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1. Introduction. It is a well-known problem to estimate the largest
clique of the Paley graph, i.e., to estimate |A| for A ⊂ Fp (p ≡ 1 (mod 4))
such that A−A = {a−a′ | a, a′ ∈ A} avoids the set of quadratic nonresidues.
In this paper we study a much simpler problem, namely with A−A replaced
by the set

FS(A) =
{∑

εaa | εa = 0 or 1 and
∑

εa > 0
}
.

In other words, we will estimate the maximal cardinality of A ⊂ Fp such that
FS(A) avoids the set of quadratic nonresidues. We show that this problem is
strongly related to the problem of estimating the least quadratic nonresidue
n(p), since the set {1, 2, . . . , [n(p)1/2]} satisfies the above condition. We prove
that the maximal value of |A| is Ω(log log p). On the other hand, we show
that |A| = O(n(p) log3 p). The proof is based on the fact that if t is a
quadratic nonresidue then FS(A)∩ t ·FS(A) = ∅ or {0} where by definition
t ·B = {tb | b ∈ B}. We show that if t is small then |FS(A)| is much greater
than |A|.

In the next section we study the case when t = n(p) = 2. In Section 3
we prove the upper bound |A| = O(n(p) log3 p). In the last section we show
that the maximal value of |A| is Ω(log log p).

2. The case n(p) = 2. In the case n(p) = 2 we have FS(A) ∩ 2 · FS(A)
= ∅ or {0}. First we consider the case FS(A) ∩ 2 · FS(A) = ∅.

Theorem 2.1. If FS(A) ∩ 2 · FS(A) = ∅ then |FS(A)| = 2|A|.

Proof. We have to show that if FS(A)∩2 ·FS(A) = ∅ then all the subset
sums are different. Indeed, if two different sums had the same value then
omitting the intersection we would get s = ai1 + · · ·+ ail = aj1 + · · ·+ ajm

2000 Mathematics Subject Classification: Primary 11B75.
Key words and phrases: subset sums, quadratic residues.

[91] c© Instytut Matematyczny PAN, 2008



92 P. Csikvári

(iu 6= jv). In this case s and 2s = ai1 + · · ·+ ail + aj1 + · · ·+ ajm would be
in FS(A), which contradicts the assumption.

A trivial consequence of Theorem 2.1 is

Corollary 2.2. If n(p) = 2 (i.e.
(

2
p

)
= −1) and every element of

FS(A) is a quadratic residue then |A| ≤ (log p)/log 2.

Theorem 2.3. Assume that 0 /∈ A. If FS(A)∩2 ·FS(A) = ∅ or {0} then
|A| ≤ (2 log p)/log 2.

Remark 1. 0 /∈ A is just a simplifying condition: if we leave out the
0 from A then FS(A) will not change and the cardinality of A will only
decrease by 1.

Proof of Theorem 2.3. We will say that
∑

i∈I ai = a is an irreducible a-
sum if there is no ∅ 6= J ⊂ I for which

∑
i∈J ai = 0. Two irreducible a-sums

are disjoint, because if
∑

i∈I1 ai =
∑

j∈I2 aj then
∑

i∈I1\I2 ai =
∑

i∈I2\I1 ai =
s 6= 0 and s, 2s ∈ FS(A) contradicts the assumption. On the other hand, in
case a 6= 0 there cannot be two disjoint irreducible a-sums. Thus we only get
an a-sum as the sum of “the” irreducible a-sum and a 0-sum. Each 0-sum is
a sum of irreducible 0-sums so the number of 0-sums is at most 2|A|/2 since
every irreducible 0-sum has at least two elements (here we have used the
simplifying condition that 0 /∈ A). Hence p · 2|A|/2 ≥ 2|A|, which yields the
conclusion.

Corollary 2.4. If n(p) = 2 and every element of FS(A) is a square
mod p then |A| ≤ (2 log p)/log 2.

Corollary 2.5. If A ⊂ {1, . . . , N} and every element of FS(A) is a
perfect square then |A| = O(log logN).

Proof. We will use Gallagher’s larger sieve [4]. Let y = 40 logN log logN
and let S = {p ≤ y | p prime, p ≡ 3 or 5 (mod 8)}. By Corollary 2.4,
ν(p) ≤ (2 log p)/log 2 for these primes p. By the larger sieve

|A| ≤
∑

p∈S Λ(p)− logN∑
p∈S

Λ(p)
ν(p) − logN

if the denominator is positive. We have

log y ≤ 2 log logN

if N is large enough. Furthermore∑
p∈S

Λ(p) =
1
2
y + o(y)
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and ∑
p∈S

Λ(p)
ν(p)

≥ (log 2)y
4 log y

+ o

(
y

log y

)
≥ y

10 log y

if y, thus also N , is large enough. Hence for large N ,∑
p∈S

Λ(p)
ν(p)

≥ 40 logN log logN
20 log logN

= 2 logN.

Thus |A| ≤ 40 log logN .

3. Upper bound. First we will prove a theorem on Abelian groups
from which the upper bound follows.

Theorem 3.1. Let A ⊂ G where G is a finite Abelian group. Assume
that |A| ≥ 2000t log3 |G|. Then there exists a d 6= 0 for which {d, 2d, . . . , td}
⊂ FS(A).

Proof. We argue by contradiction. Assume that there exists a set A for
which |A| = n > 2000t log3 |G| such that FS(A) does not contain any set
{d, 2d, . . . , td} where d 6= 0. We can also assume that 0 /∈ A. Let r be a fixed
positive integer which we will choose later. We will use the Erdős–Rado
theorem on ∆-systems.

Lemma 3.2 (Erdős–Rado). Assume that A1, . . . , Am are subsets of a
given set such that m ≥ r!(t − 1)r and |Ai| = r. Then they contain a ∆-
system with t elements, i.e., Ai1 , . . . , Ait , i1 < · · · < it, such that Aik ∩Ail =⋂t
j=1Atj for all 1 ≤ k < l ≤ t.

Again we first give an upper bound for the number of irreducible sums.
(We recall that

∑
a∈I a is irreducible if there is no J 6= ∅ with J ⊂ I such

that
∑

a∈J a = 0, and we call a sum an irreducible a-sum if it is irreducible
and its value is a.) We estimate the number of r-term irreducible a-sums. If
a 6= 0 then there exist at most r!(t− 1)r r-term irreducible a-sums. Indeed,
otherwise these sums as a set contain a ∆-system with t elements by the
lemma. If we leave out the intersection of the sums of sets we get t disjoint
sums having the same nonzero value since the sums were irreducible. Let d be
the value of these sums. Then adding together some of these disjoint sums
we find that {d, 2d, . . . , td} ⊂ FS(A) contradicting the assumption. This
argument cannot be applied for a = 0 immediately since it may occur that
t disjoint irreducible r-term sums form a ∆-system. Although we can easily
solve this problem, now we can say that there are at most n(r−1)!(t−1)r−1

irreducible 0-sums since if there are more then there is an a ∈ A appearing
in more than (r − 1)!(t − 1)r−1 irreducible sums as a summand. Omitting
a from these sums we get the previous case with (r − 1)-term sums instead
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of r, since these new sums have value −a which is not 0 as 0 /∈ A, and are
irreducible since a subsum of an irreducible sum is still irreducible.

Now we give an upper bound for the number of r-term a-sums. Every
a-sum is a sum of an irreducible a-sum and some irreducible 0-sums (this
decomposition is, of course, not unique, but this is not a problem since
we only give an upper bound). Let us consider those representations where
the irreducible r-term a-sum has k1 terms and the irreducible 0-sums have
k2, . . . , km terms, respectively. According to the previous argument the num-
ber of these sums is at most

k1!(t− 1)k1n(k2 − 1)!(t− 1)k2−1 · · ·n(km − 1)!(t− 1)km−1

≤
m∏
i=1

(n(ki − 1)!(t− 1)ki−1) = nm
( m∏
i=1

(ki − 1)!
)

(t− 1)r−m,

since
∑m

i=1 ki = r and we will choose r later so that k1(t−1) ≤ r(t−1) ≤ n.
We now show that

nm
( m∏
i=1

(ki − 1)!
)

(t− 1)r−m ≤ rr/2nr/2+1(t− 1)r/2.

Indeed, since every irreducible 0-sum has at least two elements (as 0 /∈ A),
we have m− 1 ≤ r/2 and nr/2+1−m ≥ (r(t− 1))r/2+1−m. Hence

rr/2nr/2+1(t− 1)r/2 ≥ rr/2nm(r(t− 1))r/2+1−m(t− 1)r/2

≥ nmrr−m(t− 1)r−m ≥ nm
( m∏
i=1

(ki − 1)!
)

(t− 1)r−m,

since
∏m
i=1(ki − 1)! ≤ (r − m)! ≤ rr−m. Let p(r) denote the number of

partitions of r. Then every a ∈ G can be represented as a sum of r elements
of A in at most p(r)rr/2nr/2+1(t − 1)r/2 ways. Since there are

(
n
r

)
r-term

sums we have (
n

r

)
≤ |G| · p(r)rr/2nr/2+1(t− 1)r/2.

We will choose r so that (
n
r

)
p(r)rr/2nr/2+1(t− 1)r/2

is nearly maximal. For two consecutive r’s consider the fraction(
n
r

)
p(r)rr/2nr/2+1(t− 1)r/2

:

(
n
r+1

)
p(r + 1)(r + 1)(r+1)/2n(r+1)/2+1(t− 1)(r+1)/2

=
r + 1
n− r

p(r + 1)
p(r)

(
1 +

1
r

)r/2
(n(r + 1)(t− 1))1/2.

For the best choice of r this must be approximately 1. Let us choose r =
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[n1/3 : e(t − 1)1/3]; up to a constant factor this is the best choice. Now we
can use the elementary estimates m(m/e)m > m! > (m/e)m for m ≥ 6 to
obtain

|G| ≥
(
n
r

)
p(r)rr/2nr/2+1(t− 1)r/2

≥
(
n
e

)n
r(n− r)

(
r
e

)r(n−r
e

)n−r
p(r)rr/2nr/2+1(t− 1)r/2

=
1

nr(n− r)p(r)

(
n

n− r

)n−r( n1/2

r3/2(t− 1)1/2

)r
≥ 1
|G|3p(r)

(e3/2)r.

In the latter inequality we have used the fact that |G| ≥ max{n, r, n − r}.
Now we use the classical estimate

p(r) < exp
(

2π√
6

√
r

)
< exp

(
1
2
r

)
.

It follows that |G|4 > er so 4 log |G|≥r. Thus 43 log3 |G| ≥ r3 > n/30(t− 1),
whence 2000(t− 1) log3 |G| > n, contrary to assumption.

Remark 2. The basic idea of this proof comes from an article of Erdős
and Sárközy [3], who study what can be said about the length of an arithmetic
progression contained in the set of subset sums of a subset of {1, . . . , N}.

The statement of Theorem 3.1 is nearly sharp since for the set

A = {t, t+ 1, . . . , [
√

2 t]} ⊂ Zn
with t3 < n no two elements of FS(A) have quotient t, and |A| = Ω(t).
On the other hand, a basis of Zn3 shows that the set of subset sums does
not contain two elements with quotient 2, and we have |A| = Ω(log |Z3|n).
Other much trickier examples can be found in the above mentioned article.

Corollary 3.3. Let A ⊂ Fp. Assume that FS(A) avoids the quadratic
nonresidues. Then |A| = O(n(p) log3 p), where n(p) denotes the least quad-
ratic nonresidue.

Proof. Otherwise one can apply Theorem 3.1 with t = n(p) to deduce
that there exists a d 6= 0 for which d and n(p)d are both quadratic residues,
which is a contradiction.

Remark 3. If we also assume that 0 /∈ FS(A), i.e., every element of
FS(A) is a quadratic residue, then |A| = O(n(p) log2 p), so that we can win
a factor log p since we do not need to estimate the number of irreducible
sums, and we can apply the Erdős–Rado theorem immediately. On the other
hand, obviously one can replace the set of quadratic nonresidues by the set
of quadratic residues, since one can multiply each element of A with the
same quadratic nonresidue and by construction no subset sum of the new
set is a quadratic residue.
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Remark 4. Since n(p) = Oε(p1/4
√
e+ε) [1], we get this upper bound also

for the maximal value of |A|. According to a result of Burgess and Elliott [2],
if g(p) denotes the least primitive root modulo p then

1
π(x)

∑
p≤x

g(p) ≤ C log2 x log log4 x.

Since n(p) ≤ g(p) this shows that on average the maximal value of |A|
cannot be greater than log6 p.

4. Lower bound. In this section we will show that the maximal value
of |A| is at least Ω(log log p). The proof is based on Weil’s estimation of
character sums.

Theorem 4.1. There exists an A ⊂ Fp such that |A| = Ω(log log p) and
FS(A) avoids the set of quadratic nonresidues.

First we prove a lemma.

Lemma 4.2. Let Q be the set of quadratic residues. Assume that for
some set B we have Q+B = Fp. Then |B| ≥ 1

4 log p.

Proof. Let B = {b1, . . . , bk} and Qi = Q+ bi. Then∣∣∣Fp − k⋃
i=1

Qi

∣∣∣ = |Fp| −
∑
|Qi|+

∑
|Qi ∩Qj | − · · ·

by the inclusion-exclusion formula. Now,

|Qi1∩· · ·∩Qil | =
∑
a∈Fp

1
2l

(
1+
(
a− bi1
p

))
· · ·
(

1+
(
a− bil
p

))
+m(i1, . . . , il)

where |m(i1, . . . , il)| ≤ l/2, since it may occur that a − bij = 0. By Weil’s
theorem [5], ∣∣∣∣ p∑

n=1

(
f(n)
p

)∣∣∣∣ ≤ (t− 1)
√
p

where f(x) =
∏t
i=1(x− ai) and a1, . . . , at are distinct elements of Fp. Mul-

tiplying out the product we see that(
1 +

(
a− bi1
p

))
. . .

(
1 +

(
a− bil
p

))
= 1 +

∑(
f(a)
p

)
where f runs through the 2l − 1 polynomials of the type considered above.
Hence

|Qi1 ∩ · · · ∩Qil | = p/2l +m′(i1, . . . , il)

where |m′(i1, . . . , il)| ≤ 2−l(2l − 1)(l − 1)
√
p + l/2. We can assume that

l ≤ k ≤ √p (if k ≥ √p we are done). Thus |m′(i1, . . . , il)| ≤ k
√
p. It follows
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that

0 =
∣∣∣Fp − k⋃

i=1

Qi

∣∣∣ = p−
k∑
i=1

(
p

2
+m′(i)

)
+
∑(

p

4
+m′(i, j)

)
− · · ·

= p(1− 1/2)k +M

where |M | ≤ 2kk
√
p. Hence p/2k = |M | ≤ 2kk

√
p, thus

√
p < k4k < e2k so

that k ≥ 1
4 log p.

Remark 5. Clearly the same statement holds for the set R of quadratic
nonresidues.

Proof of Theorem 4.1. Let A be a maximal set for which FS(A) avoids
the quadratic nonresidues. We will show that

|A| ≥ 1
log 2

log log p− 2.

Suppose otherwise. Then |FS(A)| ≤ 2|A| ≤ 1
4 log p, thus R − FS(A) 6= Fp so

there exists an s ∈ Fp for which s /∈ R−(ai1+· · ·+ail) for any ai1 , . . . , ail ∈ A.
Hence one can add s to A, which contradicts the maximality of A.

Remark 6. There exists a set B for which |B| = [10 log p] and Q+B
= Fp. Let us choose the elements of B independently at random with prob-
ability P (b ∈ B) = (c log p)/p. Then

P (x /∈ Q+B) =
(p−1)/2∏
i=1

P (x− i2 /∈ B) =
(

1− c log p
p

)(p−1)/2

since we have chosen the elements independently. Hence

P (Q+B 6= Fp) ≤
p−1∑
x=0

P (x /∈ Q+B) = p

(
1− c log p

p

)(p−1)/2

≤ pe−
1
3
c log p.

On the other hand, by the Chernoff inequality [6] we have

P (| |B| − c log p| ≥ λσ) ≤ 2 max(e−λ
2/4, e−λσ/2)

where
1
2
c log p ≤ σ2 = p

c log p
p

(
1− c log p

p

)
≤ c log p.

Choosing c = 4 and λ =
√

8 log p we get

P (| |B| − 4 log p| ≥ 4
√

2 log p) ≤ 2e−2 log p = 2/p2.

We have pe−
4
3

log p = p−1/3. Since 2/p2 + 1/p1/3 < 1 for p ≥ 3, with positive
probability we have |B| ≤ 10 log p and Q+B = Fp .

We have shown that in the case
(

2
p

)
= −1 we have |FS(A)| = 2|A|. Thus

in general probably one cannot get an estimate better than Ω(log log p),
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since after the selection of |A|−1 elements the set of subset sums has 2|A|−1

elements and it cannot be the additive complement of −R, while sets with
more than 10 log p elements are such complements with high probability.
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Eötvös Loránd University
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