Metric properties for \(p \)-adic Oppenheim series expansions

by

JUN WU (Wuhan)

1. Introduction. Real numbers have several representations, such as continued fraction expansions, Lüroth series, Engel series, Sylvester series expansions and Cantor infinite products etc. (see [4] and [20]). Analogous to continued fraction expansions, certain types of \(p \)-adic continued fractions have been studied by many mathematicians; see for example, [15], [17], [13] and [14] etc. In [8]–[10], A. Knopfmacher and J. Knopfmacher introduced and studied some properties of various unique \(p \)-adic expansions as sums of reciprocals of \(p \)-adic numbers with \(p \)-adic valuations not less than 1. These expansions, including \(p \)-adic Lüroth series, Engel series, Sylvester series expansions and \(p \)-adic Cantor infinite products, were constructed to be analogous to the so-called Oppenheim series expansions of real numbers discussed in Galambos [4].

The main aim of this paper is to derive metric and asymptotic results for \(p \)-adic Oppenheim series expansions. We generalize the results obtained by A. Knopfmacher and J. Knopfmacher [11] and Grabner and A. Knopfmacher [5] for \(p \)-adic Lüroth and Engel series expansions. Also as special
cases of our results, we give metric results for \(p \)-adic Sylvester series expansions and \(p \)-adic Cantor infinite products. The corresponding results for Oppenheim series expansions of Laurent series have been obtained by Fan and the author [3].

2. The \(p \)-adic Oppenheim series expansions. In order to explain the conclusions, we first fix some notations and describe the \(p \)-adic Oppenheim series expansions to be considered.

Let us give a brief account of \(p \)-adic numbers; more details can be found in the books by Koblitz [12] and Schikhof [19].

Let \(p \) be a fixed prime number. Every non-zero rational number \(A \) can be expressed uniquely in the form \(A = p^a r/s \), where \((r, p) = (s, p) = 1 \) and \(a \in \mathbb{Z} \). The \(p \)-adic valuation \(| \cdot |_p \) on \(\mathbb{Q} \) is defined to be

\[
|A|_p = p^{-a} \quad \text{if } A \neq 0, \quad |0|_p = 0.
\]

The completion of \(\mathbb{Q} \) with respect to the \(p \)-adic metric \(| \cdot |_p \) gives rise to the field \(\mathbb{Q}_p \). Each element \(A \in \mathbb{Q}_p \) has a unique series representation

\[
A = \sum_{n=m}^{\infty} c_n p^n,
\]

where \(m \in \mathbb{Z} \) and the coefficients \(c_n \) are rational integers satisfying \(0 \leq c_n \leq p - 1 \) and \(c_m \neq 0 \). The integer \(m \) is called the order of \(A \) and denoted by \(v(A) \), and \(|A|_p = p^{-m} \). The valuation \(| \cdot |_p \) defined on \(\mathbb{Q}_p \) has the properties

\[
|A|_p \geq 0, \quad |A|_p = 0 \text{ if and only if } A = 0, \quad |AB|_p = |A|_p |B|_p, \quad |A + B|_p \leq \max(|A|_p, |B|_p) \quad \text{with equality when } |A|_p \neq |B|_p.
\]

For \(v(A) \), we have

\[
v(0) = \infty, \quad v(AB) = v(A) + v(B), \quad v(A/B) = v(A) - v(B) \quad \text{if } B \neq 0, \quad v(A + B) \geq \min(v(A), v(B)) \quad \text{with equality when } v(A) \neq v(B).
\]

It is well known that the above non-Archimedean valuation leads to an ultrametric distance function \(\rho \), with \(\rho(A, B) = |A - B|_p \), making \(\mathbb{Q}_p \) into a complete metric space with respect to \(\rho \).

Remark 2.1. Since the metric \(\rho \) is non-Archimedean, it follows that each point of a disc may be considered its center and thus if two discs intersect, then one contains the other.

For any \(A \in \mathbb{Q}_p \), if \(A = \sum_{n=v(A)}^{\infty} c_n p^n \), we call the finite series \(\langle A \rangle = \sum_{v(A) \leq n \leq 0} c_n p^n \) the fractional part of \(A \). Then \(\langle A \rangle \in S_p \), where we define \(S_p = \{ \langle A \rangle : A \in \mathbb{Q}_p \} \subset \mathbb{Q} \). The set \(S_p \) is multiplicatively but not additively closed. The function \(\langle A \rangle \) and set \(S_p \) have been used in the study of

For any $n \geq 1$, let r_n, s_n be maps from $p^{-1}(S_p \{0\})$ to $\mathbb{Q}\{0\}$ satisfying, for any $a \in p^{-1}(S_p \{0\})$,
\begin{align*}
(1) & \quad 2v(a) - v(s_n(a)) + v(r_n(a)) \leq 0 \quad \text{for any } n \geq 1, \\
(2) & \quad v(r_n(a)) = v(r_n(a')) \quad v(s_n(a)) = v(s_n(a')) \quad \text{if } v(a) = v(a').
\end{align*}

Given any $A \in \mathbb{Q}_p$, note that $\langle A \rangle = a_0 \in S_p$ if and only if $v(A - a_0) \geq 1$. Then define $A_1 = A - a_0$. As in [9], [10], if $A_n \neq 0$ with $v(A_n) \geq 1$ ($n \geq 1$) is already defined, then define the “digit” $a_n = \langle 1/A_n \rangle$ and put
\begin{align*}
A_{n+1} = \left(A_n - \frac{1}{a_n} \right) \frac{s_n(a_n)}{r_n(a_n)}.
\end{align*}

For any $m \geq 1$, if $A_m \neq 0$, by (1) and [10, (2.3)], we have $v(A_m) \geq 1$. If some $A_m = 0$, this recursive process stops. It was shown in [9], [10] that this algorithm leads to a finite or convergent series (relative to ϱ), called the p-adic Oppenheim series expansion.

Theorem 2.2 ([9], [10]). Every $x \in \mathbb{Q}_p$ has a finite or convergent (relative to ϱ) series expansion of the form
\begin{align*}
x = a_0(x) + \frac{1}{a_1(x)} + \sum_{n=1}^{\infty} \frac{r_1(a_1(x)) \ldots r_n(a_n(x))}{s_1(a_1(x)) \ldots s_n(a_n(x))} \frac{1}{a_{n+1}(x)},
\end{align*}
where $a_n(x) \in S_p$, $a_0(x) = \langle x \rangle$, and $v(a_1(x)) \leq 1$, for any $n \geq 1$,
\begin{align*}
v(a_{n+1}(x)) \leq 2v(a_n(x)) - 1 + v(r_n(a_n(x))) - v(s_n(a_n(x))).
\end{align*}
The expansion is unique for x subject to the above conditions on the “digits” $a_n(x)$.

Remark 2.3. The algorithm above is more restricted than the general algorithm described in [10] in order to obtain our metric results. (1) is used to guarantee that $v(a_n) \leq -1$ for any $n \geq 1$ if the process does not stop (see (5)).

Here are some special cases:

- **p-adic Lüroth series expansion:** $s_n(a) = a(a - 1)$, $r_n(a) = 1$;
- **p-adic Engel expansion:** $s_n(a) = a$, $r_n(a) = 1$;
- **p-adic Sylvester expansion:** $s_n(a) = 1$, $r_n(a) = 1$;
- **p-adic Cantor infinite product:** $s_n(a) = a$, $r_n(a) = a + 1$.

Let $X_p = p\mathbb{Z}_p$ denote the maximal ideal in the ring \mathbb{Z}_p of all p-adic integers, i.e. the set of p-adic numbers of order ≥ 0. Then X_p is compact. For any $A \in X_p$, $v(A) \geq 1$ and from Remark 2.3, $v(A_n) \geq 1$ for any $n \geq 1$ if the process does not stop. Let \mathbf{P} be the probability measure with respect to
Haar measure on \mathbb{Q}_p normalized by $\mathbf{P}(X_p) = 1$. A convenient description of \mathbf{P} on X_p is given in Sprindžuk [21, pp. 67–70]. In particular, $\mathbf{P}(C) = p^{-m}$ for any disc

$$C = C(x, p^{-m-1}) := \{y \in \mathbb{Q}_p : |y - x|_p \leq p^{-m-1}\}$$

of radius p^{-m-1}.

For any $x \in X_p$, let $\{\triangle_n(x) : n \geq 0\}$ denote the sequence of random variables such that $\triangle_0(x) = v(a_1(x))$, $\triangle_n(x) = v(a_{n+1}(x)) - 2v(a_n(x)) - v(r_n(a_n(x))) + v(s_n(a_n(x)))$ for $n \geq 1$.

Now we state our main results.

Theorem 2.4. For the p-adic Oppenheim series expansions described above:

(i) $\lim_{n \to \infty} \mathbf{P}\left\{x \in X_p : \frac{\sum_{j=0}^{n-1} \triangle_j(x) + \frac{p}{p-1} n}{\sqrt{n p/(p - 1)}} < t\right\} = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-u^2/2} du.$

(ii) For \mathbf{P}-almost all $x \in X_p$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \triangle_j(x) = -\frac{p}{p - 1}.$$

(iii) For \mathbf{P}-almost all $x \in X_p$,

$$\limsup_{n \to \infty} \frac{\sum_{j=0}^{n-1} \triangle_j(x) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = \frac{\sqrt{p}}{p - 1},$$

$$\liminf_{n \to \infty} \frac{\sum_{j=0}^{n-1} \triangle_j(x) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = -\frac{\sqrt{p}}{p - 1}.$$

Furthermore, we consider the random variables

$$\left| \frac{a_{n+1}(x)s_n(a_n(x))}{a_n(x)^2 r_n(a_n(x))} \right| = p^{-\triangle_n(x)}, \quad n = 1, 2, \ldots$$

In Proposition 3.5, we will show that these are independent and identically distributed with infinite expectation. However, we have the following result:

Theorem 2.5. For any fixed $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P}\left\{x \in X_p : \left| \frac{1}{n \log_p n} \sum_{j=1}^{n} \frac{a_{j+1}(x)s_j(a_j(x))}{a_j(x)^2 r_j(a_j(x))} \right|_p - (p-1) \right| > \varepsilon \right\} = 0,$$

i.e.

$$\frac{1}{n \log_p n} \sum_{j=1}^{n} \left| \frac{a_{j+1}(x)s_j(a_j(x))}{a_j(x)^2 r_j(a_j(x))} \right|_p \to p - 1 \quad \text{in probability.}$$

This paper is organized as follows. In Section 3, we give the proof of Theorem 2.4. Section 4 is devoted to the proof of Theorem 2.5.
3. Proof of Theorem 2.4. In order to prove Theorem 2.4, we need some preliminary results.

Lemma 3.1. For any \(k_1, \ldots, k_n \in S_p \) satisfying
\[
v(k_1) \leq -1, \quad v(k_{j+1}) \leq 2v(k_j) - 1 + v(r_j(k_j)) - v(s_j(k_j)), \quad 1 \leq j \leq n - 1,
\]
we have
\[
P\{x \in X_p : a_1(x) = k_1, \ldots, a_n(x) = k_n\} = p^{-\sum_{j=1}^{n-1}(v(r_j(k_j)) - v(s_j(k_j))) + 2v(k_n)}.
\]

Proof. From (5), we have
\[
v\left(\frac{r_1(k_1) \ldots r_n(k_n)}{s_1(k_1) \ldots s_n(k_n)} \frac{1}{a_{n+1}(x)} \right) \geq v\left(\frac{r_1(k_1) \ldots r_{n-1}(k_{n-1})}{s_1(k_1) \ldots s_{n-1}(k_{n-1})} \frac{1}{a_n(x)} \right) + 1.
\]
Thus by Theorem 2.2, \(\{x \in X_p : a_1(x) = k_1, \ldots, a_n(x) = k_n\} \) is a disc with center at
\[
\frac{1}{k_1} + \sum_{j=2}^{n} \frac{r_1(k_1) \ldots r_{j-1}(k_{j-1})}{s_1(k_1) \ldots s_{j-1}(k_{j-1})} \frac{1}{k_j}
\]
and diameter
\[
p^{-\sum_{j=1}^{n-1}(v(r_j(k_j)) - v(s_j(k_j))) + 2v(k_n) - 1}.
\]
Thus
\[
P\{x \in X_p : a_1(x) = k_1, \ldots, a_n(x) = k_n\} = p^{-\sum_{j=1}^{n-1}(v(r_j(k_j)) - v(s_j(k_j))) + 2v(k_n)}.
\]

Proposition 3.2. For any \(k_1, \ldots, k_{n+1} \in S_p \) satisfying
\[
v(k_1) \leq -1, \quad v(k_{j+1}) \leq 2v(k_j) - 1 + v(r_j(k_j)) - v(s_j(k_j)), \quad 1 \leq j \leq n,
\]
we have
\[
P\{a_{n+1}(x) = k_{n+1} \mid a_n(x) = k_n\}
\]
\[
= P\{a_{n+1}(x) = k_{n+1} \mid a_1(x) = k_1, \ldots, a_n(x) = k_n\}
\]
\[
= \left| \frac{r_n(k_n)}{s_n(k_n)} \right| \frac{|k_n|^2}{p |k_{n+1}|^2},
\]
i.e. \(\{a_n(x) : n \geq 1\} \) forms a Markov chain with transition probabilities,
\[
P\{a_{n+1}(x) = l_{n+1} \mid a_n(x) = l_n\} = \left| \frac{r_n(l_n)}{s_n(l_n)} \right| \frac{|l_n|^2}{p |l_{n+1}|^2}
\]
if \(v(l_{n+1}) \leq 2v(l_n) - 1 + v(r_n(l_n)) - v(s_n(l_n)) \), and 0 otherwise.

Proof. By Lemma 3.1,
\[
P\{a_{n+1}(x) = k_{n+1} \mid a_n(x) = k_n, \ldots, a_1(x) = k_1\}
\]
\[
= \frac{P\{a_1(x) = k_1, \ldots, a_n(x) = k_n, a_{n+1}(x) = k_{n+1}\}}{P\{a_1(x) = k_1, \ldots, a_{n-1}(x) = k_{n-1}, a_n(x) = k_n\}}
\]
\[
= \frac{p^{-\sum_{j=1}^{n}(v(r_j(k_j)) - v(s_j(k_j))) + 2v(k_{n+1})}}{p^{-\sum_{j=1}^{n-1}(v(r_j(k_j)) - v(s_j(k_j))) + 2v(k_n)}}
\]
\[
= \left| \frac{r_n(k_n)}{s_n(k_n)} \right| \frac{|k_n|^2}{p |k_{n+1}|^2}.
\]
On the other hand,
\[
\mathbf{P}\{a_{n+1}(x) = k_{n+1} | a_n(x) = k_n\} = \frac{\mathbf{P}\{a_n(x) = k_n, a_{n+1}(x) = k_{n+1}\}}{\mathbf{P}\{a_n(x) = k_n\}}
\]
\[
= \sum \mathbf{P}\{a_j(x) = l_j, 1 \leq j \leq n - 1, a_n(x) = k_n, a_{n+1}(x) = k_{n+1}\}
\sum \mathbf{P}\{a_j(x) = m_j, 1 \leq j \leq n - 1, a_n(x) = k_n\}
\]
\[
(6) = \sum \frac{p - \sum_{j=1}^{n-1} (v(r_j(l)) - v(s_j(l))) - (v(r_n(k_n)) - v(s_n(k_n))) + 2v(k_{n+1})}{p - \sum_{j=1}^{n-1} (v(r_j(l)) - v(s_j(l))) + 2v(k_n)}
\]
\[
= \frac{\left| r_n(k_n) \right|^2}{\left| s_n(k_n) \right| p \left| k_{n+1} \right|^2},
\]
where the summations in the numerators of (6) and (7) are over all \(l_1, \ldots, l_{n-1} \in S_p\) satisfying \(v(l_1) \leq -1, v(l_{j+1}) \leq 2v(l_j) - 1 + v(r_j(l_j)) - v(s_j(l_j))\) for \(1 \leq j \leq n - 2\) and \(v(k_n) \leq 2v(l_{n-1}) - 1 + v(r_n(l_{n-1})) - v(s_n(l_{n-1}))\), and the summations in the denominators of (6) and (7) are over all \(m_1, \ldots, m_{n-1} \in S_p\) satisfying \(v(m_1) \leq -1, v(m_{j+1}) \leq 2v(m_j) - 1 + v(r_j(m_j)) - v(s_j(m_j))\) for \(1 \leq j \leq n - 2\) and \(v(k_n) \leq 2v(m_{n-1}) - 1 + v(r_{n-1}(m_{n-1})) - v(s_{n-1}(m_{n-1}))\).

Next we show that \(\{v(a_n(x)) : n \geq 1\}\) forms a Markov chain.

Lemma 3.3. For any \(k_1, \ldots, k_n \in S_p\) as in Lemma 3.1, we have
\[
\mathbf{P}\{x \in X_p : v(a_1(x)) = v(k_1), \ldots, v(a_n(x)) = v(k_n)\} = (p-1)^n p^{-\sum_{j=1}^{n-1} v(k_j)+v(k_n)} p^{-\sum_{j=1}^{n-1} (v(r_j(k)) - v(s_j(k)))}.
\]

Proof. By Lemma 3.1 and (2),
\[
\mathbf{P}\{x \in X_p : v(a_1(x)) = v(k_1), \ldots, v(a_n(x)) = v(k_n)\}
\]
\[
= \sum \mathbf{P}\{a_1(x) = l_1, \ldots, a_n(x) = l_n\}
\]
\[
= \sum \frac{p - \sum_{j=1}^{n-1} (v(r_j(l)) - v(s_j(l))) + 2v(l_n)}{p - \sum_{j=1}^{n-1} (v(r_j(l)) - v(s_j(l))) + 2v(l_n)}
\]
\[
= \frac{\left| r_n(k_n) \right|^2}{\left| s_n(k_n) \right| p \left| k_n \right|^2},
\]
where the summations in (8), (9) and (10) are over all \(l_1, \ldots, l_n \in S_p\) such that \(v(l_j) = v(k_j), 1 \leq j \leq n\).
Proposition 3.4. For any $k_1, \ldots, k_{n+1} \in S_p$ as in Proposition 3.2, we have
\[
P\{v(a_{n+1}(x)) = v(k_{n+1}) \mid v(a_n(x)) = v(k_n)\} = \frac{P\{v(a_{n+1}(x)) = v(k_{n+1}) \mid v(a_1(x)) = v(k_1), \ldots, v(a_n(x)) = v(k_n)\}}{\big| P\{v(a_1(x)) = v(k_1), \ldots, v(a_n(x)) = v(k_n)\} \big|} = (p-1)p^{v(k_{n+1})-2v(k_n)-v(r_n(k_n))+v(s_n(k_n))}.
\]

Proof. By Lemma 3.3,
\[
P\{v(a_{n+1}(x)) = v(k_{n+1}) \mid v(a_n(x)) = v(k_n), v(a_{n+1}(x)) = v(k_{n+1})\} = \frac{P\{v(a_1(x)) = v(k_1), \ldots, v(a_{n+1}(x)) = v(k_{n+1})\}}{\big| P\{v(a_1(x)) = v(k_1), \ldots, v(a_n(x)) = v(k_n)\} \big|} = (p-1)^{n+1}p^{-\sum_{j=1}^{n} v(k_j)+v(k_{n+1})}p^{-\sum_{j=1}^{n} (v(r_j(k_j))-v(s_j(k_j)))}
\]
\[
= (p-1)p^{v(k_{n+1})-2v(k_n)-v(r_n(k_n))+v(s_n(k_n))}.
\]

On the other hand, write
\[
A_n = \{v(a_n(x)) = v(k_n), v(a_{n+1}(x)) = v(k_{n+1})\},
B_n = \{v(a_n(x)) = v(k_n)\}.
\]
Also by Lemma 3.3, we have
\[
P\{v(a_{n+1}(x)) = v(k_{n+1}) \mid v(a_n(x)) = v(k_n)\} = \frac{\sum P\{\{v(a_j(x)) = v(l_j), 1 \leq j \leq n-1\} \cap A_n\}}{\sum P\{\{v(a_j(x)) = v(m_j), 1 \leq j \leq n-1\} \cap B_n\}}
\]
\[
(11) = \frac{\sum p^{v(l_j)-v(k_n)}p^{v(s_j(l_j))}(v(r_j(l_j))-v(s_j(l_j)))+(v(r_j(k_n))-v(s_j(k_n)))}}{(p-1)^{-1}\sum p^{-\sum_{j=1}^{n-1} v(m_j)+v(k_n)-v(k_{n+1})}p^{-\sum_{j=1}^{n-1} (v(r_j(m_j))-v(s_j(m_j)))}}
\]
\[
(12) = (p-1)p^{v(k_{n+1})-2v(k_n)-v(r_n(k_n))+v(s_n(k_n))},
\]
where the summations in the numerators of (11) and (12) are over all $l_1, \ldots, l_{n-1} \in S_p$ satisfying $v(l_1) \leq -1$, $v(l_{j+1}) \leq 2v(l_j) - 1 + v(r_j(l_j))-v(s_j(l_j))$ for $1 \leq j \leq n-2$ and $v(k_n) \leq 2v(l_{n-1}) - 1 + v(r_{n-1}(l_{n-1}))-v(s_{n-1}(l_{n-1}))$, and the summations in the denominators of (11) and (12) are over all $m_1, \ldots, m_{n-1} \in X_p$ satisfying $v(m_1) \leq -1$, $v(m_{j+1}) \leq 2v(m_j) - 1 + v(r_j(m_j))-v(s_j(m_j))$ for $1 \leq j \leq n-2$ and $v(k_n) \leq 2v(m_{n-1}) - 1 + v(r_{n-1}(m_{n-1}))-v(s_{n-1}(m_{n-1})).$ ⬤

From (2), for any $k, l \in S_p$ satisfying $v(k) = v(l) \leq -1$, we have
\[
v(r_n(k)) = v(r_n(l)), \quad v(s_n(k)) = v(s_n(l)),
\]
for any \(n \geq 1 \). From now on, for any \(j \geq 1 \), we write \(v(r_n(k)) = r(n, j) \) and \(v(s_n(k)) = s(n, j) \) if \(k \in S_p \) with \(v(k) = -j \).

For any \(x \in X_p \), let \(\{ \triangle_n(x) : n \geq 0 \} \) be the sequence of random variables such that \(\triangle_0(x) = v(a_1(x)) \) and \(\triangle_n(x) = v(a_{n+1}(x)) - 2v(a_n(x)) - v(r_n(a_n(x))) + v(s_n(a_n(x))) \) for \(n \geq 1 \).

Now we prove our key result.

Proposition 3.5. \(\{ \triangle_n(x) : n \geq 0 \} \) is a sequence of independent and identically distributed random variables, and for any \(k \geq 1 \),

\[
\Pr\{ x \in S_p : \triangle_n(x) = -k \} = \frac{p-1}{p^k}.
\]

Proof. For any \(n \geq 1 \) and \(k \geq 1 \), by Proposition 3.4,

\[
\Pr\{ x \in X_p : \triangle_n(x) = -k \}
= \sum_{j=1}^{\infty} \Pr\{ \triangle_n(x) = -k \mid v(a_n(x)) = -j \} \Pr\{ v(a_n(x)) = -j \}
= \sum_{j=1}^{\infty} \Pr\{ v(a_{n+1}(x)) - 2v(a_n(x)) - v(r_n(a_n(x))) + v(s_n(a_n(x))) = -k \mid v(a_n(x)) = -j \} \Pr\{ v(a_n(x)) = -j \}
= \sum_{j=1}^{\infty} \Pr\{ v(a_{n+1}(x)) = -2j - k + r(n, j) - s(n, j) \mid v(a_n(x)) = -j \}
\times \Pr\{ v(a_n(x)) = -j \}
= \sum_{j=1}^{\infty} \Pr\{ v(a_n(x)) = -j \} \cdot \frac{p-1}{p^k} = \frac{p-1}{p^k}.
\]

Also it is easy to see that for any \(k \geq 1 \),

\[
\Pr\{ x \in X_p : \triangle_0(x) = -k \} = \frac{p-1}{p^k}.
\]

Now we prove that the random variables \(\triangle_n(x) \), \(n = 0, 1, \ldots \), are independent. For any positive integers \(k_1, \ldots, k_{n+1} \),

\[
\Pr\{ x \in X_p : \triangle_0(x) = -k_1, \triangle_1(x) = -k_2, \ldots, \triangle_n(x) = -k_{n+1} \}
= \Pr\{ x \in X_p : v(a_1(x)) = p_1, v(a_2(x)) = p_2, \ldots, v(a_{n+1}(x)) = p_{n+1} \},
\]

where \(p_1, \ldots, p_{n+1} \) are defined as follows: \(p_1 = -k_1 \), and for any \(1 \leq j \leq n \),

\[p_{j+1} = 2p_j - k_{j+1} + r(j, -p_j) - s(j, -p_j). \]

By the definition of \(\{ p_j : 1 \leq j \leq n + 1 \} \), we have

\[p_{n+1} = \sum_{j=1}^{n} p_j - \sum_{j=1}^{n+1} k_j + \sum_{j=1}^{n} (r(j, -p_j) - s(j, -p_j)). \]
Thus by Lemma 3.3,
\[P\{\triangle_0(x) = -k_1, \, \triangle_1(x) = -k_2, \ldots, \, \triangle_n(x) = -k_{n+1}\} = (p-1)^{n+1} p^{-\sum_{j=1}^n p_j + p_{n+1}} p^{-\sum_{j=1}^n (r(j, -p_j) - s(j, -p_j))} = (p-1)^{n+1} p^{-\sum_{j=1}^{n+1} k_j} = P\{\triangle_0(x) = -k_1\} P\{\triangle_1(x) = -k_2\} \ldots P\{\triangle_n(x) = -k_{n+1}\}. \]

Lemma 3.6. For every \(n \geq 0 \), the random variable \(\triangle_n(x) \) has mean value and variance
\[
\mathbb{E}(\triangle_n(x)) = -\frac{p}{p-1}, \quad \text{Var}(\triangle_n(x)) = \frac{p}{(p-1)^2}.
\]

Proof. By Proposition 3.5,
\[
\mathbb{E}(\triangle_n(x)) = \sum_{k=1}^\infty -k P\{\triangle_n(x) = k\} = \sum_{k=1}^\infty -k \cdot \frac{p-1}{p^k} = -\frac{p}{p-1}.
\]
Similarly,
\[
\mathbb{E}(\triangle_n(x)^2) = \sum_{k=1}^\infty (-k)^2 P\{\triangle_n(x) = -k\} = \sum_{k=1}^\infty k^2 \cdot \frac{p-1}{p^k} = \frac{p}{p-1} + \frac{2p}{(p-1)^2},
\]
thus
\[
\text{Var}(\triangle_n(x)) = \mathbb{E}(\triangle_n(x)^2) - (\mathbb{E}(\triangle_n(x)))^2 = \frac{p}{(p-1)^2}.
\]

Proof of Theorem 2.4. (i) By Proposition 3.5 and Lemma 3.6, \(\{\triangle_n(x) : n \geq 0\} \) is a sequence of independent and identical distributed random variables with mean value \(-p/(p-1)\) and variance \(p/(p-1)^2\). Hence by the central limit theorem (see [1, p. 317, Corollary 2]), we have
\[
\lim_{n \to \infty} P\left\{ x \in X_p : \frac{\sum_{j=0}^{n-1} \triangle_j(x) + \frac{p-1}{p} n}{\sqrt{np/(p-1)}} < t \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-u^2/2} du,
\]
and thus part (i) of Theorem 2.4 follows.

(ii) By the strong law of large numbers (see [1, p. 125, Corollary 2]), we have, for \(P \)-almost all \(x \in X_p \),
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \triangle_j(x) = -\frac{p}{p-1},
\]
and the proof of part (ii) of Theorem 2.4 is finished.

(iii) By the iterated logarithm law (see [1, p. 373, Theorem 2]), we have, for \(P \)-almost all \(x \in X_p \),
\[
\limsup_{n \to \infty} \frac{\sum_{j=0}^{n-1} \triangle_j(x) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = \frac{\sqrt{p}}{p-1},
\]
\[
\lim \inf_{n \to \infty} \frac{\sum_{j=0}^{n-1} \triangle_j(x) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = -\frac{\sqrt{p}}{p-1},
\]
and we finish the proof of part (iii). □

We now list some special cases and give applications of Theorem 2.4 to these special expansions. The metric properties of \(p\)-adic Lüroth series expansions have been discussed in A. Knopfmacher and J. Knopfmacher [11], and Grabner and A. Knopfmacher [5] have investigated the corresponding results for \(p\)-adic Engel series expansions. It is easy to check that (1) holds in all of the following cases.

Example 1. For any \(a \in p^{-1}(S_p \setminus \{0\})\) and any \(n \geq 1\), let \(s_n(a) = a(a-1)\), \(r_n(a) = 1\). Then the algorithm (3) leads the \(p\)-adic Lüroth series expansion of \(x \in X_p\),

\[
x = \frac{1}{a_1(x)} + \sum_{n=2}^{\infty} \frac{1}{a_1(x)(a_1(x)-1)\ldots a_{n-1}(x)(a_{n-1}(x)-1)a_n(x)}.
\]

In this case, \(\triangle_n(x) = v(a_{n+1}(x))\) for any \(n \geq 0\). By Theorem 2.4, we have

Corollary 3.7 ([11]). For \(p\)-adic Lüroth series expansions:

(i) \(\lim_{n \to \infty} \mathbb{P}\left\{ x \in X_p : \frac{\sum_{j=0}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{n p/(p-1)}} < t \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} du.\)

(ii) For \(\mathbb{P}\)-almost all \(x \in X_p\),

\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} v(a_j(x)) = -\frac{p}{p-1}.\]

(iii) For \(\mathbb{P}\)-almost all \(x \in X_p\),

\[
\lim \sup_{n \to \infty} \frac{\sum_{j=0}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = \frac{\sqrt{p}}{p-1},
\]

\[
\lim \inf_{n \to \infty} \frac{\sum_{j=0}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = -\frac{\sqrt{p}}{p-1}.
\]

Example 2. For any \(a \in p^{-1}(S_p \setminus \{0\})\) and any \(n \geq 1\), let \(s_n(a) = a\) and \(r_n(a) = 1\). Using the algorithm (3), we get the \(p\)-adic Engel series expansion of \(x \in X_p\),

\[
x = \sum_{n=1}^{\infty} \frac{1}{a_1(x)\ldots a_n(x)}.
\]

Now \(\triangle_0(x) = v(a_1(x))\), and \(\triangle_n(x) = v(a_{n+1}(x)) - v(a_n(x))\) for any \(n \geq 1\). By Theorem 2.4, we have
Corollary 3.8 ([5]). For p-adic Engel series expansions:

(i) $\lim_{n \to \infty} P\left\{ x \in X_p : \frac{v(a_n(x)) + \frac{p}{p-1} n}{\sqrt{np}/(p-1)} < t \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} du.

(ii) For P-almost all $x \in X_p$, $\lim_{n \to \infty} \frac{1}{n} v(a_n(x)) = -\frac{p}{p-1}$.

(iii) For P-almost all $x \in X_p$,

$$\limsup_{n \to \infty} \frac{v(a_n(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = \frac{\sqrt{p}}{p-1},$$

$$\liminf_{n \to \infty} \frac{v(a_n(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = -\frac{\sqrt{p}}{p-1}.$$

Example 3. For any $a \in p^{-1}(S_p \setminus \{0\})$ and any $n \geq 1$, let $s_n(a) = 1$ and $r_n(a) = 1$ for all $n \geq 1$. The algorithm (3) yields the p-adic Sylvester series expansion of $x \in X_p$,

$$x = \sum_{n=1}^{\infty} \frac{1}{a_n(x)}.$$

Here $\Delta_0(x) = v(a_1(x))$, and $\Delta_n(x) = v(a_{n+1}(x)) - 2v(a_n(x))$ for any $n \geq 1$. From Theorem 2.4, we have

Corollary 3.9. For p-adic Sylvester series expansions:

(i) $\lim_{n \to \infty} P\left\{ x \in X_p : \frac{v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{np}/(p-1)} < t \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} du.$

(ii) For P-almost all $x \in X_p$, $\lim_{n \to \infty} \frac{1}{n} \left(v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) \right) = -\frac{p}{p-1}$.

(iii) For P-almost all $x \in X_p$,

$$\limsup_{n \to \infty} \frac{v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = \frac{\sqrt{p}}{p-1},$$

$$\liminf_{n \to \infty} \frac{v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = -\frac{\sqrt{p}}{p-1}.$$

Example 4. Let $s_n(a) = a$ and $r_n(a) = a + 1$ for any $a \in p^{-1}(S_p \setminus \{0\})$ and any $n \geq 1$. By the algorithm (3), we get the p-adic Cantor infinite
product of \(x \in X_p \),
\[
1 + x = \prod_{n=1}^{\infty} \left(1 + \frac{1}{a_n(x)} \right).
\]
Here \(\triangle_0(x) = v(a_1(x)) \), and \(\triangle_n(x) = v(a_{n+1}(x)) - 2v(a_n(x)) \) for any \(n \geq 1 \).

From Theorem 2.4, we have

Corollary 3.10. For \(p \)-adic Cantor infinite products:

(i) \[
\lim_{n \to \infty} P \left\{ x \in X_p : \frac{v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{n^p/(p-1)}} < t \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} \, du.
\]

(ii) For \(P \)-almost all \(x \in X_p \),
\[
\lim_{n \to \infty} \frac{1}{n} \left(v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) \right) = -\frac{p}{p-1}.
\]

(iii) For \(P \)-almost all \(x \in X_p \),
\[
\limsup_{n \to \infty} \frac{v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = \frac{\sqrt{p}}{p-1},
\]
\[
\liminf_{n \to \infty} \frac{v(a_n(x)) - \sum_{j=1}^{n-1} v(a_j(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = -\frac{\sqrt{p}}{p-1}.
\]

Example 5. The \(p \)-adic modified Engel series expansion of \(x \in X_p \) is obtained from the algorithm (3) by taking \(s_n(a) = a - 1 \) and \(r_n(a) = 1 \) for all \(n \geq 1 \) and all \(a \in p^{-1}(S_p \setminus \{0\}) \),
\[
x = \sum_{n=1}^{\infty} \frac{1}{(a_1(x) - 1) \cdots (a_{n-1}(x) - 1) a_n(x)}.
\]
For this expansion, \(\triangle_0(x) = v(a_1(x)) \), and \(\triangle_n(x) = v(a_{n+1}(x)) - v(a_n(x)) \) for any \(n \geq 1 \). By Theorem 2.4, we have

Corollary 3.11. For \(p \)-adic modified Engel series expansions:

(i) \[
\lim_{n \to \infty} P \left\{ x \in X_p : \frac{v(a_n(x)) + \frac{p}{p-1} n}{\sqrt{n^p/(p-1)}} < t \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} \, du.
\]

(ii) For \(P \)-almost all \(x \in X_p \),
\[
\lim_{n \to \infty} \frac{1}{n} v(a_n(x)) = -\frac{p}{p-1}.
\]
(iii) For \mathbb{P}-almost all $x \in X_p$,
\[
\limsup_{n \to \infty} \frac{v(a_n(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = \frac{\sqrt{p}}{p-1},
\]
\[
\liminf_{n \to \infty} \frac{v(a_n(x)) + \frac{p}{p-1} n}{\sqrt{2n \log \log n}} = -\frac{\sqrt{p}}{p-1}.
\]

4. Proof of Theorem 2.5. In this section, we use Proposition 3.5 and the central idea in the proof of Theorem 5 in [11] to prove Theorem 2.5.

Proof of Theorem 2.5. By Proposition 3.5, the random variables
\[
\left| \frac{a_{k+1}(x) s_k(a_k(x))}{a_k(x)^2 r_k(a_k(x))} \right|_p = p^{-\Delta_k(x)}, \quad k = 1, 2, \ldots,
\]
are independent and identically distributed, and it is easy to check that $p^{-\Delta_k(x)}$ has infinite expectation. For any $k \leq n$, define
\[
U_k(x) = \left| \frac{a_{k+1}(x) s_k(a_k(x))}{a_k(x)^2 r_k(a_k(x))} \right|_p, \quad V_k(x) = 0
\]
if
\[
\left| \frac{a_{k+1}(x) s_k(a_k(x))}{a_k(x)^2 r_k(a_k(x))} \right|_p \leq n \log_p n,
\]
and
\[
V_k(x) = \left| \frac{a_{k+1}(x) s_k(a_k(x))}{a_k(x)^2 r_k(a_k(x))} \right|_p, \quad U_k(x) = 0
\]
if
\[
\left| \frac{a_{k+1}(x) s_k(a_k(x))}{a_k(x)^2 r_k(a_k(x))} \right|_p > n \log_q n.
\]

Then
\[
\mathbb{P}\left\{ x \in X_p : \left| \frac{1}{n \log_q n} \sum_{j=1}^{n} \left| \frac{a_{j+1}(x) s_j(a_j(x))}{a_j(x)^2 r_j(a_j(x))} \right|_p - (p-1) \right| > \varepsilon \right\}
\]
\[
\leq \mathbb{P}\{ x \in X_p : |U_1(x) + \ldots + U_n(x) - (p-1)n \log_p n| > \varepsilon n \log_p n \}
+ \mathbb{P}\{ x \in X_p : V_1(x) + \ldots + V_n(x) \neq 0 \}.
\]

By Proposition 3.5,
\[
\mathbb{P}\{ x \in X_p : V_1(x) + \ldots + V_n(x) \neq 0 \}
\]
\[
\leq n \mathbb{P}\left\{ x \in X_p : \left| \frac{a_2(x) s_1(a_1(x))}{a_1(x)^2 r_1(a_1(x))} \right|_p > n \log_p n \right\}
\]
\[
= n \sum_{k : p^k > n \log_p n} (p-1)p^{-k} \leq \frac{p}{ \log_p n} = o(1).
\]
Also by Proposition 3.5, we have
\[
E(U_1(x) + \ldots + U_n(x)) = nE(U_1(x)),
\]
\[
\text{Var}(U_1(x) + \ldots + U_n(x)) = n\text{Var}(U_1(x)),
\]
where
\[
E(U_1(x)) = \sum_{p^k \leq n \log_p n} p^k P(\Delta_1(x) = -k)
= \sum_{p^k \leq n \log_p p} p^{-k}(p-1)p^k = (p-1)\log_p([n \log_p n]),
\]
\[
\text{Var}(U_1(x)) \leq E(U_1(x))^2 = \sum_{p^k \leq n \log_p p} (p-1)p^k < pn \log_p n.
\]
Chebyshev’s inequality then yields
\[
P\{x \in X_p : |U_1(x) + \ldots + U_n(x) - nE(U_1(x))| > \varepsilon nE(U_1(x))\} \leq \frac{n\text{Var}(U_1(x))}{(\varepsilon nE(U_1(x)))^2} \leq \frac{pn^2 \log_p n}{(\varepsilon(p-1)n \log([n \log_p n]))^2} = o(1).
\]
Since \(E(U_1(x)) \sim (p-1)\log_p n\) as \(n \to \infty\), Theorem 2.5 follows.

Acknowledgements. The author thanks the referee for his (her) valuable suggestions. This work was done during the author’s visits to the LAMFA, CNRS 2270, Amiens. He would like to thank this institution for the warm hospitality.

References

Department of Mathematics
Wuhan University
Wuhan, Hubei, 430072, P.R. China
E-mail: wujunyu@public.wh.hb.cn

Received on 3.6.2002
and in revised form on 20.8.2003 (4301)