On solutions of polynomial congruences

by

SANOLI GUN (Chennai)

1. Introduction. An interesting problem in number theory is to find solutions of polynomial congruences. In a recent work [9], Ram Murty considered the polynomial congruence $x^q \equiv a \pmod{p}$, where p is a prime, q is a divisor of $p - 1$ and $a^{(p-1)/q} \equiv 1 \pmod{p}$. He showed that the smallest solution x_0 of the congruence is $\ll p^{3/2}(\log p)/q$. In this paper, we consider consecutive solutions of that congruence when $a = 1$. We show that for a natural number M, the above polynomial congruence has M consecutive solutions for sufficiently large primes p. More precisely, we prove

Theorem 1.1. Let p be an odd prime and M be a natural number such that $p > 2^{4M}M^4$. Further, let q be a prime divisor of $p - 1$ with $q > (p - 1)^{1-1/4M}$. Then the congruence

\[x^q \equiv 1 \pmod{p} \tag{1} \]

has M consecutive solutions.

We also consider two-fold generalizations of the question investigated by Ram Murty. In one direction, we study polynomial congruences of the type

\[x^q \equiv a \pmod{d}, \]

where d is not necessarily prime, and in another direction, we consider congruences of the form

\[f(x)^q \equiv a \pmod{p}, \quad (a, p) = 1, \]

where $f(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$. In particular, we prove the following theorems:

Theorem 1.2. Let q,d be natural numbers such that $q \mid \phi(d)$. Also let $n(q)$ be the number of elements in $(\mathbb{Z}/d\mathbb{Z})^*$ whose order divides q. Suppose that the polynomial congruence

\[x^q \equiv a \pmod{d} \tag{2} \]

\[2010 \text{ Mathematics Subject Classification: 11T06, 11L40, 11T24.} \]

\[\text{Key words and phrases: polynomial congruences, character sums.} \]
has a solution. Then the smallest solution x_0 satisfies

$$|x_0| \ll \frac{d^{1/2} \phi(d) \log d}{n(q)}.$$

Note that Theorem 1.2 is non-trivial for $n(q) \gg d^{1/2+\varepsilon}$. As an immediate consequence, we have

Corollary 1.3. Let p be an odd prime, $d = p^n, 2p^n$ and $q | \phi(d)$. Suppose that the polynomial congruence

$$x^q \equiv a \pmod{d} \tag{3}$$

has a solution. Then the smallest solution x_0 satisfies

$$|x_0| \ll \frac{d^{3n/2} n \log p}{q}.$$

Remark 1.1. The case $n = 1$ in the above corollary is a theorem of Ram Murty (see [9]).

Theorem 1.4. Let p, q be primes such that $q \mid (p - 1)$. Also let $f(x)$ be a polynomial over $\mathbb{Z}/p\mathbb{Z}$ which has m distinct roots and $(\ell, \deg f) = 1$ for any $\ell \mid (p - 1)/q$. Suppose that the polynomial congruence

$$f(x)^q \equiv a \pmod{p}, \quad (a, p) = 1, \tag{4}$$

has a solution. Then the smallest solution x_0 satisfies

$$|x_0| \ll \frac{m p^{3/2} \log p}{q}.$$

Remark 1.2. Putting $f(x) = x$ in Theorem 1.4, we again recover the theorem of Ram Murty (see [9]). We also refer to a related article due to Hudson [6].

Next we study the distribution of the roots (if they exist) of the congruence $x^q \equiv a \pmod{d}$ with $(a, d) = 1$. We list the $n(q)$ roots as $r_1 < \cdots < r_{n(q)} < d$. In this context, we have the following theorem:

Theorem 1.5. Fix $\alpha \in (0, 1)$, $\delta > 0$ and a natural number d. Suppose that $q \mid \phi(d)$ and $n(q) > d^\delta$. Then there exists an $\varepsilon(\delta) > 0$ such that

$$\#\{r_i \mid r_i^q \equiv a \pmod{d}, 0 < r_i < \alpha d, 1 \leq i \leq n(q)\} = n(q)\alpha + O(n(q)d^{-\varepsilon(\delta)}).$$

In particular, if there is a solution of $x^q \equiv a \pmod{d}$, then the smallest solution x_0 is $\ll d^{1-\varepsilon(\delta)}$.

As an immediate corollary, we have

Corollary 1.6. Fix $\alpha \in (0, 1)$, $\delta > 0$ and $d = p^n, 2p^n$ with p odd prime. Suppose that $q \mid \phi(d)$ and $q > d^\delta$. Then there is $\varepsilon(\delta) > 0$ such that

$$\#\{r_i \mid r_i^q \equiv a \pmod{d}, 0 < r_i < \alpha d, 1 \leq i \leq q\} = q\alpha + O(qd^{-\varepsilon(\delta)}).$$
2. Preliminaries. Throughout the paper p is prime, M, V, ℓ, q, d are natural numbers, χ_0 is the principal character modulo p or d depending on the context. First we shall need the following estimate due to Weil [11].

Theorem 2.1 (Weil). For an integer ℓ satisfying $2 \leq \ell < p$ and for any non-principal characters $\chi_1, \ldots, \chi_\ell$ and distinct $a_1, \ldots, a_\ell \in \mathbb{Z}/p\mathbb{Z}$, we have

$$\left| \sum_{n=1}^{p} \chi_1(n+a_1) \cdots \chi_\ell(n+a_\ell) \right| \leq (\ell - 1)\sqrt{p}.$$

For $\ell = 2$, Davenport [4] proved the above bound. Note that when $\ell = 1$, the above sum is 0. Using this, we prove the following lemma.

Lemma 2.2. Let $N(p, M)$ denote the number of M consecutive solutions of

$$x^q \equiv 1 \pmod{p}.$$

Then

$$\left| N(p, M) - p \left(\frac{q}{p-1} \right)^M \right| \leq 2^M M\sqrt{p}.$$

Proof. Write

$$N(p, M) = \sum_{n=1}^{p} \prod_{j=0}^{M-1} \left(\frac{1}{p-1} \sum_{\chi} \bar{\chi}(1) \chi((n+j)^q) \right),$$

where the inner sum is over all characters modulo p. Dividing the sum into two parts, with $\chi^q = \chi_0$ and $\chi^q \neq \chi_0$, we have

$$N(p, M) = (p-1)^{-M} \sum_{n=1}^{p} \prod_{j=0}^{M-1} \left(q + \sum_{\chi: \chi^q \neq \chi_0} \chi((n+j)^q) \right) = p \left(\frac{q}{p-1} \right)^M + A,$$

where

$$A = \frac{1}{(p-1)^M} \sum_{\ell=1}^{M} \sum_{n=1}^{p} q^{M-\ell} \sum_{0 \leq j_1 < \cdots < j_\ell \leq M-1} \left(\sum_{\chi_{m_1}, \ldots, \chi_{m_\ell} \chi^q \neq \chi_0} \prod_{i=1}^{\ell} \chi_{m_i}^q(n+j_i) \right) = \sum_{\ell=1}^{M} \left(\frac{q}{p-1} \right)^{M-\ell} \sum_{0 \leq j_1 < \cdots < j_\ell \leq M-1} \left(\sum_{\chi_{m_1}, \ldots, \chi_{m_\ell} \chi^q \neq \chi_0} \prod_{i=1}^{\ell} \chi_{m_i}^q(n+j_i) \right).$$

Hence by using the estimate of Weil (Theorem 2.1), one has

$$|A| \leq M\sqrt{p} \sum_{\ell=1}^{M} \left(\frac{M}{\ell} \right) \left(\frac{q}{p-1} \right)^{M-\ell} \leq 2^M M\sqrt{p}.$$

We refer to [5] where the estimate of Weil has been exploited in another context. We shall need the following generalization of the Pólya–Vinogradov theorem for proving Theorems 1.2 and 1.4.

Lemma 2.3. If $\chi (\neq \chi_0)$ is an ℓth order character to the prime modulus p and if $f(x)$ is a polynomial over $\mathbb{Z}/p\mathbb{Z}$ which has m distinct roots and $(\ell, \deg f) = 1$, then

$$\sum_{n \leq T} \chi(f(n)) \ll m\sqrt{p}\log p \quad \text{for } 1 \leq T \leq p.$$

To prove Lemma 2.3, we need the following consequence of the works of Weil [12, 13] (see also [2] and page 45 of [10]).

Theorem 2.4. Let p be prime and $\chi (\neq \chi_0)$ be a multiplicative character of order ℓ with $\ell | (p-1)$. Suppose that $f(x)$ is a polynomial over $\mathbb{Z}/p\mathbb{Z}$ which has m distinct roots and $(\ell, \deg f) = 1$. Then

$$\left| \sum_{n=1}^{p} \chi(f(n))e(an/p) \right| \leq m\sqrt{p},$$

where $e(x) = e^{2\pi ix}$.

Proof of Lemma 2.3 Write

$$S(f, a) = \sum_{n=1}^{p} \chi(f(n))e(an/p).$$

Now

$$\sum_{n \leq T} \chi(f(n)) = \sum_{n=1}^{p} \chi(f(n)) \sum_{b \leq T} \left(\frac{1}{p} \sum_{a=1}^{p} e(a(n-b)/p) \right)$$

since

$$\frac{1}{p} \sum_{a=1}^{p} e(am/p) = \begin{cases} 1 & \text{if } m \equiv 0 \pmod{p}, \\ 0 & \text{otherwise.} \end{cases}$$

By interchanging the summations in (5), we have

$$\sum_{n \leq T} \chi(f(n)) = \frac{1}{p} \sum_{a=1}^{p} \sum_{n=1}^{p} \chi(f(n))e(an/p) \sum_{b \leq T} e(-ab/p)$$

$$= \frac{1}{p} \sum_{a=1}^{p} S(f, a) \sum_{b \leq T} e(-ab/p) \ll m\sqrt{p} \sum_{a=1}^{p} \frac{1}{a},$$

by using Theorem 2.4 and the fact that

$$\left| \sum_{b \leq T} e(-ab/p) \right| \leq \frac{1}{|\sin(\pi a/p)|} \ll \frac{p}{a}. $$
Hence
\[\sum_{n \leq T} \chi(f(n)) \ll m \sqrt{p} \log p. \]

To prove Theorem 1.5, we need the following Erdős–Turán inequality (see page 8 of [8]) and a theorem of Bourgain [1].

Lemma 2.5. Let \(\{x_n\} \) be a sequence of real numbers in (0, 1). For \(\alpha \in (0, 1) \) and \(V \in \mathbb{N} \), let \(N(V, \alpha) = \# \{n \leq V \mid 0 \leq x_n < \alpha \} \). Then, for any natural numbers \(M \), one has
\[
|N(V, \alpha) - V\alpha| \leq \frac{V}{M + 1} + 3 \sum_{m=1}^{M} \frac{1}{m} \left| \sum_{n \leq V} e(mx_n) \right|.
\]

Remark 2.1. The constant 3 in the above estimate has been improved to 1 by Mauduit, Rivat and Sárközy [7]. The original inequality without explicit constants is due to Davenport [4].

Theorem 2.6 (Bourgain). Fix \(\delta > 0 \) and a natural number \(d \). For any subgroup \(H \) of \((\mathbb{Z}/d\mathbb{Z})^* \) with order \(> d^\delta \), there is an \(\varepsilon'(\delta) > 0 \) such that
\[
\left| \sum_{x \in H} e(ax/d) \right| \ll |H|d^{-\varepsilon'(\delta)}.
\]

3. Proof of the theorems

Proof of Theorem 1.1. Using Lemma 2.2, we have
\[
p \left(\frac{q}{p-1} \right)^M - N(p, M) \leq \left| N(p, M) - p \left(\frac{q}{p-1} \right)^M \right| \leq 2^M \sqrt{p}.
\]

Thus
\[
\sqrt{p} \left(\frac{q}{p-1} \right)^M > 2^M M
\]
implies \(N(p, M) > 0 \). By hypothesis, we have
\[
\frac{q}{p-1} > \frac{1}{(p-1)^{1/4M}} > \frac{1}{p^{1/4M}}.
\]
Hence (6) is satisfied if \(p > 2^{4M} M^4 \).

Remark 3.1. Note that the given conditions in Theorem 1.1 ensure
\[
q > (p-1)^{1-1/4M} \geq (2^{4M} M^4)^{1-1/4M} \geq 2^{2M} M^2.
\]

Proof of Theorem 1.2. Write
\[
S = \sum_{n \leq T} \frac{1}{\phi(d)} \sum_{\chi} \bar{\chi}(a) \chi(n^q),
\]
where the inner sum is over all characters modulo d. Since
\[
\sum_{\chi} \bar{\chi}(a) \chi(n^q) = \begin{cases} \phi(d) & \text{if } n^q \equiv a \pmod{d}, \\ 0 & \text{otherwise}, \end{cases}
\]
S counts all solutions of $[3]$ up to T. Further,
\[
S = \sum_{n \leq T} \frac{1}{\phi(d)} \left\{ \sum_{\chi : \chi^q = \chi_0} \bar{\chi}(a) \chi(n^q) + \sum_{\chi : \chi^q \neq \chi_0} \bar{\chi}(a) \chi(n^q) \right\},
\]
where χ_0 is the principal character modulo d. Thus, we have
\[
S = \frac{n(q)T}{\phi(d)} + \frac{1}{\phi(d)} \sum_{\chi \neq \chi_0} \bar{\chi}(a) \sum_{n \leq T} \chi^q(n)
\]
\[
= \frac{n(q)T}{\phi(d)} + O(\sqrt{d} \log d),
\]
by Pólya–Vinogradov (see page 143 of [3]). From this, we see that the main term is greater than the error term provided
\[
T \gg \frac{d^{1/2} \phi(d) \log d}{n(q)}.
\]
Hence the theorem. ■

Proof of Theorem 1.4 Write
\[
S = \sum_{n \leq T} \frac{1}{p-1} \sum_{\chi} \bar{\chi}(a) \chi(f(n)^q),
\]
where the inner sum is over all characters modulo p. Then S counts the number of solutions of $[4]$ up to T. As before, by dividing the inner sum into two parts depending on whether $\chi^q = \chi_0$ or not, we get
\[
S = \frac{qT}{p-1} + \frac{1}{p-1} \sum_{\chi : \chi^q \neq \chi_0} \bar{\chi}(a) \sum_{n \leq T} \chi^q(f(n)).
\]
By the given hypothesis, $(\text{order}(\chi^q), \deg f) = 1$. Hence by Theorem 2.3 we have
\[
S = \frac{qT}{p-1} + O(m \sqrt{p} \log p).
\]
This completes the proof. ■

Proof of Theorem 1.5 List the roots of the polynomial congruence
\[
x^q \equiv a \pmod{d}, \quad (a, d) = 1,
\]
as \(r_1 < \cdots < r_{n(q)} \). Consider the sequence \(\{r_i/d\} \) of rational numbers in \((0, 1)\). Then by the Erdős–Turán inequality (Lemma 2.5), we have

\[
|N(n(q), \alpha) - n(q)\alpha| \leq \frac{n(q)}{M + 1} + 3 \sum_{m=1}^{M} \frac{1}{m} \left| \sum_{i \leq n(q)} e\left(\frac{mr_i}{d} \right) \right|
\]

for any \(\alpha \in (0, 1) \) and \(M \geq 1 \). Consider the subgroup

\[H = \{ n \in (\mathbb{Z}/d\mathbb{Z})^* \mid n^q \equiv 1 \pmod{d} \} \]

of \((\mathbb{Z}/d\mathbb{Z})^*\). Note that all roots of (7) lie in a coset \(bH \) with \(b^q \equiv a \pmod{d} \) of \(H \). Hence by the theorem of Bourgain (Theorem 2.6), we have

\[
\left| \sum_{i \leq n(q)} e\left(\frac{mr_i}{d} \right) \right| = \left| \sum_{h \in H} e\left(\frac{mbh}{d} \right) \right| \ll n(q)d^{-\varepsilon'(\delta)}.
\]

Hence by choosing \(M \gg d^{\varepsilon'(\delta)} \), we see that

\[
\# \{ r_i \mid r_i^q \equiv a \pmod{d}, 0 < r_i < \alpha d, 1 \leq i \leq n(q) \} = N(n(q), \alpha) = n(q)\alpha + O(n(q)d^{-\varepsilon(\delta)}).
\]

Acknowledgements. It is my pleasure to thank Ram Murty for sending me his paper [9] which initiated this work and also for many valuable suggestions. I would also like to thank Purusottam Rath and the referee for their valuable comments.

References

Sanoli Gun
Institute of Mathematical Sciences
C.I.T. campus
Taramani, Chennai 600 113, India
E-mail: sanoli@imsc.res.in

*Received on 13.6.2009
and in revised form on 20.1.2010*