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1. Introduction. In 1844, Liouville established that the real number∑
k≥1 10−k! is transcendental. With a similar method, it is nowadays an easy

exercise to extend his result as follows (see [8, p. 2]).

Theorem L. Let α be an algebraic number with 0 < |α| < 1. Then the
complex number

∑
k≥1 α

k! is transcendental.

In other words, the analytic function f : z 7→
∑

k≥1 z
k! takes transcen-

dental values at every non-zero algebraic point in its open disc of conver-
gence.

A similar result was obtained by Mahler [6] for a much wider class of
functions f , including some classical series such as F(z) =

∑
k≥0 z

2k
or the

Thue–Morse function T (z) =
∑

k≥0 tkz
k, where tk = 1 (resp. tk = −1) if the

sum of digits of the binary expansion of k is even (resp. odd). His method was
subsequently refined and generalized by several authors including Kubota,
Loxton, van der Poorten, Masser and Nishioka, and the reader is referred to
Nishioka’s lecture notes [8] for references. Since it always relies on certain
functional equations satisfied by the relevant series (for instance, we have
F(z2) = F(z) − z and T (z) = (1 − z)T (z2)), Mahler’s method does not
allow much flexibility.

The heart of the proof of Theorem L and of Mahler’s results is a lower
estimate for the distance between two distinct algebraic numbers. Thanks
to works by Thue, Siegel, Roth and Schmidt, the seminal result of Liouville
has been considerably improved. Thus, it is not surprising that the use of
the Schmidt subspace theorem in the present context yields a considerable
improvement of Theorem L. This was recently worked out for lacunary func-
tions by Corvaja and Zannier [5], who developed a new approach. We quote

2000 Mathematics Subject Classification: 11J81, 11J61.
Key words and phrases: transcendence, Schmidt subspace theorem.

[1] c© Instytut Matematyczny PAN, 2008



2 B. Adamczewski et al.

below a particular case of Corollary 5 from [5], which is proved by means of
a non-trivial application of the Schmidt subspace theorem.

Theorem CZ. Let (mk)k≥1 be an increasing sequence of positive integers
such that lim infkmk+1/mk > 1. Then the function f : z 7→

∑
k≥1 z

mk takes
transcendental values at every algebraic point in the open unit disc.

It is likely that Theorem CZ cannot be proved using Mahler’s method
or its refinements. Furthermore, the method of [5] offers much more flex-
ibility than Mahler’s. Unfortunately, it does not seem to apply easily to
non-lacunary functions such as the Thue–Morse function T .

In two earlier works [3, 1], we established new transcendence criteria for
analytic functions with special combinatorial properties evaluated at the
inverse of positive rational integers, Pisot and Salem numbers. These results
apply to a broad class of functions including T and the lacunary series
occurring in Theorem CZ (see Section 2 for more details). As in [5], their
proofs rest on the Schmidt subspace theorem. It is the aim of the present
paper to investigate how our method can be applied to every algebraic point
in the open disc of convergence of these analytic functions. Our main result
is a general transcendence criterion that extends those of [3] and [1].

2. Stammering functions. In this section, we introduce the notion of
stammering function.

Let A be a countable set. The length of a word W on the alphabet A,
that is, the number of letters composing W , is denoted by |W |. For every
positive integer l, we write W l for the word W . . .W (the concatenation
of the word W repeated l times). More generally, for every positive real
number x, we denote by W x the word W bxcW ′, where W ′ is the prefix of W
of length d(x−bxc)|W |e. Here, and in all what follows, byc and dye denote,
respectively, the floor and the ceiling of the real number y. Let a = (ak)k≥0

be a sequence of elements from A. We say that a is a stammering sequence
if a is not eventually periodic and if there exist real numbers w′ ≥ 0 and
w > 1, and two sequences of finite words (Un)n≥1, (Vn)n≥1 such that:

(i) for any n ≥ 1, the word UnV
w
n is a prefix of the word a;

(ii) the sequence (|Un|/|Vn|)n≥1 is bounded from above by w′;
(iii) the sequence (|Vn|)n≥1 is strictly increasing.
Several classical sequences studied in symbolic dynamics, number theory

and combinatorics on words turn out to be stammering, as pointed out in [1].
We quote below some famous examples of stammering sequences:

• sequences generated by finite automata (e.g. the Thue–Morse, the
Rudin–Shapiro, the Baum–Sweet, and the regular paperfolding se-
quences);
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• most of the morphic sequences (a morphic sequence is a letter-to-
letter projection of a fixed point of an endomorphism from a finitely
generated free monoid; for instance, the Fibonacci word is the fixed
point of the binary morphism σ defined by σ(0) = 01 and σ(1) = 0);
• Sturmian (or Beatty) sequences (i.e., sequences (ak)k≥0 such that there

exist an irrational real number θ and a real number % both in [0, 1]
such that either ak = b(k+ 1)θ+ %c − bkθ+ %c for every non-negative
integer k, or ak = d(k + 1)θ + %e − dkθ + %e for every non-negative
integer k);
• sequences with sublinear block-complexity (these include natural cod-

ings of interval exchange transformations, billiard sequences, Arnoux–
Rauzy sequences, . . . );
• characteristic sequences of lacunary sets of integers (i.e., sequences

(ak)k≥0 such that ak = 1 if k belongs to m = (ml)l≥1 and ak = 0 other-
wise, where m is an increasing sequence such that lim supl→∞ml+1/ml

> 1).

We refer the reader to [1] and [4] for more details on these sequences.
Throughout the present paper, we denote by h (resp. H) the logarithmic

(resp. multiplicative) absolute height. Their definitions and main properties
are given in Section 4. Furthermore, we use the symbols o, O and � with
their usual meanings.

We say that a sequence of algebraic numbers (ak)k≥0 satisfies the growth
condition (G) if either

(2.1) h(a0, . . . , an) = o(n) as n→∞,
or

(2.2) h(ak)� 1.

Obviously, by (2.2), every bounded sequence of rational integers satisfies the
growth condition (G).

With a stammering sequence a = (ak)k≥0 of algebraic numbers in a
number field L that satisfies the growth condition (G), we associate the
analytic function fa defined on the open unit disc by

(2.3) fa(z) =
+∞∑
k=0

akz
k.

Such a function is called a stammering function. This notation will be kept
throughout the entire paper. We note that all the series mentioned in Sec-
tion 1 are stammering ones.

3. Results. We are interested in values of stammering functions at al-
gebraic points. In view of the results mentioned previously, it is likely that



4 B. Adamczewski et al.

such functions essentially take transcendental values at algebraic points.
More precisely, we can expect the following picture: given a stammering
function fa as in (2.3), then fa(α) is transcendental for all but finitely many
algebraic numbers α lying in the open disc of convergence of fa, and the
algebraic values of fa belong to the number field L(α).

A first result towards this problem was proved in [3].

Theorem ABL. Let b ≥ 2 be a rational integer. If a = (ak)k≥0 is a
stammering sequence on the set {0, 1, . . . , b− 1}, then the stammering func-
tion fa takes transcendental values at the inverse of every positive rational
integer.

As worked out in [1], this transcendence criterion is powerful enough to
confirm the Cobham–Loxton–van der Poorten conjecture claiming that the
b-adic expansion of an algebraic irrational real number cannot be generated
by a finite automaton. The above is a result that seems to fall outside
Mahler’s method.

Subsequently, Theorem ABL was extended in [1] in the following way.
Recall that a Pisot (resp. Salem) number is a real algebraic integer > 1
whose complex conjugates lie inside the open unit disc (resp. inside the
closed unit disc, with at least one of them on the unit circle).

Theorem AB. Let a = (ak)k≥0 be a stammering , bounded sequence of
rational integers. If β is a Pisot or a Salem number , then fa(1/β) is either
transcendental , or belongs to the number field Q(β).

Note that we cannot avoid the possibility that fa(1/β) belongs to Q(β).
Indeed, let β = (

√
5+1)/2 be the golden ratio. Then, starting with a periodic

sequence a = (ak)k≥1, we can use the fact that 1 = 1/β + 1/β2 to construct
(using only local perturbation of the sequence a) a stammering sequence
a′ = (a′k)k≥0 such that

Q(β) 3
+∞∑
k=0

ak
βk

=
+∞∑
k=0

a′k
βk
.

The proof of Theorem AB rests on a p-adic version due to Schlickewei [9]
of the Schmidt subspace theorem. The crucial point to apply the subspace
theorem is that the linear form fa(α)X − fa(α)Y −Z takes small values at
many algebraic points when α := 1/β is the inverse of a Pisot or a Salem
number. Unfortunately, when α is an arbitrary complex algebraic number
lying in the open unit disc, the values taken by this linear form are no
longer small enough with respect to the height of the relevant algebraic
points. Notice also that a similar difficulty explains the condition imposed
on the constant L in Theorem 3 of Corvaja and Zannier [5].
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If | · |j is an Archimedean absolute value given by the embedding σj such
that |α|j < 1, then we can consider the complex number fa,j(α) defined by

fa,j(α) := lim
N→+∞

N∑
k=0

akσj(αk).

Again, if p is a finite place such that |α|p < 1, then we can consider in the
p-adic completion of the field Q(β) the number fa,p(α) defined by

fa,p(α) := lim
N→+∞

N∑
k=0

akα
k.

The main novelty of the present paper is to remark that all the linear forms
fa,j(α)X−fa,j(α)Y −Z and fa,p(α)X−fa,p(α)Y −Z also take small values
at many algebraic points constructed in the same way as in the proof of
Theorem AB. Actually, when evaluated at such points the product of all
linear forms we consider is just small enough to apply the subspace theorem.

Our main result is the following extension of Theorem AB to any non-
zero complex algebraic number lying in the open unit disc.

Theorem 1. Let a = (ak)k≥0 be a stammering sequence of algebraic
numbers in a number field L and suppose that a satisfies (2.1) or (2.2).
Let α be a non-zero algebraic number lying in the open unit disc and as-
sume that α1 = α, α2, . . . , αl are all its complex conjugates of modulus < 1.
Let p1, . . . , pl′ be all the prime ideals in L(α) such that |α|pj < 1. Then
either (at least) one of the numbers fa,1(α) := fa(α), fa,2(α), . . . , fa,l(α),
fa,p1(α), . . . , fa,pl′ (α) is transcendental , or fa,j(α) belongs to L(αj) for j =
1, . . . , l. Furthermore, in this last case, if we let σj be some automorphism of
the Galois closure of L(α) over Q sending α to αj , then fa,j(α) = σj(fa(α))
for all j = 2, . . . , l.

We stress that Theorem 1 plainly includes Theorems ABL and AB. The
proof of Theorem 1 also rests on the p-adic version of the Schmidt subspace
theorem given in [9]. The main interest of Theorem 1 is that it applies to
every algebraic value of every stammering function. However, the price to
pay for this (i.e., the introduction of new linear forms) produces a weaker
conclusion than the one expected. We mention that another way to proceed,
worked out in [2], yields a conclusion as strong as in Theorem AB, but the
price to pay is then a strengthening of the stammering condition on a.

We now give two straightforward consequences of Theorem 1.

Corollary 1. Let a = (ak)k≥0 be a stammering sequence of algebraic
numbers in a number field L and suppose that a satisfies (2.1) or (2.2). Let β
be an algebraic integer such that |β| > 1 and assume that β1 = β, β2, . . . , βl
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are all its complex conjugates of modulus > 1. If all the complex numbers

γj :=
+∞∑
k=0

ak

βkj
, 1 ≤ j ≤ l,

are algebraic, then γj belongs to the number field L(βj) for j = 1, . . . , l.

Corollary 2. Let a = (ak)k≥0 be a bounded , stammering sequence of
rational integers. Let p and q be positive coprime integers with q > p and p
prime. If both the real number

γ :=
+∞∑
k=0

ak

(
p

q

)k
and the p-adic number

+∞∑
k=0

ak

(
p

q

)k
are algebraic, then γ is rational.

We end this section with an application of Theorem 1 to the expansion
of algebraic numbers in a complex quadratic integer base b, which in turn
has an amusing application to the transcendence of alternating stammering
numbers.

Theorem 2. Let b be an algebraic integer in an imaginary quadratic
field with |b| > 1. Let a = (ak)k≥0 be a stammering sequence with values in
the set {0, 1, . . . , |b|2 − 1}. Then the number

+∞∑
k=0

ak/b
k

is transcendental.

Corollary 3. If b > 1 is a positive integer and a = (ak)k≥0 is a
stammering sequence taking its values in the set {0, 1, . . . , b − 1}, then the
number

+∞∑
k=0

(−1)kak/bk

is transcendental.

4. The auxiliary result. Our main auxiliary tool is a version of the
P-adic Thue–Siegel–Roth–Schmidt theorem proved by Schlickewei [9]. We
make use of the following notation (see also [7, pp. 182–183]).

Let p be a prime number. Let Qp be the completion of Q at p and Cp

the completion of the algebraic closure of Qp for the absolute value | · |p.
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Let K be a number field of degree d. Write the ideal (p) in OK as

(p) =
π(p)∏
j=1

p
e(pj)
j ,

where p1, . . . , pπ(p) are distinct prime ideals in OK. For a non-zero element
α in K, set

|α|pj = p−hj/e(pj),

where hj is the largest integer such that pj is coprime with the fractional
ideal p

hj

j × (α). For j = 1, . . . , π(p), let d(pj) denote the degree of the
completion Kpj of K with respect to pj . Let r be the unit rank of K. For
j = 1, . . . , r+ 1, let dj equal to 1 (resp. 2) if the embedding of K associated
with the absolute value | · |j is real (resp. complex).

For any non-zero α in K, we have the product formula
r+1∏
j=1

|α|dj

j ·
∏
p

|α|d(p)p = 1.

The field height HK of β = (β0, . . . , βm) ∈ Km+1 is defined by

HK(β) =
r+1∏
j=1

max{|β0|
dj

j , . . . , |βm|
dj

j } ·
∏
p

max{|β0|d(p)p , . . . , |βm|d(p)p },

where the second product is taken over all inequivalent non-Archimedean
primes of K.

Let p0 =∞ denote the Archimedean prime in Q. Denote by K(0)
1 , . . . ,K(0)

r+1

the r+1 non-isomorphic fields corresponding to the embeddings of K into C.
For simplicity, set π(p0) = r + 1. Let {p1, . . . , pt} be a finite set of rational
prime numbers. For i = 1, . . . , t, denote by K(i)

1 , . . . ,K(i)
π(pi)

the π(pi) pairwise
non-isomorphic fields corresponding to the embeddings of K into Cpi . Fur-
thermore, we denote the images of an (m+1)-tuple β = (β0, . . . , βm) ∈ Km+1

under these embeddings as follows: for i = 0, . . . , t and for j = 1, . . . , π(pi),

we write β(i)
j = (β(i)

0j , . . . , β
(i)
mj) ∈ K(i)

j

m+1
.

Furthermore, for j = 1, . . . , r + 1, set

|β(0)
j | = max{|β(0)

0j |, . . . , |β
(0)
mj |},

and, for i = 1, . . . , t and j = 1, . . . , π(pi), set

|β(i)
j |pij = max{|β(i)

0j |pij , . . . , |β
(i)
mj |pij}.

With these notations, Theorem 2.1 of [9] combined with Lemma 1F, page
178 of [10] yields the following version of the subspace theorem, which is the
key tool for the proof of our Theorem 1.
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Theorem S. For every i = 0, . . . , t and every j = 1, . . . , π(pi), let
L

(i)
0j , . . . , L

(i)
mj be m+ 1 linearly independent linear forms in m+ 1 variables

with algebraic coefficients from the field Cpi. Then, for any ε > 0, all the
solutions β ∈ Pm(K) to the inequality

(4.1)
r+1∏
j=1

m∏
k=0

|L(0)
kj (β(0)

j )|dj

|β(0)
j |dj

·
t∏
i=1

π(pi)∏
j=1

m∏
k=0

|L(i)
kj (β(i)

j )|d(pij)
pij

|β(i)
j |

d(pij)
pij

≤ HK(β)−m−1−ε

lie in finitely many proper subspaces.

We end this section with a few words on heights. Keep the above notation
and let β be in K. The (multiplicative) absolute height of β is defined by

H(β) := (HK((1, β)))1/[K:Q],

and we set
h(β) = logH(β).

We refer to Chapter 3 of [11] for classical results on these heights.
We just mention that, for any algebraic numbers a0, . . . , an, β in K and

for any place ν in K, we have

(4.2) |a0 + a1β + · · ·+ anβ
n|ν

≤ max{1, |n+ 1|ν} ·max{|a0|ν , |a1β|ν , . . . , |anβn|ν}

≤ max{1, |n+ 1|ν} ·max{|a0|ν , . . . , |an|ν} ·max{1, |β|ν}n,
and

(4.3) h(a0, . . . , an) :=
log(HK((a0, . . . , an)))

[K : Q]
·

5. Proof of Theorem 1. Consider a stammering sequence a = (ak)k≥0

of algebraic numbers in a number field L that satisfies (2.1) or (2.2). We
assume that the parameters w and w′ are fixed, as are the sequences (Un)n≥1

and (Vn)n≥1 occurring in the definition of a stammering sequence. Set also
rn = |Un| and sn = |Vn| for every n ≥ 1. Observe that sn tends to infinity
monotonically with n.

We fix a complex algebraic number α in the open unit disc and set
β := 1/α. We point out that |β| > 1. Set K := L(α) = L(β) and δ =
[K : Q]/[Q(β) : Q]. Assume that the conjugates of β are numbered in such
a way that β = β1, . . . , βl is a subset of the conjugates of β of modulus
> 1 containing exactly one of the two elements of each pair of complex
conjugates.

For any j = 1, . . . , l, set

fa,j(α) := fa(αj) =
+∞∑
k=0

akα
k
j =

+∞∑
k=0

ak

βkj
.
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Let p1, . . . , pl′ be the prime ideals p in K with |α|p < 1 (i.e., with |β|p > 1).
For j = 1, . . . , l′, let fa,pj (α) in Kpj be defined by

fa,pj (α) := lim
N→+∞

N∑
k=0

ak
βk
.

The key fact is the observation that the fa,j(α)’s and the fa,pj (α)’s de-
fined above admit infinitely many good approximants in the fields K and Kpj ,
respectively. These approximants are obtained by truncating their associ-
ated series and completing them by periodicity. Precisely, for every positive
integer n, we define the sequence (b(n)

k )k≥0 by

b
(n)
h = ah for 0 ≤ h ≤ rn + sn − 1,

b
(n)
rn+h+jsn

= arn+h for 0 ≤ h ≤ sn − 1 and j ≥ 0.

The sequence (b(n)
k )k≥0 is eventually periodic, with preperiod Un and with

period Vn. For j = 1, . . . , l, set

α
(n)
j =

+∞∑
k=0

b
(n)
k

βkj
.

Since (ak)k≥0 satisfies (2.1) or (2.2), we have |ak − b
(n)
k | � ck for every

real number c > 1. Throughout the proof of the theorem, all the constants
implied by � may depend on c, but they are independent of n. We thus
observe that

(5.1) |fa,j(α)− α(n)
j | =

∣∣∣∣ +∞∑
k=rn+dwsne

ak − b
(n)
k

βkj

∣∣∣∣� crn+dwsne

|βj |rn+dwsne

for every real number c > 1. Likewise, for j = 1, . . . , l′, define α(n)
pj

in Kpj

by the p-adic limit

α
(n)
pj

= lim
N→+∞

N∑
k=0

b
(n)
k

βk
,

and observe that

(5.2) |fa,pj (α)− α(n)
pj
|pj �

crn+dwsne

|β|rn+dwsne
pj

for every real number c > 1.

Lemma 1. For every integer n, set

Pn(X) =
rn−1∑
k=0

akX
rn−k(Xsn − 1) +

sn−1∑
k=0

arn+kX
sn−k.
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Then, for j = 1, . . . , l, we have

α
(n)
j =

Pn(βj)
βrnj (βsn

j − 1)
.

Proof. This is an easy verification, as in Lemma 1 from [1].

Now, we define the systems of linear forms to which we will apply The-
orem S. Let us assume that fa,1(α) := fa(α), . . . , fa,l(α) and fa,p1(α), . . .
. . . , fa,pl′ (α) are all algebraic.

For j = 1, . . . , l, consider the linear forms

L
(0)
0j = X, L

(0)
1j = Y, L

(0)
2j = fa,j(α)X − fa,j(α)Y − Z.

For the remaining Archimedean absolute values, that is, for j= l+1, . . . , r+1,
where r denotes the unit rank of Q(β), take simply

L
(0)
0j = X, L

(0)
1j = Y, L

(0)
2j = Z.

Let p1, . . . , pt be the prime numbers p such that there exists an ideal p
above p with |β|p 6= 1. Each of the prime ideals p1, . . . , pl′ divides one of the
pi’s. For j = 1, . . . , l′, let pi be the rational prime above pj and consider the
linear forms

L
(i)
0j = X, L

(i)
1j = Y, L

(i)
2j = fa,pj (α)X − fa,pj (α)Y − Z.

For all the other prime ideals p below one of the pi’s, we consider the linear
forms

L
(i)
0j = X, L

(i)
1j = Y, L

(i)
2j = Z.

We evaluate the product of these linear forms at the algebraic points
β

(i)
j , where

β = (βrn+sn , βrn , Pn(β)).

Obviously, β and the β(i)
j ’s depend on n; however, we choose not to indicate

this dependence for sake of simplicity.
We first establish an upper bound for the height of β.

Lemma 2. For every real number c > 1, we have

HK(β)�
(
c

l∏
j=1

|βj |dj ·
l′∏
j=1

|β|
dpj
pj

)rn+sn

,

where the constant implied by the Vinogradov symbol � is independent of n.
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Proof. Let c > 1 be arbitrary. By definition,

HK(β) =
r+1∏
j=1

max{|βrn+sn
j |dj , |βrnj |

dj , |Pn(βj)|dj}

·
∏
p

max{|βrn+sn |d(p)p , |βrn |d(p)p , |Pn(β)|d(p)p }.

On the one hand, we infer from the fact that a satisfies (2.1) or (2.2) and
from Lemma 1 that

r+1∏
j=1

max{|βrn+sn
j |dj , |βrnj |

dj , |Pn(βj)|dj}

�
( l∏
j=1

|βj |dj

)rn+sn

·
r+1∏
j=l+1

max{1, |Pn(βj)|dj}

�
( l∏
j=1

|βj |dj

)rn+sn

c(rn+sn)/2.

On the other hand, we have∏
p

max{|βrn+sn |d(p)p , |βrn |d(p)p , |Pn(β)|d(p)p }

�
( l′∏
j=1

|β|d(pj)
pj

)rn+sn

·
∏
p∈P
|Pn(β)|d(p)p ,

where the latter product is taken over the set P of all the prime ideals p
that do not divide p1 . . . pl′ and are such that |Pn(β)|p > 1. Furthermore, we
have

(5.3)
∏
p∈P
|Pn(β)|d(p)p � c(rn+sn)/2.

Indeed, we infer from (2.1), inequality (4.2), Lemma 1 and inequality (4.3)
that∏

p∈P
|Pn(β)|d(p)p

≤
∏
p∈P

(max{1, |rn + sn|d(p)p } ·max{|a0|d(p)p , . . . , |arn+sn−1|d(p)p })

≤ (rn + sn)HK(a0, . . . , arn+sn−1)

� (rn + sn) exp{[K : Q] · h(a0, . . . , arn+sn−1)} � c(rn+sn)/2.

The same upper bound holds under the assumption (2.2) since, in this case,
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the product ∏
p∈P

max{|a0|d(p)p , . . . , |arn+sn−1|d(p)p }

is bounded by a constant independent of n. This ends the proof.

Observe that our choice of p1, . . . , pt implies that |β|p = 1 for any prime
p which does not lie above one of the pi’s. Consequently, we get

(5.4)
r+1∏
j=1

|β(0)
j |

dj ·
t∏
i=1

π(pi)∏
j=1

|β(i)
j |

d(pij)
pij

= HK(β) ·
∏
p∈P ′

|Pn(β)|−d(p)p ,

where the latter product is taken over the set P ′ of all the prime ideals p
that do not divide p1 . . . pt and are such that |Pn(β)|p > 1. Obviously, we
infer from (5.3) that

(5.5)
∏
p∈P ′

|Pn(β)|d(p)p ≤
∏
p∈P
|Pn(β)|d(p)p � c(rn+sn)/2

for every real number c > 1.
By the product formula, we have

(5.6)
r+1∏
j=1

|L(0)
kj (β(0)

j )|δdj ·
t∏
i=1

π(pi)∏
j=1

|L(i)
kj (β(i)

j )|d(pij)
pij

= 1

for k = 0, 1.
It remains to evaluate the expressions |L(i)

2j (β(i)
j )|. By (5.1), the Archi-

medean places yield a contribution of at most

(5.7)
r+1∏
j=1

|L(0)
2j (β(0)

j )|δdj � crn+sn
0

l∏
j=1

|βj |−δdj(w−1)sn

for a certain real number c0 > 1 that will be selected later on to be suffi-
ciently close to 1. By (5.2), the contribution of the non-Archimedean places
yields

(5.8)
t∏
i=1

π(pi)∏
j=1

|L(i)
2j (β(i)

j )|d(pij)
pij

� crn+sn
0

l′∏
j=1

|β|−(w−1)snd(pj)
pj

.

Consequently, choosing c = c
1/3
0 in (5.5), we infer from (5.4) and (5.6)–

(5.8) that the product

Π :=
r+1∏
j=1

2∏
k=0

|L(0)
kj (β(0)

j )|dj

|β(0)
j |dj

·
t∏
i=1

π(pi)∏
j=1

2∏
k=0

|L(i)
kj (β(i)

j )|d(pij)
pij

|β(i)
j |

d(pij)
pij



Values of analytic functions at algebraic points 13

of all the linear forms is

� HK(β)−3c
3(rn+sn)
0

( ∏
|βj |>1

|βj |−δdj(w−1)sn ·
l′∏
j=1

|β|−(w−1)snd(pj)
pj

)
.

Since w > 1, we infer from condition (ii) in the definition of a stammering
sequence that there exists a positive real number η such that

2η(rn + sn) < (w − 1)sn

for every large positive integer n. Now, we choose c0 close enough to 1 to
ensure that c1 := HK(β)/c3/η0 satisfies c1 > 1. Since δ > 1, we obtain

Π � HK(β)−3c
3(rn+sn)
0

( l∏
j=1

|βj |dj ·
l′∏
j=1

|β|d(pj)
pj

)−2η(rn+sn)

� HK(β)−3(c−3/η
0 HK(β))−η(rn+sn)

( l∏
j=1

|βj |dj ·
l′∏
j=1

|β|d(pj)
pj

)−η(rn+sn)

� HK(β)−3
(
c1 ·

l∏
j=1

|βj |dj ·
l′∏
j=1

|β|d(pj)
pj

)−η(rn+sn)
.

It thus follows from Lemma 2 that

Π � HK(β)−3−η.

This shows that we have produced infinitely many algebraic solutions to
inequality (4.1). Applying Theorem S, we reach the conclusion that there
exists a non-zero triple (z1, z2, z3) in K3 and an infinite set N of positive
integers such that

(5.9) z1β
rn+sn + z2β

rn + z3Pn(β) = 0

for all n ∈ N . Since sn tends to infinity with n, the number z3 ∈ K is
non-zero. If z1 6= 0, then dividing (5.9) by βrn+sn and letting n tend to
infinity along N , we deduce that

lim
n→+∞

Pn(β)
βrn+sn

= fa(α)

belongs to K. If z1 = 0, we divide (5.9) by βrn and argue similarly to reach
the same conclusion.

Given any integer j with 2 ≤ j ≤ l, we can replace α by αj all along
the above proof, and thus derive that fa,j(α) belongs to L(αj). The last
statement about fa,j(α) = σj(fa(α)) follows immediately by conjugating
relation (5.9) by σj for all n ∈ N and then arguing as above.

This concludes the proof of Theorem 1.
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6. Proofs of Theorem 2 and Corollary 3

Proof of Theorem 2. We may assume that a0 6= 0, since otherwise we may
eliminate a0 and reindex the sequence (clearly, the new sequence obtained
in this way is still stammering). Set

α =
+∞∑
k=0

ak
bk
.

Assume that α ∈ Q. Since the complex conjugation is continuous, we get

α =
+∞∑
k=0

ak

b
k
.

Hence, α ∈ Q. By Theorem 1, we find that α ∈ Q[b]. In fact, Theorem 1
shows that more is true, namely (we keep the notation used in the proof of
this theorem) that there exist a non-zero triple (z1, z2, z3) in K3 = Q[b]3 and
an infinite set of positive integers N1 such that

(6.1) z1b
rn+sn − z2brn − z3Pn(b) = 0

for every n ∈ N1. Here,

Pn(X) =
rn−1∑
k=0

akX
rn−k(Xsn − 1) +

sn−1∑
k=0

arn+kX
sn−k ∈ Z[X],

as in Lemma 1. Dividing both sides of (6.1) by brn+sn and letting n tend to
infinity along N1, we get z1 = z3α. Hence, if z3 = 0, then z1 = 0, and now
(6.1) shows that z2 = 0 as well, which is impossible.

Thus, z3 6=0 and by multiplying both sides of (6.1) by z−1
3 , it follows that

we may assume that z3 = 1. Since z1 = z3α, we get z1 = α. Inserting this
into (6.1) and dividing both sides of the resulting relation by brn+sn we get

α− z2
bsn

=
Pn(b)
brn+sn

=
sn+rn−1∑
k=0

ak
bk
−
rn−1∑
k=0

ak
bsn+k

.

Substituting the formula for α, performing the obvious cancellations and
multiplying both sides of the resulting formula by bsn , we get

z2 =
rn−1∑
k=0

ak
bk

+
∑
k≥rn

asn+k

bk
.

Since the above relation is true for every n in N1, it follows easily that
α = z2 because the right hand side of the above relation tends to α when n
tends to infinity along N1. Replacing z1 = z2 = α in (6.1), we get

(6.2) αbrn(bsn − 1) = Pn(b)

for every n ∈ N1.
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Assume first that α = 0. We then get Pn(b) = 0. Note that

Pn(X) =
rn+sn−1∑
k=0

ckX
rn+sn−k,

where ck = ak if k = 0, . . . , sn − 1, and ck = ak − ak−sn if k = sn, . . . , rn +
sn− 1. Since a0 6= 0, it follows that Pn(X) is not the zero polynomial. Note
that each of its coefficients is either of the form ai, or of the form aj−ah for
some appropriate indices i, j and h. Dividing both sides of equation (6.2) by
an appropriate power of b to emphasize a constant term (i.e., a term which
is not a multiple of b), we get a relation of the form

c0,nb
dn + c1,nb

dn−1 + · · ·+ cdn,n = 0,

where dn > 0, the coefficients cj,n are integers, c0,n = a0 6= 0, cdn,n 6= 0, and
the absolute values of all coefficients ci,n do not exceed |b|2 − 1. However,
the above relation implies that the polynomial

Qn(X) = c0,nX
dn + c1,nX

dn−1 + · · ·+ cdn,n ∈ Z[X]

is a multiple of the minimal polynomial of b over Z. Since the constant
term of the minimal polynomial over Z of b is |b|2 = b · b, and this number
must divide the non-zero integer cdn,n of absolute value ≤ |b|2 − 1, we get a
contradiction.

From now on, we assume that α 6= 0.
Let n1 < n2 < · · · be an infinite sequence of positive integers inN1. Thus,

relation (6.2) holds for n = ni with some i ≥ 1. The sequence (rn)n≥1 might
be bounded or not. If it is unbounded, we may assume, up to discarding
some values for the ni’s, that rni+1 > sni + rni for all i ≥ 1, while if it is
bounded, we may assume that rni is a constant for all i ≥ 1. We also assume
that sni+1 > rni + sni for all i ≥ 1. This is possible because the sequence
(sn)n≥1 is increasing. From now on, we write m = nj and n = ni for some
j > i ≥ 1. Dividing the two relations (6.2) obtained for m and n, we get

brm(bsm − 1)
brn(bsn − 1)

=
Pm(b)
Pn(b)

,

which gives

brm−rn(bsm − 1)Pn(b)− (bsn − 1)Pm(b) = 0.

The expression appearing on the left hand side of the last equation is a
polynomial in b (note that rm ≥ rn). Put D = (rm − rn) + sm + rn + sn =
rm+sm+sn. Note that since a0 6= 0, it follows that D is the common degree
of the polynomials Xrm−rn(Xsm − 1)Pn(X) and (Xsn − 1)Pm(X). We show
that if n is fixed and m is very large, then one of the polynomials

(6.3) Qm,n(X) = Xrm−rn(Xsm − 1)Pn(X)− (Xsn − 1)Pm(X) ∈ Z[X]
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is not the zero polynomial, and that Qm,n(X) is of the form XλRm,n(X),
whereRm,n(0) is non-zero and of the form±ai or aj−ah for some appropriate
indices i, j and h, which leads to the same final contradiction as in the case
when α = 0.

To see that Qm,n(X) is non-zero, note that the coefficient of XD−rn−sn−t,
where t = 0, 1, . . . , sm − sn − rn, is simply asn+t − at. If this coefficient is
zero for all t in the above range and for arbitrarily large values of m, we
then infer that the sequence (ak)k≥0 is periodic with period sn, which is a
contradiction.

We now look at the last non-zero coefficient of Qm,n(X). Note that if
rm − rn > sn, then that coefficient is arm+sm−1 − arm−1, and it is the coef-
ficient of X. If arm+sm−1 − arm−1 is non-zero, we have already obtained the
desired contradiction. If not, we divide both sides of (6.3) by X and work
with the polynomial Qm,n(X)/X. Continuing in this way rm− rn times, we
may assume that asm+rm−t = arm−t for all t = 1, . . . , rm− rn. At this point,
Qm,n(X) is replaced by the polynomial

(6.4) Qm,n(X)/Xrm−rn = (Xsm − 1)Pn(X)− (Xsn − 1)Pm(X)/Xrm−rn .

Note that if rm = rn, then the above discussion is unnecessary and the
polynomial (6.3) is just Qm,n(X). In what follows, we study the above poly-
nomial. Note that

Sm,n(X) = (Xsm − 1)Pn(X)

= a0X
sm+rn+sn + a1X

sm+rn+sn−1 + · · ·
+ asn−1X

sm+rn+1 + (asn − a0)Xsm+rn + · · ·
+ (asn+rn−1 − arn−1)Xsm+1 − a0X

rn+sn + · · ·
− asn−1X

rn+1 − (asn − a0)Xrn − · · · − (asn+rn−1 − arn−1)X.

Thus, with D1 = sm + sn + rn, it follows that

Sm,n(X) =
D1−1∑
k=0

ckX
D1−k,

where ck is given by:
(i) ak if k = 0, . . . , sn − 1;

(ii) ak − ak−sn if k = sn, . . . , sn + rn − 1;
(iii) 0 if k = sn + rn, . . . , sm − 1;
(iv) −ak−sm if k = sm, . . . , sm + sn − 1;
(v) −(ak−sm − ak−sm−sn) if k = sm + sn, . . . , sm + sn + rn − 1.

For the second polynomial appearing in (6.3),

Tm,n(X) = (Xsn − 1)Pm(X)/Xrm−rn ,
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a similar calculation gives

Tm,n(X) =
D1−1∑
k=0

dkX
D1−k,

where the coefficients dk are given by:

(i) ak if k = 0, . . . , sn − 1;
(ii) ak − ak−sn if k = sn, . . . , sm − 1;

(iii)′ ak − ak−sm − ak−sn if k = sm, . . . , sm + rn − 1;
(iv)′ −ak−sn if k = sm + rn, . . . , sm + sn − 1;
(v)′ −(ak−sn − ak−sn−sm) if k = sm + sn, . . . , sm + sn + rn − 1,

provided that sn > rn. When sn = rn, the same holds except that (iv)′ is
vacuous, while if sn < rn, then the group (iii)′–(v)′ above should be replaced
by

(iii)′′ ak − ak−sm − ak−sn if k = sm, . . . , sm + sn − 1;
(iv)′′ ak − ak−sm − (ak−sn − ak−sn−sm) if k = sm + sn, . . . , sm + rn − 1;
(v)′′ −(ak−sn − ak−sn−sm) if k = sm + rn, . . . , sm + rn + sn − 1.

It is now easy to obtain the list of coefficients of Qm,n(X). Namely, ck − dk
equals (independently of whether sn > rn, sn = rn or sn < rn):

(i) 0 if k = 0, 1, . . . , sn + rn − 1;
(ii) −(ak − ak−sn) if k = sn + rn, . . . , sm + rn − 1;

(iii) −(ak−sm − ak−sn) if k = sm + rn, . . . , sm + sn + rn − 1,

which confirms the claim about the coefficients of Qm,n(X). Thus, Theo-
rem 2 is proved.

Proof of Corollary 3. Let a′ be the sequence a0, 0, a1, 0, a2, 0, . . . . It is
clear that a′ is also stammering. Now the result follows by applying Theo-
rem 2 to the pair (a′, b1/2i).
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