈A〉 = a0 ∈ Sp if and only if v(A− a0) ≥ 1.
Then define A1 = A− a0. As in [9], [10], if An 6= 0 with v(An) ≥ 1 (n ≥ 1)
is already defined, then define the “digit” an = 〈1/An〉 and put

(3) An+1 =

(
An −

1

an

)
sn(an)

rn(an)
.

For any m ≥ 1, if Am 6= 0, by (1) and [10, (2.3)], we have v(Am) ≥ 1. If
some Am = 0, this recursive process stops. It was shown in [9], [10] that
this algorithm leads to a finite or convergent series (relative to %), called the
p-adic Oppenheim series expansion.

Theorem 2.2 ([9], [10]). Every x ∈ Qp has a finite or convergent (rel-
ative to %) series expansion of the form

(4) x = a0(x) +
1

a1(x)
+
∞∑

n=1

r1(a1(x)) . . . rn(an(x))

s1(a1(x)) . . . sn(an(x))

1

an+1(x)
,

where an(x) ∈ Sp, a0(x) = 〈x〉, and v(a1(x)) ≤ 1, for any n ≥ 1,

(5) v(an+1(x)) ≤ 2v(an(x))− 1 + v(rn(an(x)))− v(sn(an(x))).

The expansion is unique for x subject to the above conditions on the “digits”
an(x).

Remark 2.3. The algorithm above is more restricted than the general
algorithm described in [10] in order to obtain our metric results. (1) is used
to guarantee that v(an) ≤ −1 for any n ≥ 1 if the process does not stop
(see (5)).

Here are some special cases:

p-adic Lüroth series expansion: sn(a) = a(a− 1), rn(a) = 1;
p-adic Engel expansion: sn(a) = a, rn(a) = 1;
p-adic Sylvester expansion: sn(a) = 1, rn(a) = 1;
p-adic Cantor infinite product : sn(a) = a, rn(a) = a+ 1.

Let Xp = pZp denote the maximal ideal in the ring Zp of all p-adic
integers, i.e. the set of p-adic numbers of order ≥ 0. Then Xp is compact.
For any A ∈ Xp, v(A) ≥ 1 and from Remark 2.3, v(An) ≥ 1 for any n ≥ 1 if
the process does not stop. Let P be the probability measure with respect to
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Haar measure on Qp normalized by P(Xp) = 1. A convenient description of
P on Xp is given in Sprindžuk [21, pp. 67–70]. In particular, P(C) = p−m

for any disc

C = C(x, p−m−1) := {y ∈ Qp : |y − x|p ≤ p−m−1}
of radius p−m−1.

For any x ∈ Xp, let {4n(x) : n ≥ 0} denote the sequence of random
variables such that 40(x) = v(a1(x)), 4n(x) = v(an+1(x)) − 2v(an(x)) −
v(rn(an(x))) + v(sn(an(x))) for n ≥ 1.

Now we state our main results.

Theorem 2.4. For the p-adic Oppenheim series expansions described
above:

(i) lim
n→∞

P

{
x ∈ Xp :

∑n−1
j=0 4j(x) + p

p−1 n√
np/(p− 1)

< t

}
=

1√
2π

t�

−∞
e−u

2/2 du.

(ii) For P-almost all x ∈ Xp,

lim
n→∞

1

n

n−1∑

j=0

4j(x) = − p

p− 1
.

(iii) For P-almost all x ∈ Xp,

lim sup
n→∞

∑n−1
j=0 4j(x) + p

p−1 n√
2n log logn

=

√
p

p− 1
,

lim inf
n→∞

∑n−1
j=0 4j(x) + p

p−1 n√
2n log logn

= −
√
p

p− 1
.

Furthermore, we consider the random variables∣∣∣∣
an+1(x)sn(an(x))

an(x)2rn(an(x))

∣∣∣∣
p

= p−4n(x), n = 1, 2, . . .

In Proposition 3.5, we will show that these are independent and identically
distributed with infinite expectation. However, we have the following result:

Theorem 2.5. For any fixed ε > 0,

lim
n→∞

P

{
x ∈ Xp :

∣∣∣∣
1

n logp n

n∑

j=1

∣∣∣∣
aj+1(x)sj(aj(x))

aj(x)2rj(aj(x))

∣∣∣∣
p

− (p− 1)

∣∣∣∣ > ε

}
= 0,

i.e.
1

n logp n

n∑

j=1

∣∣∣∣
aj+1(x)sj(aj(x))

aj(x)2rj(aj(x))

∣∣∣∣
p

→ p− 1 in probability.

This paper is organized as follows. In Section 3, we give the proof of
Theorem 2.4. Section 4 is devoted to the proof of Theorem 2.5.
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3. Proof of Theorem 2.4. In order to prove Theorem 2.4, we need
some preliminary results.

Lemma 3.1. For any k1, . . . , kn ∈ Sp satisfying

v(k1) ≤ −1, v(kj+1) ≤ 2v(kj)− 1 + v(rj(kj))− v(sj(kj)), 1 ≤ j ≤ n− 1,

we have

P{x ∈ Xp : a1(x) = k1, . . . , an(x) = kn} = p−
∑n−1
j=1 (v(rj(kj))−v(sj(kj)))+2v(kn).

Proof. From (5), we have

v

(
r1(k1) . . . rn(kn)

s1(k1) . . . sn(kn)

1

an+1(x)

)
≥ v
(
r1(k1) . . . rn−1(kn−1)

s1(k1) . . . sn−1(kn−1)

1

an(x)

)
+ 1.

Thus by Theorem 2.2, {x ∈ Xp : a1(x) = k1, . . . , an(x) = kn} is a disc with
center at

1

k1
+

n∑

j=2

r1(k1) . . . rj−1(kj−1)

s1(k1) . . . sj−1(kj−1)

1

kj

and diameter
p−

∑n−1
j=1 (v(rj(kj))−v(sj(kj)))+2v(kn)−1.

Thus

P{x∈Xp : a1(x) = k1, . . . , an(x) = kn}= p−
∑n−1
j=1 (v(rj(kj))−v(sj(kj)))+2v(kn).

Proposition 3.2. For any k1, . . . , kn+1 ∈ Sp satisfying

v(k1) ≤ −1, v(kj+1) ≤ 2v(kj)− 1 + v(rj(kj))− v(sj(kj)), 1 ≤ j ≤ n,
we have

P{an+1(x) = kn+1 | an(x) = kn}
= P{an+1(x) = kn+1 | a1(x) = k1, . . . , an(x) = kn}

=

∣∣∣∣
rn(kn)

sn(kn)

∣∣∣∣
p

|kn|2p
|kn+1|2p

,

i.e. {an(x) : n ≥ 1} forms a Markov chain with transition probabilities,

P{an+1(x) = ln+1 | an(x) = ln} =

∣∣∣∣
rn(ln)

sn(ln)

∣∣∣∣
p

|ln|2p
|ln+1|2p

if v(ln+1) ≤ 2v(ln)− 1 + v(rn(ln))− v(sn(ln)), and 0 otherwise.

Proof. By Lemma 3.1,

P{an+1(x) = kn+1 | an(x) = kn, . . . , a1(x) = k1}

=
P{a1(x) = k1, . . . , an(x) = kn, an+1(x) = kn+1}
P{a1(x) = k1, . . . , an−1(x) = kn−1, an(x) = kn}

=
p−

∑n
j=1(v(rj(kj))−v(sj(kj)))+2v(kn+1)

p−
∑n−1
j=1 (v(rj(kj))−v(sj(kj)))+2v(kn)

=

∣∣∣∣
rn(kn)

sn(kn)

∣∣∣∣
p

|kn|2p
|kn+1|2p

.



252 J. Wu

On the other hand,

P{an+1(x) = kn+1 | an(x) = kn}

=
P{an(x) = kn, an+1(x) = kn+1}

P{an(x) = kn}

(6) =

∑
P{aj(x) = lj , 1 ≤ j ≤ n− 1, an(x) = kn, an+1(x) = kn+1}∑

P{aj(x) = mj , 1 ≤ j ≤ n− 1, an(x) = kn}

(7) =

∑
p−

∑n−1
j=1 (v(rj(lj))−v(sj(lj)))−(v(rn(kn))−v(sn(kn)))+2v(kn+1)

∑
p−

∑n−1
j=1 (v(rj(mj))−v(sj(mj)))+2v(kn)

=

∣∣∣∣
rn(kn)

sn(kn)

∣∣∣∣
p

|kn|2p
|kn+1|2p

,

where the summations in the numerators of (6) and (7) are over all
l1, . . . , ln−1 ∈ Sp satisfying v(l1) ≤ −1, v(lj+1) ≤ 2v(lj) − 1 + v(rj(lj)) −
v(sj(lj)) for 1 ≤ j ≤ n − 2 and v(kn) ≤ 2v(ln−1) − 1 + v(rn−1(ln−1)) −
v(sn−1(ln−1)), and the summations in the denominators of (6) and (7) are
over all m1, . . . ,mn−1 ∈ Sp satisfying v(m1) ≤ −1, v(mj+1) ≤ 2v(mj) −
1 + v(rj(mj)) − v(sj(mj)) for 1 ≤ j ≤ n − 2 and v(kn) ≤ 2v(mn−1) − 1 +
v(rn−1(mn−1))− v(sn−1(mn−1)).

Next we show that {v(an(x)) : n ≥ 1} forms a Markov chain.

Lemma 3.3. For any k1, . . . , kn ∈ Sp as in Lemma 3.1, we have

P{x ∈ Xp : v(a1(x)) = v(k1), . . . , v(an(x)) = v(kn)}
= (p− 1)np−

∑n−1
j=1 v(kj)+v(kn)p−

∑n−1
j=1 (v(rj(kj))−v(sj(kj))).

Proof. By Lemma 3.1 and (2),

P{x ∈ Xp : v(a1(x)) = v(k1), . . . , v(an(x)) = v(kn)}
(8) =

∑
P{a1(x) = l1, . . . , an(x) = ln}

(9) =
∑

p−
∑n−1
j=1 (v(rj(lj))−v(sj(lj)))+2v(ln)

(10) =
∑

p−
∑n−1
j=1 (v(rj(kj))−v(sj(kj)))+2v(kn)

= (p− 1)np−
∑n
j=1 v(kj)+2v(kn)p−

∑n−1
j=1 (v(rj(kj))−v(sj(kj)))

= (p− 1)np−
∑n−1
j=1 v(kj)+v(kn)p−

∑n−1
j=1 (v(rj(kj))−v(sj(kj))),

where the summations in (8), (9) and (10) are over all l1, . . . , ln ∈ Sp such
that v(lj) = v(kj), 1 ≤ j ≤ n.
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Proposition 3.4. For any k1, . . . , kn+1 ∈ Sp as in Proposition 3.2, we
have

P{v(an+1(x)) = v(kn+1) | v(an(x)) = v(kn)}
= P{v(an+1(x)) = v(kn+1) | v(a1(x)) = v(k1), . . . , v(an(x)) = v(kn)}

= (p− 1)pv(kn+1)−2v(kn)−v(rn(kn))+v(sn(kn)).

Proof. By Lemma 3.3,

P{v(an+1(x)) = v(kn+1) | v(an(x)) = v(kn), . . . , v(a1(x)) = v(k1)}

=
P{v(a1(x)) = v(k1), . . . , v(an+1(x)) = v(kn+1)}

P{v(a1(x)) = v(k1), . . . , v(an(x)) = v(kn)}

=
(p− 1)n+1p−

∑n
j=1 v(kj)+v(kn+1)p−

∑n
j=1(v(rj(kj))−v(sj(kj)))

(p− 1)np−
∑n−1
j=1 v(kj)+v(kn)p−

∑n−1
j=1 (v(rj(kj))−v(sj(kj)))

= (p− 1)pv(kn+1)−2v(kn)−v(rn(kn))+v(sn(kn)).

On the other hand, write

An = {v(an(x)) = v(kn), v(an+1(x)) = v(kn+1)},
Bn = {v(an(x)) = v(kn)}.

Also by Lemma 3.3, we have

P{v(an+1(x)) = v(kn+1) | v(an(x)) = v(kn)}

=
P{v(an(x)) = v(kn), v(an+1(x)) = v(kn+1)}

P{v(an(x)) = v(kn)}

(11) =

∑
P({v(aj(x)) = v(lj), 1 ≤ j ≤ n− 1} ∩An)∑
P({v(aj(x)) = v(mj), 1 ≤ j ≤ n− 1} ∩Bn)

(12) =

∑
p−

∑n−1
j=1 v(lj)−v(kn)p−

∑n−1
j=1 (v(rj(lj))−v(sj(lj)))−(v(rn(kn))−v(sn(kn)))

(p− 1)−1
∑
p−

∑n−1
j=1 v(mj)+v(kn)−v(kn+1)p−

∑n−1
j=1 (v(rj(mj))−v(sj(mj)))

= (p− 1)pv(kn+1)−2v(kn)−v(rn(kn))+v(sn(kn)),

where the summations in the numerators of (11) and (12) are over all
l1, . . . , ln−1 ∈ Sp satisfying v(l1) ≤ −1, v(lj+1) ≤ 2v(lj) − 1 + v(rj(lj)) −
v(sj(lj)) for 1 ≤ j ≤ n − 2 and v(kn) ≤ 2v(ln−1) − 1 + v(rn−1(ln−1)) −
v(sn−1(ln−1)), and the summations in the denominators of (11) and (12)
are over all m1, . . . ,mn−1 ∈ Xp satisfying v(m1) ≤ −1, v(mj+1) ≤ 2v(mj)−
1 + v(rj(mj)) − v(sj(mj)) for 1 ≤ j ≤ n − 2 and v(kn) ≤ 2v(mn−1) − 1 +
v(rn−1(mn−1))− v(sn−1(mn−1)).

From (2), for any k, l ∈ Sp satisfying v(k) = v(l) ≤ −1, we have

v(rn(k)) = v(rn(l)), v(sn(k)) = v(sn(l)),
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for any n ≥ 1. From now on, for any j ≥ 1, we write v(rn(k)) = r(n, j) and
v(sn(k)) = s(n, j) if k ∈ Sp with v(k) = −j.

For any x ∈ Xp, let {4n(x) : n ≥ 0} be the sequence of random vari-
ables such that 40(x) = v(a1(x)) and 4n(x) = v(an+1(x)) − 2v(an(x)) −
v(rn(an(x))) + v(sn(an(x))) for n ≥ 1.

Now we prove our key result.

Proposition 3.5. {4n(x) : n ≥ 0} is a sequence of independent and
identical distributed random variables, and for any k ≥ 1,

P{x ∈ Sp : 4n(x) = −k} =
p− 1

pk
.

Proof. For any n ≥ 1 and k ≥ 1, by Proposition 3.4,

P{x ∈ Xp : 4n(x) = −k}

=
∞∑

j=1

P{4n(x) = −k | v(an(x)) = −j}P{v(an(x)) = −j}

=
∞∑

j=1

P{v(an+1(x))− 2v(an(x))− v(rn(an(x)))

+ v(sn(an(x))) = −k | v(an(x)) = −j}P{v(an(x)) = −j}

=
∞∑

j=1

P{v(an+1(x)) = −2j − k + r(n, j)− s(n, j) | v(an(x)) = −j}

×P{v(an(x)) = −j}

=
∞∑

j=1

P{v(an(x)) = −j} · p− 1

pk
=
p− 1

pk
.

Also it is easy to see that for any k ≥ 1,

P{x ∈ Xp : 40(x) = −k} =
p− 1

pk
.

Now we prove that the random variables 4n(x), n = 0, 1, . . . , are inde-
pendent. For any positive integers k1, . . . , kn+1,

P{x ∈ Xp : 40(x) =−k1, 41(x) = −k2, . . . ,4n(x) =−kn+1}
= P{x ∈ Xp : v(a1(x)) = p1, v(a2(x)) = p2, . . . , v(an+1(x)) = pn+1},

where p1, . . . , pn+1 are defined as follows: p1 = −k1, and for any 1 ≤ j ≤ n,

pj+1 = 2pj − kj+1 + r(j,−pj)− s(j,−pj).
By the definition of {pj : 1 ≤ j ≤ n+ 1}, we have

pn+1 =
n∑

j=1

pj −
n+1∑

j=1

kj +
n∑

j=1

(r(j,−pj)− s(j,−pj)).
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Thus by Lemma 3.3,

P{40(x) =−k1, 41(x) = −k2, . . . ,4n(x) = −kn+1}
= (p− 1)n+1p−

∑n
j=1 pj+pn+1p−

∑n
j=1(r(j,−pj)−s(j,−pj)) = (p− 1)n+1p−

∑n+1
j=1 kj

= P{40(x) = −k1}P{41(x) = −k2} . . .P{4n(x) = −kn+1}.

Lemma 3.6. For every n ≥ 0, the random variable 4n(x) has mean
value and variance

E(4n(x)) = − p

p− 1
, Var(4n(x)) =

p

(p− 1)2
.

Proof. By Proposition 3.5,

E(4n(x)) =
∞∑

k=1

−kP{4n(x) = k} =
∞∑

k=1

−k · p− 1

pk
= − p

p− 1
.

Similarly,

E(4n(x)2) =

∞∑

k=1

(−k)2P{4n(x) = −k} =

∞∑

k=1

k2 · p− 1

pk
=

p

p− 1
+

2p

(p− 1)2
,

thus

Var(4n(x)) = E(4n(x)2)− (E(4n(x)))2 =
p

(p− 1)2
.

Proof of Theorem 2.4. (i) By Proposition 3.5 and Lemma 3.6, {4n(x) :
n ≥ 0} is a sequence of independent and identical distributed random vari-
ables with mean value −p/(p− 1) and variance p/(p− 1)2. Hence by the
central limit theorem (see [1, p. 317, Corollary 2]), we have

lim
n→∞

P

{
x ∈ Xp :

∑n−1
j=0 4j(x) + p

p−1 n√
np/(p− 1)

< t

}
=

1√
2π

t�

−∞
e−u

2/2 du,

and thus part (i) of Theorem 2.4 follows.
(ii) By the strong law of large numbers (see [1, p. 125, Corollary 2]), we

have, for P-almost all x ∈ Xp,

lim
n→∞

1

n

n−1∑

j=0

4j(x) = − p

p− 1
,

and the proof of part (ii) of Theorem 2.4 is finished.
(iii) By the iterated logarithm law (see [1, p. 373, Theorem 2]), we have,

for P-almost all x ∈ Xp,

lim sup
n→∞

∑n−1
j=0 4j(x) + p

p−1 n√
2n log logn

=

√
p

p− 1
,
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lim inf
n→∞

∑n−1
j=0 4j(x) + p

p−1 n√
2n log logn

= −
√
p

p− 1
,

and we finish the proof of part (iii).

We now list some special cases and give applications of Theorem 2.4
to these special expansions. The metric properties of p-adic Lüroth series
expansions have been discussed in A. Knopfmacher and J. Knopfmacher [11],
and Grabner and A. Knopfmacher [5] have investigated the corresponding
results for p-adic Engel series expansions. It is easy to check that (1) holds
in all of the following cases.

Example 1. For any a ∈ p−1(Sp\{0}) and any n ≥ 1, let sn(a) =
a(a − 1), rn(a) = 1. Then the algorithm (3) leads the p-adic Lüroth series
expansion of x ∈ Xp,

x =
1

a1(x)
+
∞∑

n=2

1

a1(x)(a1(x)− 1) . . . an−1(x)(an−1(x)− 1)an(x)
.

In this case, 4n(x) = v(an+1(x)) for any n ≥ 0. By Theorem 2.4, we have

Corollary 3.7 ([11]). For p-adic Lüroth series expansions:

(i) lim
n→∞

P

{
x ∈ Xp :

∑n−1
j=0 v(aj(x)) + p

p−1 n√
np/(p− 1)

< t

}
=

1√
2π

t�

−∞
e−u

2/2 du.

(ii) For P-almost all x ∈ Xp,

lim
n→∞

1

n

n−1∑

j=0

v(aj(x)) = − p

p− 1
.

(iii) For P-almost all x ∈ Xp,

lim sup
n→∞

∑n−1
j=0 v(aj(x)) + p

p−1 n√
2n log logn

=

√
p

p− 1
,

lim inf
n→∞

∑n−1
j=0 v(aj(x)) + p

p−1 n√
2n log logn

= −
√
p

p− 1
.

Example 2. For any a ∈ p−1(Sp\{0}) and any n ≥ 1, let sn(a) = a and
rn(a) = 1. Using the algorithm (3), we get the p-adic Engel series expansion
of x ∈ Xp,

x =
∞∑

n=1

1

a1(x) . . . an(x)
.

Now 40(x) = v(a1(x)), and 4n(x) = v(an+1(x))− v(an(x)) for any n ≥ 1.
By Theorem 2.4, we have
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Corollary 3.8 ([5]). For p-adic Engel series expansions:

(i) lim
n→∞

P

{
x ∈ Xp :

v(an(x)) + p
p−1 n√

np/(p− 1)
< t

}
=

1√
2π

t�

−∞
e−u

2/2 du.

(ii) For P-almost all x ∈ Xp,

lim
n→∞

1

n
v(an(x)) = − p

p− 1
.

(iii) For P-almost all x ∈ Xp,

lim sup
n→∞

v(an(x)) + p
p−1 n√

2n log logn
=

√
p

p− 1
,

lim inf
n→∞

v(an(x)) + p
p−1 n√

2n log logn
= −

√
p

p− 1
.

Example 3. For any a ∈ p−1(Sp\{0}) and any n ≥ 1, let sn(a) = 1 and
rn(a) = 1 for all n ≥ 1. The algorithm (3) yields the p-adic Sylvester series
expansion of x ∈ Xp,

x =

∞∑

n=1

1

an(x)
.

Here 40(x) = v(a1(x)), and 4n(x) = v(an+1(x))− 2v(an(x)) for any n ≥ 1.
From Theorem 2.4, we have

Corollary 3.9. For p-adic Sylvester series expansions:

(i) lim
n→∞

P

{
x ∈ Xp :

v(an(x))−∑n−1
j=1 v(aj(x)) + p

p−1 n√
np/(p− 1)

< t

}

=
1√
2π

t�

−∞
e−u

2/2 du.

(ii) For P-almost all x ∈ Xp,

lim
n→∞

1

n

(
v(an(x))−

n−1∑

j=1

v(aj(x))
)

= − p

p− 1
.

(iii) For P-almost all x ∈ Xp,

lim sup
n→∞

v(an(x))−∑n−1
j=1 v(aj(x)) + p

p−1 n√
2n log logn

=

√
p

p− 1
,

lim inf
n→∞

v(an(x))−∑n−1
j=1 v(aj(x)) + p

p−1 n√
2n log logn

= −
√
p

p− 1
.

Example 4. Let sn(a) = a and rn(a) = a + 1 for any a ∈ p−1(Sp\{0})
and any n ≥ 1. By the algorithm (3), we get the p-adic Cantor infinite
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product of x ∈ Xp,

1 + x =

∞∏

n=1

(
1 +

1

an(x)

)
.

Here 40(x) = v(a1(x)), and 4n(x) = v(an+1(x))− 2v(an(x)) for any n ≥ 1.
From Theorem 2.4, we have

Corollary 3.10. For p-adic Cantor infinite products:

(i) lim
n→∞

P

{
x ∈ Xp :

v(an(x))−∑n−1
j=1 v(aj(x)) + p

p−1 n√
np/(p− 1)

< t

}

=
1√
2π

t�

−∞
e−u

2/2 du.

(ii) For P-almost all x ∈ Xp,

lim
n→∞

1

n

(
v(an(x))−

n−1∑

j=1

v(aj(x))
)

= − p

p− 1
.

(iii) For P-almost all x ∈ Xp,

lim sup
n→∞

v(an(x))−∑n−1
j=1 v(aj(x)) + p

p−1 n√
2n log logn

=

√
p

p− 1
,

lim inf
n→∞

v(an(x))−∑n−1
j=1 v(aj(x)) + p

p−1 n√
2n log logn

= −
√
p

p− 1
.

Example 5. The p-adic modified Engel series expansion of x ∈ Xp is
obtained from the algorithm (3) by taking sn(a) = a− 1 and rn(a) = 1 for
all n ≥ 1 and all a ∈ p−1(Sp\{0}),

x =
∞∑

n=1

1

(a1(x)− 1) . . . (an−1(x)− 1)an(x)
.

For this expansion, 40(x) = v(a1(x)), and 4n(x) = v(an+1(x)) − v(an(x))
for any n ≥ 1. By Theorem 2.4, we have

Corollary 3.11. For p-adic modified Engel series expansions:

(i) lim
n→∞

P

{
x ∈ Xp :

v(an(x)) + p
p−1 n√

np/(p− 1)
< t

}
=

1√
2π

t�

−∞
e−u

2/2 du.

(ii) For P-almost all x ∈ Xp,

lim
n→∞

1

n
v(an(x)) = − p

p− 1
.
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(iii) For P-almost all x ∈ Xp,

lim sup
n→∞

v(an(x)) + p
p−1 n√

2n log logn
=

√
p

p− 1
,

lim inf
n→∞

v(an(x)) + p
p−1 n√

2n log logn
= −

√
p

p− 1
.

4. Proof of Theorem 2.5. In this section, we use Proposition 3.5 and
the central idea in the proof of Theorem 5 in [11] to prove Theorem 2.5.

Proof of Theorem 2.5. By Proposition 3.5, the random variables
∣∣∣∣
ak+1(x)sk(ak(x))

ak(x)2rk(ak(x))

∣∣∣∣
p

= p−4k(x), k = 1, 2, . . . ,

are independent and identically distributed, and it is easy to check that
p−4k(x) has infinite expectation. For any k ≤ n, define

Uk(x) =

∣∣∣∣
ak+1(x)sk(ak(x))

ak(x)2rk(ak(x))

∣∣∣∣
p

, Vk(x) = 0

if

∣∣∣∣
ak+1(x)sk(ak(x))

ak(x)2rk(ak(x))

∣∣∣∣
p

≤ n logp n,

Vk(x) =

∣∣∣∣
ak+1(x)sk(ak(x))

ak(x)2rk(ak(x))

∣∣∣∣
p

, Uk(x) = 0

if

∣∣∣∣
ak+1(x)sk(ak(x))

ak(x)2rk(ak(x))

∣∣∣∣
p

> n logq n.

Then

P

{
x ∈ Xp :

∣∣∣∣
1

n logq n

n∑

j=1

∣∣∣∣
aj+1(x)sj(aj(x))

aj(x)2rj(aj(x))

∣∣∣∣
p

− (p− 1)

∣∣∣∣ > ε

}

≤ P{x ∈ Xp : |U1(x) + . . .+ Un(x)− (p− 1)n logp n| > εn logp n}
+ P{x ∈ Xp : V1(x) + . . .+ Vn(x) 6= 0}.

By Proposition 3.5,

P{x ∈ Xp : V1(x) + . . .+ Vn(x) 6= 0}

≤ nP

{
x ∈ Xp :

∣∣∣∣
a2(x)s1(a1(x))

a1(x)2r1(a1(x))

∣∣∣∣
p

> n logp n

}

= n
∑

k : pk>n logp n

(p− 1)p−k ≤ p

logp n
= o(1).
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Also by Proposition 3.5, we have

E(U1(x) + . . .+ Un(x)) = nE(U1(x)),

Var(U1(x) + . . .+ Un(x)) = nVar(U1(x)),

where

E(U1(x)) =
∑

pk≤n logq n

pkP(41(x) = −k)

=
∑

pk≤n logp n

p−k(p− 1)pk = (p− 1) logp([n logp n]),

Var(U1(x)) ≤ E(U1(x)2) =
∑

pk≤n logp n

(p− 1)pk < pn logp n.

Chebyshev’s inequality then yields

P{x ∈ Xp : |U1(x) + . . .+ Un(x)− nE(U1(x))| > εnE(U1(x))}

≤ nVar(U1(x))

(εnE(U1(x)))2
<

pn2 logp n

(ε(p− 1)n log([n logp n]))2
= o(1).

Since E(U1(x)) ∼ (p− 1) logp n as n→∞, Theorem 2.5 follows.
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