On fluctuations in the mean of a sum-of-divisors function

by

Y.-F. S. Pétermann (Genève)

Let P be a prime number. In [2] the authors establish the two-sided Ω-estimate

$$R_P(x) = \Omega_{\pm}(x \log \log x)$$

for the error term

$$R_P(x) := \sum_{n \leq x} \sigma_{(P)}(n) - \left(1 - \frac{1}{P}\right) \frac{\pi^2}{12} x^2$$

related to the “sum-of-P-prime-divisors” function

$$\sigma_{(P)}(d) := \sum_{d | n, P \nmid d} d.$$

The object of this note is to establish the more precise estimate

$$\limsup_{x \to \infty} \frac{(-1)^i R_P(x)}{x \log \log x} \geq \frac{P - 1}{2(P + 1)} e^{\gamma} \quad (i = 0, 1),$$

as an application of my general result in [4].

Lemmata 2, 6 and 7 of [2] state respectively that

$$\sum_{n \leq x} \frac{\alpha_P(n)}{n} = \log P + O(1/x),$$

where

$$\alpha_P(n) := \begin{cases} 1 & \text{if } P \nmid n, \\ -(P - 1) & \text{otherwise,} \end{cases}$$

$$R_P(x)/x - R'_P(x) = O(1),$$

2000 Mathematics Subject Classification: Primary 11N37; Secondary 11N64.
where
\[R'_P(x) := \sum_{n \leq x} \frac{\sigma_P(n)}{n} - \left(1 - \frac{1}{P}\right) \frac{\pi^2}{6} x, \]
and
\[(5) \quad R'_P(x) = - \sum_{d \leq y} \frac{\alpha_P(d)}{d} \left\{ \frac{x}{d} \right\} + O(1), \quad \text{uniformly for } x \geq 2, \ y \geq \sqrt{x}. \]
The inequalities (2) will follow from (4) and
\[(6) \quad \limsup_{x \to \infty} \frac{(-1)^i R'_P(x)}{\log \log x} \geq \frac{P - 1}{2(P + 1)} e^\gamma \quad (i = 0, 1). \]
If we put \(y = y(x) = x^{3/4} \) in (5), we see by (3) that Theorem 1 of [4] applies. This yields, also using Lemma 6 of [4] (and with the notation of [2]),
\[(7) \quad \frac{1}{N} \sum_{n=1}^{N} R'_P(nq + \beta) = \sum_{k \leq y(qN+\beta) =: u} \frac{-\alpha_P(k)(q,k)}{k^2} \psi\left(\frac{\beta}{(q,k)}\right) + O(1), \]
provided \(u = o(N) \), where \(\psi(t) := \{ t \} - 1/2 \). Now we put
\[q := \frac{m!}{P^{r'}} = N^{1/4}, \quad \text{where } \ P^r \parallel m!. \]
With the choice \(\beta = 0 \) we have \(u = N^{15/16} \). Noting that \(\psi(0) = -1/2 \), we write \(k = nm \) with \(n \parallel q \) and \((m, q/n) = 1 \) and equation (7) becomes
\[(8) \quad \frac{1}{N} \sum_{n=1}^{N} R'_P(nq) = \frac{1}{2} \sum_{n \parallel q} \frac{1}{n} \left(\sum_{m \leq u/n \text{ and } P|m} \frac{1}{m^2} - \sum_{m \leq u/n \text{ and } P|m} \frac{P - 1}{m^2} \right) + O(1). \]
If we let \(N \to \infty \), the expression in the large parentheses is
\[(9) \quad \sum_{m \leq u/n \atop p|m} \frac{1}{m^2} - \frac{1 + (P - 1)}{P^2} \sum_{m' \leq u/(Pn) \atop p|m' \Rightarrow p|q/n} \frac{1}{m'^2} \]
\[= \left(1 - \frac{1}{P}\right) \sum_{m \geq 1 \atop p|m} \frac{1}{m^2} + o(1) \]
\[\geq \left(1 - \frac{1}{P}\right) \sum_{i \geq 0} \frac{1}{P^{2i}} + o(1) = \frac{P}{P+1} + o(1), \]
and since \(\log m \sim \log \log N \) and \(P \nmid q \), we have

\[
\sum_{n \mid q} \frac{1}{n} = \prod_{p \leq m, p \nmid q} \left(1 + \frac{1}{p} + \ldots + \frac{1}{p^{\beta_p}} \right)
\]

\[
\sim \prod_{p \leq m, p \neq P} \left(1 - \frac{1}{p} \right)^{-1} \sim \left(1 - \frac{1}{P} \right) e^\gamma \log \log N.
\]

By using (9) and (10) in (8) we obtain (6) for \(i = 0 \). The choice \(\beta = q - 1 \) similarly yields (6) for \(i = 1 \).

Remark. In [1] the first two authors of [2] prove (1) for \(P = 2 \), by closely following the long argument in my older paper [3] (which establishes the equivalent of (1) for the error term related to \(\sigma(n) \)). They state an implied constant of \(e^\gamma/4 \) for both the \(\Omega_+ \)- and \(\Omega_- \)-estimates. But this claim is not substantiated as it depends on an erroneous estimate, in the first displayed formula on page 13 of [1]. Their equality \(\sigma(A)/A = e^\gamma \log y(1 + o(1)) \) is not correct, since \(A \) (which is our \(q \), \(y \) being our \(m \)) is not divisible by 2. In fact \(\sigma(A)/A = \frac{1}{2} e^\gamma \log y(1 + o(1)) \), and the implied constant obtained once this is amended is only \(e^\gamma/8 \). From (2) with \(P = 2 \) we have the implied constant \(e^\gamma/6 \), which can also be derived from [1] by noticing that the number \(C(A) \) there (which roughly corresponds here to the last sum in (9)) is not only \(\geq 1 \), but \(\geq 4/3 \), when \(A \) is not divisible by 2.

References

Section de Mathématiques
Université de Genève
Case Postale 240
1211 Genève 24, Suisse
E-mail: Petermann@math.unige.ch

Received on 28.11.2002
and in revised form on 30.12.2003 (4406)