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1. Introduction. An interesting problem in number theory is to find
solutions of polynomial congruences. In a recent work [9], Ram Murty con-
sidered the polynomial congruence xq ≡ a (mod p), where p is a prime, q is
a divisor of p − 1 and a(p−1)/q ≡ 1 (mod p). He showed that the smallest
solution x0 of the congruence is � p3/2(log p)/q. In this paper, we consider
consecutive solutions of that congruence when a = 1. We show that for
a natural number M, the above polynomial congruence has M consecutive
solutions for sufficiently large primes p. More precisely, we prove

Theorem 1.1. Let p be an odd prime and M be a natural number such
that p > 24MM4. Further, let q be a prime divisor of p − 1 with q >
(p− 1)1−1/4M. Then the congruence

xq ≡ 1 (mod p)(1)

has M consecutive solutions.

We also consider two-fold generalizations of the question investigated by
Ram Murty. In one direction, we study polynomial congruences of the type

xq ≡ a (mod d),

where d is not necessarily prime, and in another direction, we consider con-
gruences of the form

f(x)q ≡ a (mod p), (a, p) = 1,

where f(x) ∈ (Z/pZ)[x]. In particular, we prove the following theorems:

Theorem 1.2. Let q, d be natural numbers such that q |φ(d). Also let
n(q) be the number of elements in (Z/dZ)∗ whose order divides q. Suppose
that the polynomial congruence

xq ≡ a (mod d)(2)
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has a solution. Then the smallest solution x0 satisfies

|x0| �
d1/2φ(d) log d

n(q)
.

Note that Theorem 1.2 is non-trivial for n(q)� d1/2+ε. As an immediate
consequence, we have

Corollary 1.3. Let p be an odd prime, d = pn, 2pn and q |φ(d). Sup-
pose that the polynomial congruence

xq ≡ a (mod d)(3)

has a solution. Then the smallest solution x0 satisfies

|x0| �
p3n/2n log p

q
.

Remark 1.1. The case n = 1 in the above corollary is a theorem of
Ram Murty (see [9]).

Theorem 1.4. Let p, q be primes such that q ‖ (p− 1). Also let f(x) be
a polynomial over Z/pZ which has m distinct roots and (`,deg f) = 1 for
any ` | (p− 1)/q. Suppose that the polynomial congruence

f(x)q ≡ a (mod p), (a, p) = 1,(4)

has a solution. Then the smallest solution x0 satisfies

|x0| �
mp3/2 log p

q
.

Remark 1.2. Putting f(x) = x in Theorem 1.4, we again recover the
theorem of Ram Murty (see [9]). We also refer to a related article due to
Hudson [6].

Next we study the distribution of the roots (if they exist) of the congru-
ence xq ≡ a (mod d) with (a, d) = 1. We list the n(q) roots as r1 < · · · <
rn(q) < d. In this context, we have the following theorem:

Theorem 1.5. Fix α ∈ (0, 1), δ > 0 and a natural number d. Suppose
that q |φ(d) and n(q) > dδ. Then there exists an ε(δ) > 0 such that

#{ri | rqi ≡ a (mod d), 0< ri < αd, 1 ≤ i ≤ n(q)} = n(q)α+O(n(q)d−ε(δ)).

In particular, if there is a solution of xq ≡ a (mod d), then the smallest
solution x0 is � d1−ε(δ).

As an immediate corollary, we have

Corollary 1.6. Fix α ∈ (0, 1), δ > 0 and d = pn, 2pn with p odd prime.
Suppose that q |φ(d) and q > dδ. Then there is ε(δ) > 0 such that

#{ri | rqi ≡ a (mod d), 0 < ri < αd, 1 ≤ i ≤ q} = qα+O(qd−ε(δ)).
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2. Preliminaries. Throughout the paper p is prime, M,V, `, q, d are
natural numbers, χ0 is the principal character modulo p or d depending on
the context. First we shall need the following estimate due to Weil [11].

Theorem 2.1 (Weil). For an integer ` satisfying 2 ≤ ` < p and for any
non-principal characters χ1, . . . , χ` and distinct a1, . . . , a` ∈ Z/pZ, we have∣∣∣ p∑

n=1

χ1(n+ a1) · · ·χ`(n+ a`)
∣∣∣ ≤ (`− 1)

√
p.

For ` = 2, Davenport [4] proved the above bound. Note that when ` = 1,
the above sum is 0. Using this, we prove the following lemma.

Lemma 2.2. Let N(p,M) denote the number of M consecutive solutions
of

xq ≡ 1 (mod p).

Then ∣∣∣∣N(p,M)− p
(

q

p− 1

)M∣∣∣∣ ≤ 2MM
√
p.

Proof. Write

N(p,M) =
p∑

n=1

M−1∏
j=0

(
1

p− 1

∑
χ

χ̄(1)χ((n+ j)q)
)
,

where the inner sum is over all characters modulo p. Dividing the sum into
two parts, with χq = χ0 and χq 6= χ0, we have

N(p,M) = (p− 1)−M
p∑

n=1

M−1∏
j=0

(
q +

∑
χ

χq 6=χ0

χ((n+ j)q)
)

= p

(
q

p− 1

)M

+A,

where

A =
1

(p− 1)M

M∑
`=1

p∑
n=1

qM−`
∑

(j1,...,j`)
0≤j1<···<j`≤M−1

∑
(χm1 ,...,χm`

)

χq
mi
6=χ0

∏̀
i=1

χqmi
(n+ ji)

=
M∑
`=1

(
q

p− 1

)M−` ∑
(j1,...,j`)

0≤j1<···<j`≤M−1

1
(p− 1)`

∑
(χm1 ,...,χm`

)

χq
mi
6=χ0

p∑
n=1

∏̀
i=1

χqmi
(n+ ji).

Hence by using the estimate of Weil (Theorem 2.1), one has

|A| ≤ M
√
p

M∑
`=1

(
M
`

)(
q

p− 1

)M−`
≤ 2MM

√
p.



154 S. Gun

We refer to [5] where the estimate of Weil has been exploited in another
context. We shall need the following generalization of the Pólya–Vinogradov
theorem for proving Theorems 1.2 and 1.4.

Lemma 2.3. If χ ( 6= χ0) is an `th order character to the prime modulus
p and if f(x) is a polynomial over Z/pZ which has m distinct roots and
(`,deg f) = 1, then∑

n≤T
χ(f(n))� m

√
p log p for 1 ≤ T ≤ p.

To prove Lemma 2.3, we need the following consequence of the works of
Weil [12, 13] (see also [2] and page 45 of [10]).

Theorem 2.4. Let p be prime and χ (6= χ0) be a multiplicative character
of order ` with ` | (p−1). Suppose that f(x) is a polynomial over Z/pZ which
has m distinct roots and (`,deg f) = 1. Then∣∣∣ p∑

n=1

χ(f(n))e(an/p)
∣∣∣ ≤ m√p,

where e(x) = e2πix.

Proof of Lemma 2.3. Write

S(f, a) =
p∑

n=1

χ(f(n))e(an/p).

Now ∑
n≤T

χ(f(n)) =
p∑

n=1

χ(f(n))
∑
b≤T

(
1
p

p∑
a=1

e(a(n− b)/p)
)

(5)

since

1
p

p∑
a=1

e(am/p) =
{

1 if m ≡ 0 (mod p),
0 otherwise.

By interchanging the summations in (5), we have∑
n≤T

χ(f(n)) =
1
p

p∑
a=1

p∑
n=1

χ(f(n))e(an/p)
∑
b≤T

e(−ab/p)

=
1
p

p∑
a=1

S(f, a)
∑
b≤T

e(−ab/p)� m
√
p

p∑
a=1

1
a
,

by using Theorem 2.4 and the fact that∣∣∣∑
b≤T

e(−ab/p)
∣∣∣ ≤ 1
| sin (πa/p)|

� p

a
.
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Hence ∑
n≤T

χ(f(n))� m
√
p log p.

To prove Theorem 1.5, we need the following Erdős–Turán inequality
(see page 8 of [8]) and a theorem of Bourgain [1].

Lemma 2.5. Let {xn} be a sequence of real numbers in (0, 1). For α ∈
(0, 1) and V ∈ N, let N(V, α) = #{n ≤ V | 0 ≤ xn < α}. Then, for any
natural numbers M, one has

|N(V, α)−Vα| ≤ V
M + 1

+ 3
M∑
m=1

1
m

∣∣∣ ∑
n≤V

e(mxn)
∣∣∣.

Remark 2.1. The constant 3 in the above estimate has been improved
to 1 by Mauduit, Rivat and Sárközy [7]. The original inequality without
explicit constants is due to Davenport [4].

Theorem 2.6 (Bourgain). Fix δ > 0 and a natural number d. For any
subgroup H of (Z/dZ)∗ with order > dδ, there is an ε′(δ) > 0 such that∣∣∣∑

x∈H

e(ax/d)
∣∣∣� |H|d−ε′(δ).

3. Proof of the theorems

Proof of Theorem 1.1. Using Lemma 2.2, we have

p

(
q

p− 1

)M

−N(p,M) ≤
∣∣∣∣N(p,M)− p

(
q

p− 1

)M∣∣∣∣ ≤ 2MM
√
p.

Thus

√
p

(
q

p− 1

)M

> 2MM(6)

implies N(p,M) > 0. By hypothesis, we have
q

p− 1
>

1
(p− 1)1/4M

>
1

p1/4M
.

Hence (6) is satisfied if p > 24MM4.

Remark 3.1. Note that the given conditions in Theorem 1.1 ensure

q > (p− 1)1−1/4M ≥ (24MM4)1−1/4M ≥ 22MM2.

Proof of Theorem 1.2. Write

S =
∑
n≤T

1
φ(d)

∑
χ

χ̄(a)χ(nq),
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where the inner sum is over all characters modulo d. Since∑
χ

χ̄(a)χ(nq) =
{
φ(d) if nq ≡ a (mod d),
0 otherwise,

S counts all solutions of (3) up to T. Further,

S =
∑
n≤T

1
φ(d)

{ ∑
χ

χq=χ0

χ̄(a)χ(nq) +
∑
χ

χq 6=χ0

χ̄(a)χ(nq)
}
,

where χ0 is the principal character modulo d. Thus, we have

S =
n(q)T
φ(d)

+
1

φ(d)

∑
χ

χq 6=χ0

χ̄(a)
∑
n≤T

χq(n)

=
n(q)T
φ(d)

+O(
√
d log d),

by Pólya–Vinogradov (see page 143 of [3]). From this, we see that the main
term is greater than the error term provided

T� d1/2φ(d) log d
n(q)

.

Hence the theorem.

Proof of Theorem 1.4. Write

S =
∑
n≤T

1
p− 1

∑
χ

χ̄(a)χ(f(n)q),

where the inner sum is over all characters modulo p. Then S counts the
number of solutions of (4) up to T. As before, by dividing the inner sum
into two parts depending on whether χq = χ0 or not, we get

S =
qT
p− 1

+
1

p− 1

∑
χq 6=χ0

χ̄(a)
∑
n≤T

χq(f(n)).

By the given hypothesis, (order(χq),deg f) = 1. Hence by Theorem 2.3 we
have

S =
qT
p− 1

+O(m
√
p log p).

This completes the proof.

Proof of Theorem 1.5. List the roots of the polynomial congruence

xq ≡ a (mod d), (a, d) = 1,(7)
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as r1 < · · · < rn(q). Consider the sequence {ri/d} of rational numbers in
(0, 1). Then by the Erdős–Turán inequality (Lemma 2.5), we have

|N(n(q), α)− n(q)α| ≤ n(q)
M + 1

+ 3
M∑
m=1

1
m

∣∣∣∣ ∑
i≤n(q)

e

(
mri
d

)∣∣∣∣
for any α ∈ (0, 1) and M ≥ 1. Consider the subgroup

H = {n ∈ (Z/dZ)∗ |nq ≡ 1 (mod d)}
of (Z/dZ)∗. Note that all roots of (7) lie in a coset bH with bq ≡ a (mod d)
of H. Hence by the theorem of Bourgain (Theorem 2.6), we have∣∣∣∣ ∑

i≤n(q)

e

(
mri
d

)∣∣∣∣ =
∣∣∣∣∑
h∈H

e

(
mbh

d

)∣∣∣∣� n(q)d−ε
′(δ).

Hence by choosing M� dε
′(δ), we see that

#{ri | rqi ≡ a (mod d), 0 < ri < αd, 1 ≤ i ≤ n(q)}
= N(n(q), α) = n(q)α+O(n(q)d−ε(δ)).
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