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1. Introduction. In [A2], Andrews made an extensive study of par-
ity in partitions. Roughly the second half of his paper (§§6–11) is devoted
to parity indices of partitions. The generating functions which classify par-
titions subject to various constraints according to their parity indices are
given. The main method Andrews employs is to solve functional equations
that derive from the definitions of parity indices. Here, we give purely com-
binatorial constructions of those generating functions. We also prove some
relations between them either bijectively or sieve-theoretically.

A partition λ of a positive integer n is a nonincreasing sequence of positive
integers λ1 ≥ · · · ≥ λk > 0 such that n = λ1 + · · · + λk [A1, Ch. 1].
A pictorial representation for a partition is its Ferrers graph, a left justified
table of dots such that the first row has λ1 dots and so on. For instance,
36 = 9 + 7 + 7 + 5 + 4 + 2 + 2 has the following Ferrers graph:

· · · · · · · · ·
· · · · · · ·
· · · · · · ·
· · · · ·
· · · ·
· ·
· ·

The conjugate λ′ of a partition λ is obtained by reflecting the Ferrers
graph across the main diagonal. For the partition above, the conjugate is

2010 Mathematics Subject Classification: Primary 05A15, 05A17, 05A19; Secondary
11P81.
Key words and phrases: integer partition, parity index, generating function.

DOI: 10.4064/aa144-2-1 [105] c© Instytut Matematyczny PAN, 2010



106 K. Kurşungöz

7 + 7 + 5 + 5 + 4 + 3 + 3 + 1 + 1, and has the following Ferrers graph:

· · · · · · ·
· · · · · · ·
· · · · ·
· · · · ·
· · · ·
· · ·
· · ·
·
·

Generating functions for most classes of partitions require heavy use of
q-factorials, which are defined by

(a; q)n =
n∏

i=1

(1− aqi−1), (a; q)∞ = lim
n→∞

(a; q)n =
∞∏
i=1

(1− aqi−1).

If the base is no other than q, we write (a)n = (a; q)n [A1, §2.2].
We also need to recall the definition of Gaussian polynomials [A1, §3.3]

before we proceed: [
A

B

]
r

=
(qr; qr)A

(qr; qr)B(qr; qr)A−B
,

for 0 ≤ B ≤ A, and r a non-zero integer. If r = 1, then the base can be
omitted, and we write [

A

B

]
=
[
A

B

]
1

.

We will be using the fact that
[

A
B

]
generates partitions into at most B parts,

all ≤ A−B [A1, Theorem 3.1].

2. Basic constructions. Throughout the paper, for a fixed positive
integer n, let λ = (λ1, . . . , λn) be a partition such that λ1 ≥ · · · ≥ λn.
Depending on context, we will impose certain restrictions on the parity of
parts of λ. Also, we let µ = (µ1, . . . , µj) be a partition consisting of distinct
numbers such that n ≥ µ1 > · · · > µj > 0. Let µ′ = (µ′1, . . . , µ

′
r) be the

conjugate partition of µ. It follows that j ≤ n, µ′1 = j, µ′r = 1, and that µ′

contains instances of every integer from 1 to j.

2.1. Lower parity indices in partitions with distinct parts. We
begin with a definition from [A2].
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Definition 2.1. The lower even (resp. odd) parity index of a partition
λ is the length of the longest subsequence of parts in λ that alternate in
parity, where the smallest element in the subsequence is even (resp. odd). It
is zero if all parts are odd (resp. even).

It is clear that the lower even parity index of a partition is the number
of times the parity changes from the smallest part to the largest, beginning
with an even part, plus one for that smallest even element (likewise for the
lower odd parity index).

Example. λ̃ = (15, 13, 12, 8, 5, 4) has lower even parity index 4, since
beginning with the smallest even part (4), and considering the greater parts
in their increasing order, there are parity changes at 5, 8, and 13. Also, λ̃
has lower odd parity index 3.

Theorem 2.2. Let po(r,m, n) (respectively, pe(r,m, n)) denote the num-
ber of partitions of n into m distinct parts with lower odd (respectively, even)
parity index equal to r. Then

Po(y, x; q) =
∑

m,n,r≥0

po(r,m, n)xmyrqn(2.1)

= 1 +
∞∑

n=1

xnqn(n+1)(−y/q; 1/q)n

(q2; q2)n
.

This is [A2, Theorem 7, eq. (7.4)].

Proof. Let λ have distinct even parts. Let λ̃ = (λ̃1, . . . , λ̃n) be such that

(2.2)

λ̃1 = λ1 − µ′1 = λ1 − j,
...

λ̃r = λr − µ′r = λr − 1,

λ̃r+1 = λr+1,

...

λ̃n = λn.

Then the parities of parts of λ̃ counted from the smallest look like

E, . . . , E, O, . . . , O︸ ︷︷ ︸
1 subtracted

, E, . . . , E︸ ︷︷ ︸
2 subtracted

, . . . , (O/E), . . . , (O/E)︸ ︷︷ ︸
j subtracted

.

so that the lower odd parity index of λ̃ is j, and the parts of λ̃ are still
distinct, since from two adjacent even parts, either the same numbers, or
a consecutive pair of numbers, in their respective order, are subtracted.
Moreover, either 1 or 0 is subtracted from the first part, so λ̃, too, has n
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parts. Note that, in comparison to §2.2, adding parts of µ′ to parts of λ does
not serve the purpose. Doing so would introduce leaps of at least 3 when
the parity is switched.

Conversely, given λ̃, a partition into distinct parts with lower odd parity
index j, we can add 1 to the first subsequence of adjacent odd parts, 2 to
the following subsequence of adjacent even parts and so on to recover a
partition λ with distinct even parts, and µ′ whose conjugate is a partition
into j distinct numbers ≤ n.

The result follows, since qn(n+1)/(q2; q2)n generates partitions into dis-
tinct even parts (λ); and (−y/q; 1/q)n generates the partitions into distinct
parts, all ≤ n (µ). The base is 1/q instead of q in the latter factor because we
are subtracting. Each y indicates a parity change, the first to an odd number.
Thus, the exponent of y keeps track of the lower odd parity index.

If we switch the base to q in (−y/q; 1/q)n [GR, eq. (1.2.24)], then [A2,
eq. (7.4)] follows.

There is an alternative way to explain [A2, eq. (7.4)] in its original form.
xnynqn(n+1)/2/(q2; q2)n generates partitions with the largest possible lower
odd parity index. Then for each factor in (−q/y)n, say (1+qj/y) (1 ≤ j ≤ n),
1 leaves the partition intact, and qj/y adds 1 to the first j parts, ruling out
a parity change at the jth part.

Example. Let λ = (18, 16, 14, 10, 6, 4) and µ = (5, 4, 2). Then µ′ =
(3, 3, 2, 2, 1), so that λ̃ = (15, 13, 12, 8, 5, 4). The lower parity index of λ̃
is 3. The Ferrers graphs of the partitions involved are the following (in the
second λ, the ×’s indicate µ′, which has to be deleted in order to obtain λ̃):

λ :

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · ·
· · · · · ·
· · · ·

λ :

× × × · · · · · · · · · · · · · · ·
× × × · · · · · · · · · · · · ·
× × · · · · · · · · · · · ·
× × · · · · · · · ·
× · · · · ·
· · · ·
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λ̃ :

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · ·
· · · · ·
· · · ·

The following equation gives the relation between Pe(y, x; q) and
Po(y, xq; q):

(2.3) Pe(y, x; q) = (1 + xq)Po(y, xq; q).

How to obtain (2.3) [A2, eq. (7.3)] is already explained combinatorially
in that paper.

2.2. Lower parity indices in unrestricted partitions

Theorem 2.3. Let ue(r,m, n) (respectively, uo(r,m, n)) denote the num-
ber of partitions of n into m parts with lower even (respectively, odd) parity
index equal to r. Then

(2.4) Ue(y, x; q) =
∑

m,n,r≥0

ue(r,m, n)xmyrqn = 1 +
∞∑

n=1

xnqn(−yq; q)n

(q2; q2)n
.

Proof. Suppose that λ has all odd parts. Let λ̃ = (λ̃1, . . . , λ̃n) be such
that

(2.5)

λ̃1 = λ1 + µ′1 = λ1 + j,

...

λ̃r = λr + µ′r = λr + 1,

λ̃r+1 = λr+1,

...

λ̃n = λn.

Then the parities of parts of λ̃ counted from the smallest look like

O, . . . , O,E, . . . , E︸ ︷︷ ︸
1 added

, O, . . . , O︸ ︷︷ ︸
2 added

, . . . , (E/O), . . . , (E/O)︸ ︷︷ ︸
j added

,

so that the lower even parity index of λ̃ is j.
Note that, conversely, given a partition λ̃ with lower even parity index j,

we can subtract 1 from the first subsequence of adjacent even numbers,
2 from the following sequence of adjacent odd numbers, and so on, to obtain
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a partition λ into odd numbers, and a partition µ′ in which all parts between
1 and j appear. Moreover, λ̃ and λ are related as in (2.5).

This constructs the generating function, since qn/(q2; q2)n generates par-
titions into odd parts (λ); (−yq; q)n generates partitions into distinct parts,
all ≤ n (µ); and the exponent of y is j = r above, which is the lower even
parity index as well as the number of parts in µ.

Example. We will work backwards in this example. That is, given λ̃
with a certain lower even parity index, we will find a partition λ into odd
parts, and a partition µ with distinct parts.

Let λ̃ = (8, 5, 5, 4, 2, 1, 1). The lower even parity index of λ̃ is 3. By the
above discussion, when we group the adjacent parts that have the same
parity, we have

1, 1, 2, 4︸︷︷︸
1 added

, 5, 5︸︷︷︸
2 added

, 8︸︷︷︸
3 added

.

So, µ′ = (3, 2, 2, 1, 1), µ = (5, 3, 1), and λ = (5, 3, 3, 3, 1, 1, 1), as desired.

In the above construction, if we replace x by x/q, then we will have
converted the lower even parity index into the lower odd parity index. But
then partitions may include zeros counted by x’s. If we multiply by 1−x at
the front, then we will have eliminated those unwanted partitions. It follows
that

(2.6) (1− x)
(

1 +
∞∑

n=1

xn(−yq; q)n

(q2; q2)n

)
=

∑
m,n,r≥0

uo(r,m, n)xmyrqn = Uo(y, x; q).

This is [A2, eq. (8.5)].
Similar to (2.3), there is a nice relation between Ue(y, x; q) and Uo(y, x; q)

given by

(2.7) Ue(y, x; q) =
Uo(y, x; q)

1− xq
.

This is [A2, eq. (8.3)], and the derivation is explained combinatorially in
that paper.

2.3. Upper parity indices in unrestricted partitions. We recall
one more definition from [A2].

Definition 2.4. The upper even (resp. odd) parity index of a partition λ
is the length of the longest subsequence of parts in λ that alternate in parity,
where the largest element is even (resp. odd). It is zero if all parts are odd
(resp. even).
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It is easily seen that the upper even parity index equals the number of
times parts of λ change parity from the largest to the smallest, beginning
with an even one, plus one for that largest even element (similarly for the
upper odd parity index).

Example. λ̃ = (15, 13, 12, 8, 5, 4) has upper even parity index 3, since
beginning with the greatest even part (12), and considering the smaller parts
in their decreasing order, there are parity changes at 5, and 4. Also, λ̃ has
upper odd parity index 4.

In [A2, §10], the following generating functions are defined:

Fe(N, y, x; q) := Fe(N) =
∑

r,m,n≥0

φe(N, r,m, n)yrxmqn,

Fo(N, y, x; q) := Fo(N) =
∑

r,m,n≥0

φo(N, r,m, n)yrxmqn,

where φe(N, r,m, n) (respectively, φo(N, r,m, n)) is the number of partitions
of n into m parts each at most N , with upper even (respectively, upper odd)
parity index equal to r ([A2, eqs. (10.1) and (10.2)]).

It is clear that upon N → ∞, Fe(∞) (respectively, Fo(∞)) generates
partitions into unrestricted and unbounded parts classified according to their
upper even (respectively, odd) parity indices.

From this point onwards, we require that µ has distinct parts < n (but
not ≤ n as in §2.1 and §2.2).

Theorem 2.5.

Fe(∞) =
∑

j,n≥0

xny2j+1q2j(2j+1)/2+2n

(q2; q2)n

[
n

2j + 1

]
(2.8)

+
∑

j,n≥0

xny2jq(2j−1)2j/2+n

(q2; q2)n

[
n

2j

]
.

This is [A2, eq. (10.15)].

Proof. Given a partition λ with even parts, if λ̃ is constructed as in (2.5),
then for µ having 2j parts, the parities of parts of λ̃ beginning with the
smallest look like

E, . . . , E,O, . . . , O︸ ︷︷ ︸
1 added

, . . . , O, . . . , O︸ ︷︷ ︸
2j−1 added

, E, . . . , E︸ ︷︷ ︸
2j added

,

and for µ having 2j + 1 parts, the parities of parts of λ̃ beginning with the
smallest look like

E, . . . , E,O, . . . , O︸ ︷︷ ︸
1 added

, . . . , E, . . . , E︸ ︷︷ ︸
2j added

, O, . . . , O︸ ︷︷ ︸
2j+1 added

,
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where both options have upper even parity index 2j. Now, the partitions
with exactly 2j (respectively 2j+1) distinct parts, all ≤ n−1, are generated
by

q2j(2j+1)/2

[
n− 1

2j

] (
respectively, q(2j+1)(2j+2)/2

[
n− 1
2j + 1

])
.

On the other hand, given a partition λ with odd parts, if λ̃ is constructed
as in (2.5), then for µ having 2j parts, the parities of parts of λ̃ beginning
with the smallest look like

O, . . . , O,E, . . . , E︸ ︷︷ ︸
1 added

, . . . , E, . . . , E︸ ︷︷ ︸
2j−1 added

, O, . . . , O︸ ︷︷ ︸
2j added

,

and for µ having 2j − 1 parts, the parities of parts of λ̃ beginning with the
smallest look like

O, . . . , O,E, . . . , E︸ ︷︷ ︸
1 added

, . . . , O, . . . , O︸ ︷︷ ︸
2j−2 added

, E, . . . , E︸ ︷︷ ︸
2j−1 added

,

where both options have upper even parity index 2j. Now, the partitions
with exactly 2j (respectively 2j−1) distinct parts, all ≤ n−1, are generated
by

q2j(2j+1)/2

[
n− 1

2j

] (
respectively, q(2j−1)2j/2

[
n− 1
2j − 1

])
.

Observe that given λ̃, we can form λ and µ, and the procedures are
inverses of each other, as in (2.5).

Combining these computations in the light of the arguments employed
above, namely adding parts of µ′ to parts of λ, we get

Fe(∞) =∑
n≥0

xnq2n

(q2; q2)n

{∑
j

(
q2j(2j+1)/2

[
n− 1

2j

]
+ q(2j+1)(2j+2)/2

[
n− 1
2j + 1

])
y2j+1

}

+
∑
n≥0

xnqn

(q2; q2)n

{∑
j

(
q2j(2j+1)/2

[
n− 1

2j

]
+ q(2j−1)2j/2

[
n− 1
2j − 1

])
y2j

}

=
∑

j,n≥0

xny2j+1q2j(2j+1)/2+2n

(q2; q2)n

[
n

2j + 1

]
+
∑

j,n≥0

xny2jq(2j−1)2j/2+n

(q2; q2)n

[
n

2j

]
,

by [A1, p. 35, eq. (3.3.4)].
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Theorem 2.6.

(2.9) Fe(2M + 1)

=
∑

j,n≥0

xny2j+1q2j(2j+1)/2+2n

[
M − j + n− 1

n

]
2

[
n

2j + 1

]

+
∑

j,n≥0

xny2jq(2j−1)2j/2+n

[
M − j + n

n

]
2

[
n

2j

]
.

This is [A2, eq. (10.3)].

Proof. In the proof of Theorem 2.5, we can impose an upper bound on
the largest part of λ, and take q2n

[
M+n−1

n

]
2

for partitions into n even parts,
all ≤ 2M , in the first summand (instead of q2n/(q2; q2)n), and qn

[
M+n−1

n

]
2

for partitions into n odd parts, all ≤ 2M − 1, in the second sum (instead of
qn/(q2; q2)n) in (2.8).

Note that, in the first sum, λ̃1 = λ1 + 2j or λ̃1 = λ1 + 2j + 1, and in
the second sum, λ̃1 = λ1 + 2j or λ̃1 = λ1 + 2j − 1 in (2.8). Thus, taking
M ←M − j in the first sum and M ←M − j + 1 in the second, we obtain
the desired generating function.

Making the obvious changes in the above proofs, we can just as well
obtain the following generating functions.

Theorem 2.7.

Fo(∞) =
∑

j,n≥0

xny2j+1q2j(2j+1)/2+n

(q2; q2)n

[
n

2j + 1

]
(2.10)

+
∑

j,n≥0

xny2jq(2j−1)2j/2+2n

(q2; q2)n

[
n

2j

]
.

This is [A2, eq. (10.16)].

Theorem 2.8.

Fo(2M) =
∑

j,n≥0

xny2j+1q2j(2j+1)/2+n

[
M − j + n− 1

n

]
2

[
n

2j + 1

]
(2.11)

+
∑

j,n≥0

xny2jq(2j−1)2j/2+2n

[
M − j + n− 1

n

]
2

[
n

2j

]
.

This is [A2, eq. (10.14)].
The example in §2.2 can be reworked in this context with appropriate

choices for M and j.
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2.4. Upper parity indices in partitions with distinct parts. We
recall two more generating functions from [A2]:

De(N, y, x; q) := De(N) =
∑

r,m,n≥0

δe(N, r,m, n)yrxmqn,

Do(N, y, x; q) := Do(N) =
∑

r,m,n≥0

δo(N, r,m, n)yrxmqn,

where δe(N, r,m, n) (respectively δo(N, r,m, n)) is the number of partitions
of n into m distinct parts each at most N and with upper even (respectively
odd) parity index equal to r ([A2, eqs. (9.1) and (9.2)]).

If we require distinct parts, then we modify the construction in the pre-
ceding section by taking a partition λ into distinct parts, all odd or all even.
Then as described in §2.1 (2.2), we subtract the parts of µ′, the conjugate
of µ, a partition into distinct parts, all < n (but not ≤ n). Then we have
the following generating functions.

Theorem 2.9.

De(∞) =
∑

j,n≥0

xny2j+1q−2j(2j+1)/2+n(n+1)

(q2; q2)n

[
n

2j + 1

]
(−1)

(2.12)

+
∑

j,n≥0

xny2jq−(2j−1)2j/2+n2

(q2; q2)n

[
n

2j

]
(−1)

.

Here,
[

A
B

]
(−1)

is
[

A
B

]
with q replaced by 1/q, since we are subtracting

parts of µ′. This is [A2, eq. (9.16)].
Again, we can impose some bound on the parts, and we can replace

qn(n+1)/(q2; q2)n by qn(n+1)
[

M
n

]
2
, which gives us partitions into n distinct

even parts ≤ 2M in the first sum, and qn2
/(q2; q2)n by qn2[M

n

]
2
, which

yields partitions into n distinct odd parts ≤ 2M − 1 in the second sum in
(2.12). Since we are subtracting 2j or 2j + 1 from λ1 in the first sum, and
2j or 2j − 1 in the second, we substitute M ←M + j in both the first and
the second sum. Thus, we obtain

Theorem 2.10.

De(2M) =
∑

j,n≥0

xny2j+1q−2j(2j+1)/2+n(n+1)

[
M + j

n

]
2

[
n

2j + 1

]
(−1)

(2.13)

+
∑

j,n≥0

xny2jq−(2j−1)2j/2+n2

[
M + j

n

]
2

[
n

2j

]
(−1)

.

Finally, we can repeat the arguments with the appropriate changes to
obtain
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Theorem 2.11.

Do(∞) =
∑

j,n≥0

xny2j+1q−2j(2j+1)/2+n2

(q2; q2)n

[
n

2j + 1

]
(−1)

(2.14)

+
∑

j,n≥0

xny2jq−(2j−1)2j/2+n(n+1)

(q2; q2)n

[
n

2j

]
(−1)

.

This is [A2, eq. (9.15)], and the generating function of partitions into
distinct parts ≤ 2M + 1 is as follows:

Theorem 2.12.

(2.15) Do(2M + 1)

=
∑

j,n≥0

xny2j+1q−2j(2j+1)/2+n2

[
M + j

n

]
2

[
n

2j + 1

]
(−1)

+
∑

j,n≥0

xny2jq−(2j−1)2j/2+n(n+1)

[
M + j

n

]
2

[
n

2j

]
(−1)

.

Noting that
[

A
B

]
(−1)

= q−B(A−B)
[

A
B

]
, we get [A2, eqs. (9.4) and (9.3)]

from (2.13) and (2.15), respectively.
The example in §2.1 can be reworked in this context with appropriate

choices for M and j.

3. Sieves

3.1. Lower odd parity index in partitions with distinct parts.
Here we begin by explaining [A2, eq. (7.5)].

Theorem 3.1.

(3.1) Po(y, x; q) = (−xq)∞
∑
n≥0

(y)n(−xq)n

(q2; q2)n
.

Proof. The factor (−xq)n/(q2; q2)n in the term under the sum generates
exactly n odd numbers λ = (λ1, . . . , λn), not necessarily distinct, all having
factor −1. (yq)n−1 generates a partition µ having distinct parts < n. Each
factor in (yq)n−1, say (1− yqj) for 0 < j < n, either leaves the −1 weighted
numbers intact (1), or adds 1 to the first j parts (another description of the
method in §2.2), creating a parity change exactly at the jth part λj (that
is, λj 6≡ λj+1 (mod 2)), and commutes the factor −1 of λj to y (−yqj). The
remaining factor (1− y) either leaves the smallest part λn (which is odd) as
it is, or commutes its factor from −1 to y. This way, we form λ̃ by adding
all terms of µ′. If −y is chosen in (1− y), then the exponent y accounts for
the lower odd parity index in λ̃, otherwise it gives one less than the lower
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odd parity index of λ̃. And remember that a part λ̃j in λ̃ has factor y if
λ̃j 6≡ λ̃j−1 (mod 2), −1 otherwise for j = 2, . . . , n. Also, λ̃1 has factor either
−1 or y. Finally, (−xq)∞ provides distinct terms, all having weight 1, and
provides no y’s. Note that for any partition generated by the right hand
side, the exponent of y can never exceed the lower odd parity index.

Let β = (β1, . . . , βm) be a partition generated by the right hand side,
along with some factor of y to some power, which, as a matter of fact, is
smaller than or equal to the lower odd parity index of β. It is clear that if a
part is repeated in β, then one and only one of those parts could have come
from (−xq)∞. We agree that it is the one with the largest index, namely the
last of the occurrences.

When βi = βi−1 6= βi+1 for some i between 2 and m (βm+1 = 0), then
there seem to be two possibilities. If βi does not have factor y, then βi

is either contributed by (1 + xqi) with weight 1, or it is contributed by
a term under the sum, with weight −1. Thus, for any composition of β
without βi, βi is introduced both with a plus and a minus sign. Else if βi

has a factor y, then βi−1 cannot assume a factor y. By the construction
above, a factor y is not possible for adjacent parts without a parity change.
Also, by our agreement, βi−1 could not have been contributed by (−xq)∞,
which forces a parity change βi−1 6≡ βi (mod 2) to justify the y factor for
βi, an impossibility. Therefore, β’s with repetitions of parts are annihilated
by the sieve on the right hand side.

We give an example on the fly to clarify the part of the proof above.

Example. Let λ = (7(−), 3(−), 3(−)) be given by (−xq)3/(q2; q2)3, where
subscripts indicate the factors −1. Assume that −y is chosen in (1−y), and
µ = 1 is given. Then λ̃ = (8y, 3(−), 3y). Moreover, assume that we take 1 from
the whole factor (−xq)∞, that is, no contribution from the first factor in the
generating function, so that β = λ̃. On the other hand, given λ = (7(−), 3(−))
by (−xq)2/(q2; q2)2, −y from (1− y), and µ = 1, so that λ̃ = (8(y), 3(y)) and
3 in (1 +xq3) from (−xq)∞, we obtain β = (8y, 3(+), 3y). Therefore, β along
with y2 is generated both by a plus and a minus sign. Although β has lower
odd parity index 2, it is annihilated.

When β has distinct parts, along with some power of y, for a βi having a
factor of y, if there are parts βi−1, βi−2, . . . , βi−s none having a factor of y,
such that βi and βi−s have the same parity, then βi−s could have come from
(−xq)∞ with a plus sign, or from a term in the sum with minus sign. Such
β’s are annihilated by the sieve on the right hand side. This leaves us β’s
along with some power of y, whose single factors y are given to βi’s for which
βi−1 has opposite parity, and among the parts greater than the largest βi to
receive factor y, there are none with the same parity as βi.
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If the exponent of y is strictly less than the lower odd parity index
of β, then there are exactly two distributions of y’s. In one, β1 receives y,
and in the other βi receives y, β1, . . . , βi−1 receive none. In the latter case,
β1, . . . , βi−1 have opposite parity to βi. Now, in exactly one of the cases, the
smallest part to receive a y is even, and in the other, it is odd. If it is odd,
then β has no parts with factor −1, hence it is counted as 1. Else if it is
even, then by construction, at least one odd part smaller than the smallest
even part with a factor y has factor −1, forcing β to be counted −1. The
above mentioned odd part exists, as discussed above, to receive 1 from the
factor (1− y) in the sum. In total, β is annihilated.

Therefore, only β’s accompanied by a power of y equal to the lower odd
parity index survive, and counted as 1. This concludes the proof.

Example. Given β = (11, 10, 8, 7, 5, 4, 3) along with y3, we need to give
the factors y to parts that alternate in parity in increasing order. Suppose
that we chose

β = (11, {10}, 8y, 7, 5y, 4y, 3),

but we did not indicate the source of the other parts, which can be either
(−xq)∞, or a term inside the sum, without factors y. Note that the 10 in
curly braces can be generated as 10(−) or 10(+). So that no matter what
the signs of the other parts are, β is generated with plus sign as well as
minus sign the same number of times. This is the case whenever the smaller
of a pair of parts of the same parity has factor y, and there are no other
y’s in between, hence no y for the larger part. Thus, there are only two
distributions of y’s for this β. The first one is

β = (11y, 10y, 8, 7y, 5, 4, 3).

For this possibility, 8 cannot be generated by a minus factor, since in that
case 10 could not have received a y by construction. (. . . , 10y, 8(−), . . .) in β
means that 10 and 8 are adjacent parts without parity change in between,
so that the larger part 10y having factor y is not possible in the first place.
A similar reasoning applies for 5 and 3, so that all 8, 5 and 3 have plus
factors. For 4, it cannot have a minus factor because in that case it would
be the smallest number in λ̃, the part of β coming from a term inside the
sum. However, that smallest term with a minus factor can only be an odd
number by construction. Therefore, β as such is generated exactly once with
plus sign.

The second possibility is

β = (11, 10y, 8, 7y, 5, 4y, 3).

As discussed above, 8 and 5 have plus factors. 11 on the other hand has a
plus sign for a different reason. Were 11 contributed by a term under the
sum, i.e. if β = (11(−), 10y), we should have a factor y for 11, thanks to the
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parity change in between. On the other hand, if the smallest part to receive
a y is an even number, then there must be a smaller odd number, which is
the smallest part of λ̃, which evidently has a minus factor. So, 3 here has a
minus factor. β here is generated once by a minus sign, therefore it is finally
annihilated.

However, if β is accompanied by y5, then the only surviving distribution
of y’s would be

β = (11y, 10y, 8, 7y, 5, 4y, 3y),

which is generated exactly once with plus sign. Observe that the lower odd
parity index of β is 5.

3.2. Lower odd parity index in unrestricted partitions. Here we
explain a variant of [A2, eq. (8.4)].

Theorem 3.2.

(3.2) Uo(y, x; q) =
1

(xq)∞

∑
n≥0

(−x)nqn2
(y; 1/q)n

(q2; q2)n
.

This is converted back to [A2, eq. (8.4)] by changing the base to q in
(y; 1/q)n [GR, (1.2.24)].

Proof. The factor (−x)nqn2
/(q2; q2)n under the sum generates partitions

λ into distinct odd parts, each having factor −1. The factor (y/q; 1/q) gen-
erates partitions µ into distinct parts < n. We form λ̃ by subtracting parts
of µ′ from parts of λ as described in §3.1 with the following specifications.
A factor in (y/q; 1/q), say (1−y/qi) for 0 < i < n, either leaves the partition
intact (1), or subtracts 1 from the first j parts introducing a parity change
at λj , namely λj 6≡ λj+1 (mod 2), and commutes the factor of λj from −1 to
y (−y/qi). (1− y) either leaves the smallest part as it is, or changes its fac-
tor from −1 to y. So that the exponent of y accompanying λ̃ gives us either
the lower parity index of λ̃, or one less than that, depending on the factor
of the smallest part λn, which is odd. Finally, 1/(xq)∞ brings unrestricted
partitions, all parts having factor 1.

Let β = (β1, . . . , βm) be a partition generated by the right hand side,
along with a factor of y whose exponent is at most the lower odd parity
index of β.

We can pick at least as many distinct parts of β as the exponent of y
that alternate in parity, and argue that those parts come from the sum, each
having factor −1 or y. This also introduces a distribution of y’s among parts
of β. We agree that the first part to appear among equal parts (the one with
the smallest index) can possibly have come from the infinite sum, to fix an
order of parts coming from the factor 1/(xq)∞ or from the sum.
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The argument from §3.1 then applies almost word for word, except that
β’s are not required to have distinct parts. For a βi having a factor of y,
if there are parts βi−1, βi−2, . . . , βi−s, none having a factor of y, such that
βi 6= βi−s have the same parity, βi−s could have come from 1/(xq)∞ with a
plus sign, or from a term in the sum with minus sign. Such β’s are annihilated
by the sieve on the right hand side. This leaves us β’s along with some power
of y, whose single factors y are given to βi’s for which βi−1 has opposite
parity, and among the parts greater than the largest βi to receive factor y,
there are none with the same parity as βi.

If the exponent of y is strictly less than the lower odd parity index
of β, then there are exactly two distributions of y’s. In one, β1 receives y,
and in the other βi receives y, β1, . . . , βi−1 receive none. In the latter case,
β1, . . . , βi−1 have opposite parity to βi. Now, in exactly one of the cases, the
smallest part to receive a y is even, and in the other, it is odd. If it is odd,
then β has no parts with factor −1, hence it is counted as 1. Else if it is
even, then by construction at least one odd part smaller than the smallest
even part with a factor y has factor −1, forcing β to be counted −1. In total,
β is annihilated.

Therefore, only β’s accompanied by a power of y equal to the lower odd
parity index survive and are counted as 1. This establishes the sieve.

Example. We return to β = (11, 10, 8, 7, 5, 4, 3) from the preceding sec-
tion, this time accompanied by y1 = y. Again, most of the alternatives to
place y vanish in the sieve, and two remain to discuss. The first one is

β = (11y, 10, 8, 7, 5, 4, 3).

Here, no part can assume a minus factor, so β as such is generated once
with plus sign. The second one is

β = (11, 10y, 8, 7, 5, 4, 3).

Since the smallest part to receive factor y is even, there is at least one smaller
odd part (there are three). At least one of them must receive a minus factor.
The possibilities are

7(−), 5(−), 3(−), counted as − ;

7(−), 5(−), 3(+), counted as + ;

7(−), 5(+), 3(−), counted as + ;

7(−), 5(+), 3(+), counted as − ;

7(+), 5(−), 3(−), counted as + ;

7(+), 5(−), 3(+), counted as − ;

7(+), 5(+), 3(−), counted as − .
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Thus, β is generated exactly once with a minus sign when 10 receives a
minus factor. Together with the former option, β is annihilated.

Note that exactly one among equal parts could receive factor y or (−).
All others come with (+) sign. Hence, the discussion would be just the same
for β0 = (11, 11, 11, 10, 8, 8, 7, 5, 5, 5, 5, 4, 3, 3) along with y1 = y.

We remark that there is a similar way to prove [A2, eq. (8.4)] in the form
it is given:

Uo(y, x; q) =
1

(xq)∞

∑
n≥0

xnynqn(n+1)/2(1/y)n

(q2; q2)n
.

Here, xnynqn(n+1)/2/(q2; q2)n generates a partition with full lower parity
index, and we interpret (1/y)n as ruling out parity changes, and replacing
y’s with −1’s. This method is a bit more involved. The argument developed
above seems to be more instructive.

3.3. An unexpected relation. Here we prove [A2, eq. (8.13)].

Theorem 3.3.

(3.3) Uo(y, x; q) =
1

(xq)∞
Po(−yq,−x/q; q).

Proof. Given a partition λ = (λ1, . . . , λn) enumerated by Po(y, x; q),
assume that the factors y are assigned to λi’s for which λi+1 has opposite
parity. Now, replacing y by −yq and x by −x/q subtracts 1 from the parts
having no factor y and gives them factors −1. The parts having factor y are
intact. Call the transformed partition λ̃. If the smallest part is 1, it had the
factor y, so that λ̃ has n distinct parts.

The exponent of y is equal to the lower odd parity index of λ̃, or one less
than that. To see this, note that the parts without factor y that fall between
two parts with factor y are all of the same parity as the smaller end before
the decrease, and of the same parity as the larger end afterwards. The parts
λ1, . . . , λs−1 without a factor y followed by λs with factor y must all be of
the same parity as λs. Hence a parity change occurs after the decrease which
is not accounted for by a y unless λ1 and λ2 are of opposite parities. This
is the place where the lower parity index of λ̃ increases by one. The parts
λn, . . . , λn−r+1 without factors y must all be even while λn−r with factor
y must be odd. After the decrease, λ̃n, . . . , λ̃n−r+1 become odd with λ̃n−r

having factor y also odd. If all parts are even, then the two previous cases
coincide, and the lower odd parity index increases by one. Note that, unlike
in §3.1 and §3.2, λ̃i assumes a factor y precisely when λ̃i−1 is of the opposite
parity for i between 2 and n, and λ̃1 has a factor y when λ̃2 and λ̃1 are of
opposite parities and λ̃2 has factor y, in which case λ1 had a y to begin with.
Otherwise λ̃1 may have either y or (−). All other parts have minus factors.
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Finally, λ̃ is augmented by 1/(xq)∞, which brings unrestricted partitions.
Among the parts that are equal, we agree that the last occurrence (the one
with the largest index) could have come from the infinite sum, and the
following occurrences come from the infinite product; or else all occurrences
come from the infinite product. Note that exactly one among the same parts
is subject to having factor y or (−).

Let β = (β1, . . . , βm) be a partition given by the right hand side along
with some power of y. By the remark in the above paragraph, it suffices to
pick one instance of repeated parts in β. So, without loss of generality we
may assume that β has distinct parts. It is immediate that the lower odd
parity index of β is at least as large as the exponent of y. Unlike in §3.1 and
§3.2, the smallest part to receive y must be odd by construction.

We employ a slightly different sieve here. Whenever β is given along
with some power of y, there are two cases where β is annihilated. First,
given a distribution of y’s, for a βi having factor y, there is βi+s of the same
parity without factor y, and βi+1, . . . , βi+s−1 have no y’s either. In this case,
βi+s could have come from the second factor on the right hand side of (3.3),
hence with a minus sign, or from the first factor with a plus sign. Or else, for
the smallest βi to receive a factor y, there is a smaller βi−s of the opposite
parity. In this case, βi−s could have been the largest part λ̃1 with the minus
factor as discussed above, or βi−s could have been contributed by 1/(xq)∞,
hence having plus sign. In either option, β is annihilated.

It is evident that when the accompanying power of y has exponent
strictly less than the lower odd parity index of β, we fall into one of the
cases above, thus β is annihilated. Also, for that exponent equal to the
lower odd parity index of β, there is a unique distribution of y’s so as to
avoid the former case above, which assigns a plus sign to β. In other words,
β survives along with a power of y the exponent of which equals the lower
even parity index, and when the y’s are assigned to βi’s for which βi+1 is of
the opposite parity (βm+1 = 0).

Example. We continue with the same β = (11, 10, 8, 7, 5, 4, 3) along
with y3. For the following distribution of y’s:

β = (11, 10, 8, 7, 5y, 4y, 3y),

both 8 and 10 may be contributed as parts of λ̃, or parts from 1/(xq)∞.
Hence both may have plus or minus factors. β as such is annihilated. Other
distributions may be considered, but all will be generated with minus signs
as many times as they are generated with plus signs.

For β = (11, 10, 8, 7, 5, 4, 3) along with y5 (note β has lower odd parity
index 5), we consider the surviving distribution of y’s in §3.1 and §3.2,

β = (11y, 10y, 8, 7y, 5, 4y, 3y).
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Here, 8 has no y’s, and it immediately follows 10, which does have factor y.
By the argument above, 8 could have been contributed as a part of λ̃, hence
having a minus factor, or by 1/(xq)∞ with plus sign, so β as such is annihi-
lated by the sieve in this section. The same applies for 5 following 7. In case
8 and 5 are parts of λ̃, we have no contribution at all from 1/(xq)∞, so that

λ̃ = (11y, 10y, 8(−), 7y, 5(−), 4y, 3y).

To get λ, we just remove the minus factors from the parts that have it, and
add 1 to them, as described. Thus,

λ = (11y, 10y, 9, 7y, 6, 4y, 3y).

However, if we take

β = (11y, 10, 8y, 7, 5y, 4y, 3y),

we fall into neither case discussed, so neither 10 nor 7 could have been
generated with minus signs. In this case, the parts 10 and 7 come from
1/(xq)∞.

4. Partitions with ample part size. We recall another definition
from [A2].

Definition 4.1. A partition λ is said to have even (resp. odd) ample
part size if each part λi is larger than the upper even (resp. odd) parity
index of λ.

Theorem 4.2.

(4.1) %e(y, x; q) =
∑
n≥0

xnqn2
(−yq; q)n

(q2; q2)n

generates partitions into distinct parts with even ample part size, where the
exponent of x keeps track of the number of parts, and the exponent of y the
upper even parity index.

Proof. Now, xnqn2
/(q2; q2)n generates partitions λ = (λ1, . . . , λn) with

distinct odd parts. Originally, the upper even index is zero, there is noth-
ing to prove. For each factor (1 + yqi), 1 ≤ i ≤ n, we add 1 to parts
λn, λn−1, . . . , λn−(i−1), so that the parts of λ are still distinct, but there is a
parity change λi 6≡ λi−1 (mod 2). Observe that if λi0 is the largest part to
be altered, then it becomes even. So that the exponent of y indeed counts
the upper even parity index. Also, each parity change or each introduction
of a factor y adds 1 to λn ≥ 1. Therefore, λ̃n, the transformed λn, is always
greater than the upper even parity index, hence so are the other parts.
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Conversely, given a partition into distinct parts with even ample part
size, we can subtract 1s from sufficiently many smallest parts from the par-
tition λ̃ for each parity change, so as to get λ, a partition into distinct
odd numbers. At each step, we recover a yqi. The procedure is clearly re-
versible.

Example. In §2.1, λ̃ = (15, 13, 12, 8, 5, 4) has upper even parity index 3,
and all parts are greater than 3, so that λ̃ has ample part size. The picture
is

λ̃ = (15, 13, 12, 8︸︷︷︸
1 added

, 5︸︷︷︸
2 added

, 4︸︷︷︸
3 added

),

so that
λ = (15, 13, 11, 7, 3, 1),

a partition into distinct odd parts, and µ′ = (3, 2, 1, 1) (hence µ = (4, 2, 1)),
as claimed.

Note that upper even parity index is even when the smallest part is odd,
and it is odd when the smallest part is even. This shows that the inequality
is strict in the definition. This fact has been communicated by Andrews to
the author, but it is not explicitly included in [A2].

In the above argument, if we replace xnqn2
/(q2; q2)n by

[
N
n

]
2
qn2

xn, then
we get λ = (λ1, . . . , λn) as a partition into distinct odd parts ≤ 2N − 1. So
that λ̃1 ≤ 2N , since λ1 ≤ 2N − 1, and it may be added at most 1, coming
from the factor (1 + yqn). This yields

Theorem 4.3.

(4.2) ρe(N, y, x; q) =
N∑

n=0

[
N

n

]
2

qn2
xn(−yq; q)n

generates partitions into distinct parts with even ample part size, each at
most 2N , where the exponent of x keeps track of the number of parts, and
the exponent of y the upper even parity index.

This is [A2, eq. (11.2)].
If we begin with partitions into distinct even parts, and interpret the

factor (−yq; q)n as above, we get the generating function for partitions into
distinct parts with odd ample part size, and its variant where parts are
bounded. Here, there are instances where the equality can hold in the defi-
nition, so we emphasize that the inequality is strict. For instance, the only
partition of 1 is not counted as having odd ample part size. As argued in [A2],
this is equivalent to replacing x by xq in the above generating functions.

Thus, we obtain:
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Theorem 4.4.

(4.3) %o(y, x; q) =
∑
n≥0

xnqn(n+1)(−yq; q)n

(q2; q2)n

generates partitions into distinct parts with odd ample part size.

Theorem 4.5.

(4.4) ρo(N, y, x; q) =
N∑

n=0

[
N

n

]
2

qn(n+1)xn(−yq; q)n

generates partitions into distinct parts ≤ 2N + 1 with odd ample part size.

In both (4.3) and (4.4), the exponent of x keeps track of the number of
parts, and the exponent of y the upper odd parity index.
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