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Diophantine approximation on affine hyperplanes
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Anish Ghosh (Norwich)

1. Introduction. In this paper we study Diophantine approximation on
affine subspaces, extending and strengthening the main result in [G1]. Our
approach uses the dynamics of flows on homogeneous spaces as developed
in [KM] and [BKM].

We first recall the classical Khintchine–Groshev Theorem ([K], [Gr], [D]).
The notation | | will be used to denote the absolute value of real numbers,
as well as Lebesgue measure in Rd, depending on context to make the usage
clear, and ‖ ‖ will denote the supremum norm in Rd,

(1.1) ‖q‖ := max
i
|qi|.

Let ψ : R+ ∪ {0} → R+ ∪ {0} be a nonincreasing function, and denote by
L(Rn, ψ) the set of x ∈ Rn for which there exist infinitely many q ∈ Zn such
that

(1.2) |p+ x · q| < ψ(‖q‖n)

for some p ∈ Z. The Khintchine–Groshev Theorem gives a precise measure-
theoretic characterization of L(Rn, ψ) in terms of the asymptotic properties
of ψ:

Theorem 1.1. The set of ψ-approximable vectors L(Rn, ψ) is null or
co-null according as

(1.3)
∞∑
k=1

ψ(k)

converges or diverges.

It is significantly more difficult to obtain a similar characterization of
the set L(S, ψ) which is defined as in (1.2) but with x restricted to lie on
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a proper submanifold S of Rn. This is an instance of metric Diophantine
approximation on manifolds ([Sp]).

We recall briefly the notion of a nondegenerate manifold. Let U be an
open subset of Rd and let f : U → Rn be a differentiable map. Then f is said
to be nondegenerate at x0 ∈ U if the span of all the partial derivatives of f
at x0 up to some order equals Rn, and nondegenerate if it is nondegenerate
at almost every point of U . Finally, a smooth manifold S = {f(x) : x ∈ U}
is called nondegenerate if f is. In [KM], D. Kleinbock and G. Margulis estab-
lished a longstanding conjecture of V. G. Sprindzhuk by showing that almost
every point on a nondegenerate manifold is not very well approximable, i.e.
not ψε-approximable for ψε(x) = x−n+ε. Further in [BKM] and [BBKM], the
convergence and divergence cases of the Khintchine–Groshev theorem were
established for this class of manifolds. Less is known for degenerate mani-
folds, for example affine subspaces. Indeed, the theorem can be easily seen
to fail unless some Diophantine condition is imposed on the parametrizing
matrix of the subspace. In [Kl1] and [Kl2], extremality properties (i.e. the
property that almost every point on a subspace is not very well approx-
imable) of affine subspaces and their nondegenerate manifolds were studied.
In [G1] and [G2], the convergence and divergence cases of the theorem were
established for affine hyperplanes, i.e. codimension 1 affine subspaces, whose
parametrizing matrices satisfy a certain Diophantine condition, and in [G3],
the convergence case for affine subspaces and their nondegenerate subman-
ifolds was investigated. Earlier, both cases of the Khintchine–Groshev The-
orem were established in [BBDD] for lines passing through the origin.

1.1. Multiplicative and s-Diophantine approximation. We denote
by Matm,n(R) the set of (m,n)-matrices with real entries. For an integer n
and a vector q = (q1, . . . , qn) ∈ Rn, we set

(1.4) Π+(q) :=
n∏
i=1

max(|qi|, 1).

The study of Diophantine approximation with the sup norm in (1.1) replaced
by (1.4) is referred to as multiplicative Diophantine approximation. As noted
in [Bu], which is an excellent survey of the subject, this replacement is far
from trivial and makes the analogous theorems much more difficult.

For s ∈ Rn
+ such that

∑n
i=1 si = 1, we follow [BKM] in defining the

s-quasinorm on Rn by

(1.5) ‖x‖s := max
1≤i≤n

|xi|1/si .

For a submanifold S of Rn, we can then define L(S, ψ, s) and L(S, ψ,×) as
in (1.2) but with the maximum norm ‖q‖n replaced by ‖q‖s and Π+(q) re-
spectively. We refer to these sets as ψ-s-approximable and ψ-multiplicatively
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approximable points respectively. Since ψ is assumed to be nonincreasing,
we have

L(S, ψ, s) ⊆ L(S, ψ,×)

and L(S, ψ) = L(S, ψ, (1/n, . . . , 1/n)). The multiplicative version of the
classical Khintchine–Groshev Theorem was established in [Gal]. These ques-
tions have also been considered in the context of Diophantine approximation
on manifolds. In [KM], the stronger property that almost every point on a
nondegenerate manifold is not very well multiplicatively approximable was
established, and in [BKM], the multiplicative as well as s versions of the
Khintchine–Groshev Theorem for nondegenerate manifolds were proved.

1.2. A Diophantine condition. We now set up some terminology to
describe the Diophantine condition we will impose on the matrix parametriz-
ing the hyperplane. For v > 0 and n ∈ Z+, Wv(n, 1) is defined to be the set
of all matrices a = (ai)0≤i≤n−1 ∈ Matn,1(R) for which there are infinitely
many q ∈ Z such that

max
i
|pi + aiq| < |q|−v

for some p ∈ Zn. We further define

W+
v (n, 1) =

⋃
u>v

Wu(n, 1),(1.6)

W−v (n, 1) =
⋂
u<v

Wu(n, 1).(1.7)

It is an easy consequence of the definition that

v1 ≤ v2 ⇒ Wv2(n, 1) ⊂ Wv1(n, 1)

and so
W+
v (n, 1) ⊆ Wv(n, 1) ⊆ W−v (n, 1).

If v > 1/n, then as a consequence of the Borel–Cantelli lemma, the Lebesgue
measure ofWv(n, 1) is zero. In particular,W+

1/n(n, 1) has measure zero. This
is dual to the situation in (1.2) and related to it by Khintchine’s transference
principle (cf. [Sp]). For a vector x = (x1, . . . , xn) ∈ Rn, we will denote the
vector (1, x1, . . . , xn) ∈ Rn+1 by x̃. Let a = (a0, . . . , an−1)T ∈ Matn,1(R)
and let H be the affine hyperplane defined by a, i.e.

(1.8) H = {(x, x̃a) : x ∈ Rn−1}.

In [Kl1], the condition a /∈ W+
n (n, 1) was shown to be both necessary and

sufficient for H to be extremal, and similarly the condition a /∈ W+
r (n, 1)

for strong extremality, i.e. the property that almost every point is not very
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well multiplicatively approximable (1). Here

(1.9) r = r(a) = #{1 ≤ i ≤ n− 1 : ai 6= 0}.

In [G1], it was shown that the condition

(1.10) a /∈ W−n (n, 1)

is sufficient to prove the convergence case of the Khintchine–Groshev The-
orem for H . Our first result improves this result to s-norms.

Theorem 1.2. Suppose a satisfies (1.10). Then for every s ∈ Rn
+ with∑n

i=1 si = 1, L(H , ψ, s) is a null set whenever
∑∞

k=1 ψ(k) converges.

Our next result treats the multiplicative situation.

Theorem 1.3. Assume that r(a) = n − 1 and that a satisfies (1.10).
Then |L(H , ψ,×)| = 0 whenever

∑∞
k=1(log k)n−1ψ(k) converges.

We will mostly concentrate on proving Theorem 1.3, which is the main re-
sult of this paper. The last section will be devoted to explaining the changes
in the proof which will yield Theorem 1.2.

2. First steps. Since being ψ-approximable is a property which is in-
variant under translation by integers, we may restrict x to lie in a fixed ball
B ⊂ Rn−1. Let

(2.1) L(B, ψ,q) = {x ∈ B : |p+ (x, x̃a) · q| < ψ(Π+(q)) for some p ∈ Z}

and

L>(B, ψ,q) = {x ∈ B : ∃p ∈ Z such that |p+ q · (x, x̃a)| < ψ(Π+(q));
|qi + aiqn| > 1 for some 1 ≤ i ≤ n− 1}

and define L≤(B, ψ,q) = L(B, ψ,q) \ L>(B, ψ,q). Our plan is to apply
the convergence case of the Borel–Cantelli lemma; we will begin by proving
that

(2.2)
∑
q∈Zn

|L>(B, ψ,q)| <∞.

It follows from Lemma 3.2 in [G1] that

(2.3) |L>(B, ψ,q)| ≤ C(n,B)ψ(Π+(q)).

We therefore have

(1) In fact stronger results in [Kl1] include conditions for extremality and strong
extremality for nondegenerate submanifolds of H . Khintchine type theorems for nonde-
generate submanifolds of affine subspaces will be established in a forthcoming work.
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q∈Zn

|L>(B, ψ,q)| ≤ C(n,B)
∑
q∈Zn

ψ(Π+(q))(2.4)

�
∞∑
k=1

(log k)n−1ψ(k) <∞,

which establishes (2.2).

3. A dynamical reformulation. The fact that ψ is nonincreasing cou-
pled with the requirement that

∑∞
k=1(log k)n−1ψ(k) <∞ means that for all

q ∈ Zn+ with large enough norm,

(3.1) ψ(Π+(q)) ≤
( n∏
i=1

|qi|
)−1

.

For t = (t1, . . . , tn) ∈ Zn+, we set t :=
∑n

i=1 ti. Let

L≤(B, t) = {x ∈ B : ∃p ∈ Z,q ∈ Zn \ {0} such that |p+ q · (x, x̃a)| < 2−t;

|qi + aiqn| ≤ 1 for every 1 ≤ i ≤ n− 1; |qi| < 2ti}.
In view of (3.1), we have

(3.2)
⋃

q∈Zn, 2ti−1≤|qi|<2ti

L≤(B, ψ,q) ⊂ L≤(B, t).

Let a′ ∈ Matn−1,1(R) denote the matrix (a1, . . . , an−1)T , set

(3.3) ux =


1 0 x x̃a

0 In−1 In−1 a′

0 0 In−1 0
0 0 0 1

 ,

and for β > 0, let

(3.4) gβ,t = diag
(

2−βt

2−t
, 2−βt, . . . , 2−βt,

2−βt

2t1
, . . . ,

2−βt

2tn

)
.

We also denote by Λ the subgroup of Zn+d+1 defined by

(3.5) Λ =





p

0
...
0
qt


: p ∈ Z, q ∈ Zn


.

It is easy to see that

(3.6) L≤(B, t) ⊆ {x ∈ B : ‖gβ,tuxl‖ < 2−βt for some l ∈ Λ \ {0}}.
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Note that using induction on dimension as in [BKM], we can restrict our-
selves to integer vectors q all of whose coordinates are nonzero. Therefore
in view of (2.2) and (3.2), it is enough to show the following.

Theorem 3.1. Assume that a satisfies the conditions in Theorem 1.3.
Then for every 0 < β < 1/n2, there exist T (β) > 0 and 0 < γ < β such that
for any t ∈ Zn+ with t ≥ T (β),

(3.7) |{x ∈ B : ‖gβ,tuxl‖ < 2−βt for some l ∈ Λ \ {0}}| ≤ C ′2−(β−γ)t|B|,

where C ′ is a constant independent of β and γ.

The rest of the paper will be devoted to this proof.

3.1. Good functions. We define and state some basic properties of
good functions, a concept introduced in [KM] which will play a crucial role
in the next section.

Definition 3.2. Let C and α be positive numbers and V be a subset
of Rd. A function f : V → R is said to be (C,α)-good on V if for any open
ball B ⊆ V , and for any ε > 0, one has

|{x ∈ B : |f(x)| < ε sup
x∈B
|f(x)|}| ≤ Cεα|B|.

Some easy properties of (C,α)-good functions are:

• f is (C,α)-good on V ⇒ so is λf for all λ ∈ R.
• fi, i ∈ I, are (C,α)-good ⇒ so is supi∈I |fi|.

It turns out that polynomials are prototypical examples of (C,α)-good func-
tions (see for instance [KM]). For our purposes, the following elementary
result ([G1, Lemma 4.2]) will suffice:

Lemma 3.3. Let V ⊂ Rd, and f be a (continuous) linear function on V .
Then f is (Cd, 1)-good on V , where Cd = 2d+2/vd, and vd is the volume of
the unit ball in Rd.

4. A quantitative nondivergence estimate. For k ≥ 2 let Λ be a
discrete subgroup of Rk. A subgroup Γ of Λ is said to be primitive in Λ if Γ =
ΓR ∩ Λ, where ΓR denotes the minimal linear subspace of Rl containing Γ .
Let P(Λ) be the set of all nonzero primitive subgroups of Λ. Let Γ ⊆ Rl be
one such subgroup. If k = dim(ΓR), for any basis v1, . . . ,vk of Γ the vector
v1∧· · ·∧vk ∈

∧k(Rl) is (up to a sign) independent of the basis. It is therefore
natural to define ‖Γ‖ = ‖w‖ where w = v1 ∧ · · · ∧vk is said to represent Γ .
This norm can be extended as follows: For I = (i1, . . . , ij) ⊂ {1, . . . , l} with
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i1 < · · · < ij , let
eI = ei1 ∧ · · · ∧ eij ∈

∧j(Rl).

Then for
w =

∑
I⊂{1,...,l}

wIeI ,

we define ‖w‖ = maxI⊂{1,...,k} |wI | with the additional convention that
e∅ = 1. We now state a general measure estimate from [BKM], which is
a refinement of an earlier estimate in [KM]. Set Nd to be the Besicovitch
constant for Rd.

Theorem 4.1. For arbitrary l ≥ 2, let Λ be a discrete subgroup of Rl

with rank(Λ) = k. Further, let a ball B(x0, r0) ⊂ Rd and a continuous map
H : B̃ → GL(Rl) be given, where B̃ stands for B(x0, 3kr0). Take C,α > 0
and 0 < ρ ≤ 1/k, and let ‖ · ‖ be the supremum norm on

∧
(Rl) (as defined

before). Assume that for any Γ ∈P(Λ),

(KM1) the function x 7→ ‖H(x)Γ‖ is (C,α)-good on B̃,
(KM2) there exists x ∈ B such that ‖H(x)Γ‖ ≥ ρ.

Also assume that

(KM3) for all x ∈ B̃, #{Γ ∈P(Λ) : ‖H(x)Γ‖ < ρ} <∞.

Then for every positive ε ≤ ρ one has

(4.1) |{x ∈ B : ‖H(x)λ‖ < ε for some λ ∈ Λ \ {0}}|
< k(3dNd)kC(ε/ρ)α|B|.

We now turn to the

Proof of Theorem 3.1. We take B which was fixed before and

H : B̃ → GL(n+ d+ 1,R), H(x) = gβ,tux,

and ε = ε(t) = 2−βt for some β ∈ R+. From Lemma 3.3, it follows that
(KM1) is satisfied with (C,α) = (Cn−1, 1). As for (KM3), this follows from
the discreteness of

∧
(Γ ) in

∧
(Rn+1). In the next section, we will show

Proposition 4.2. For every 0 < β < 1/n2, there exist T (β) > 0 and
0 < γ < β such that for any t ∈ Zn+ with t ≥ T (β),

(4.2) inf
Γ∈P(Λ)

sup
x∈B
‖H(x)Γ‖ ≥ 2−γt.

We now take ρ = ρ(t) = 2−γt and apply Theorem 4.1 to get

|{x ∈ B : ‖H(x)λ‖ < 2−βt for some λ ∈ Λ \ {0}}| < C ′2−(β−γ)t|B|,

where C ′ = (n+ 1)(3n−1Nn−1)n+1Cn−1, which establishes Theorem 3.1.
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5. Lower bounds. In this section, we prove Proposition 4.2, i.e. we ob-
tain lower bounds for ‖H(x)Γ‖. Let V = span(e0, e∗1, . . . , e∗d, e1, . . . , en),
V ∗ = span(e∗1, . . . , e∗d) and V ′ = span(e0, e1, . . . , en). We employ the fol-
lowing strategy. For each 1 ≤ k ≤ n + 1, we take a vector w ∈

∧k(V ′)
(which represents a primitive subgroup), and explicitly compute gβ,tuxw.
Let w ∈

∧k(V ′) for some k ≥ 1. Then

(5.1) w =
∑

I,#I=k

wIeI .

We first describe the action of ux on the basis vectors of V :

uxe0 = e0,

uxe∗i = e∗i,
uxei = xie0 + e∗i + ei for 1 ≤ i ≤ n− 1,

uxen =
(
a0 +

n−1∑
i=1

aixi

)
+
n−1∑
i=1

aie∗i + en.

5.1. The rank 1 case. We first deal with the case when Γ ∈ P(Λ)
is of rank 1. We isolate this case for one important reason: the existence of
a lower bound for ‖H(x)Γ‖ depends quite sensitively on the Diophantine
properties of a. This is in contrast to the higher rank case where different
considerations play a role. Accordingly, we take a vector w ∈

∧1(V ′),

(5.2) w = p0e0 + q1e1 + · · ·+ qnen.

Then

gβ,tuxw =
2−βt

2−t
(
p0 +

n∑
i=1

qixi

)
e0 + 2−βt

( n−1∑
i=1

(qi + qnai)e∗i
)

(5.3)

+
n∑
i=1

(
2−βt

2ti
qiei

)
.

We now discuss briefly and informally the process of bounding ‖gβ,tuxw‖
from below. The action of gβ,t expands e0 and contracts the other vectors.
It is therefore our hope that the coefficient of e0 does not become very small
on B. This coefficient is

(5.4) (p0 + qna0) +
n−1∑
i=1

xi(qi + qnai).

It is here that the Diophantine property, i.e. the fact that a is far from ra-
tional, plays a crucial part in ensuring that (5.4) is typically not very small
(where “small” is measured by a power of (q1, . . . , qn) as in the Diophan-
tine condition assumed in Theorem 1.3). In the event that the |qi + qnai|
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do become small, the terms (2−βt/2ti)qiei in (5.3) are used to ensure that
supx∈B ‖gβ,tuxw‖ is bounded below. Before making this argument rigorous,
we rephrase the conditions imposed in Theorem 1.3 to a slightly more con-
venient form. For a vector p = (p0, p1, . . . , pn−1), we set p′ := (p1, . . . , pn−1).
Then we have

Lemma 5.1. Suppose r(a) = n−1 where r(a) is defined as in (1.9). Then
a satisfies (1.10) if and only if there exists δ > 0 such that

(5.5) ‖p + aq‖ > Π+(p′, q)(−n+δ)/n

for every p ∈ Zn and all but finitely many q ∈ Z.

Proof. Assume first that a as above does not satisfy (5.5). Then, since
each ai is nonzero, it follows that for each i, |pi| � |q|, i.e. their ratios can be
bounded from both sides. Consequently, Π+(p′, q)(−n+δ)/n can be replaced
with |q|(−n+δ) by at most changing δ slightly in the latter expression, and
we have thus shown that a ∈ W−n (n, 1). The converse is identical and is
omitted.

We now set p = (p0, q1, . . . , qn−1), p′ = (q1, . . . , qn−1) and q = qn and
prove

Lemma 5.2. Assume that there exists β > 0 such that for every 0 < γ
< β, there exists an unbounded set of t ∈ Rn

+ such that:

(1) 2−βt2t‖p + aq‖ ≤ 2−γt, 2−βt2−ti |qi| ≤ 2−γt for 1 ≤ i ≤ n− 1.
(2) 2−βt2−tn |q| ≤ 2−γt.

Then for every v < n, there exists (p, q) ∈ Zn+1 with (p′, q) arbitrarily far
from the origin such that

‖p + aq‖ ≤ Π+(p′, q)−v/n.

Proof. This lemma is similar to Lemma 5.1 in [Kl1]; see also Case 1 of
Theorem 4.5 in [G1]. Under the assumptions of the lemma, we take 0 < γ <
β < 1/n. Passing to a subsequence of the ti’s and reshuffling etc., we will
assume that for some k < n,

(5.6) ti ≥ γt for i ≤ k, ti < γt for i > k.

This implies that if i ≤ k,

(5.7) 2−βt|qi|+ ≤ 2ti−γt,

and for i > k,

(5.8) 2−βt|qi| < 1 and 2−βt|q| < 1.

From (5.7) and (5.8), it follows that

Π+(p′, q) ≤
k∏
i=1

|pi|+ ≤ 2t[1+k(β−γ)],
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which implies that for every v > 0,

Π+(p′, q)−v/n ≥ 2−
v
n
t[1+k(β−γ)].

Now define

v =
n(γ + 1− β)
1 + k(β − γ)

.

Since we chose 0 < γ < β, we know that v < n. We thus get

‖p + aq‖ ≤ Π+(p′, q)−v/n.

In view of Lemma 5.2 and the discussion preceding it, we get

Lemma 5.3. Assume that a satisfies the conditions in Theorem 1.3. Then
for every β > 0, there exists a positive γ < β and T = T (β) > 0 such that
for every t ∈ Zn+ with t ≥ T (β),

(5.9) sup
x∈B
‖gβ,tuxΓ‖ ≥ 2−γt

for every Γ ∈P(Λ) with rank(Γ ) = 1.

5.2. Higher rank. In the intermediate cases, i.e. when Γ has rank
between 1 and n, our strategy will be to only consider terms which contain
e0, as it is the expanding direction. Moreover, since our eventual aim is
to bound ‖gβ,tuxw‖ from below, it will be enough to restrict attention to
those terms which further contain at most one e∗i, so we can disregard those
terms which contain expressions of the form e∗i ∧ e∗j . This suffices because
an examination of the action of gβ,t reveals that terms which contain e∗i∧e∗j
have smaller norm than terms which contain at most one e∗i. Thus the norm
of ‖gβ,tuxw‖ is not realized on terms containing e∗i ∧ e∗j . In other words,
we will really be computing the norm of a projection with kernel

∧2(V ∗)
but we will suppress this in our calculations.

5.3. Example. Before we begin, we illustrate the computations involved
with a simple example. Let us take the case of the line (x, a), i.e. the hyper-
plane parametrized by the vector a = (a, 0), define ux, V, V

′ as above and
take w ∈

∧2(R3) of the form

(5.10) w = we0 ∧ e2.

Then uxw = we0 ∧ (ae0 + e2) = w.
Our objective would be to show that supx∈B ‖gβ,tuxw‖ is not too small

for all but finitely many t. However, in this particular case the choice of
t = (0, t) gives us that ‖gβ,tuxw‖ ≤ 2−2βt so we see that the condition ai 6= 0
is essential to our approach. In fact, it has been observed by D. Kleinbock
(personal communication, this can be adapted from Corollary 5.7 in [Kl1])
that a = (a, 0) satisfies (5.5) if and only if ω(a) < 1 where ω(a) is the
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Diophantine exponent of a defined as

(5.11) ω(a) := sup{v : a ∈ Wv(n, 1)},

which is known to be greater than or equal to 1. Consequently, the condi-
tion imposed in Theorem 1.3 is never satisfied in this case, and a separate
investigation is necessary. This study is carried out in a forthcoming work
using quantitative nondivergence estimates developed in [Kl2].

For the purposes of this section, it will be convenient to use the following
notation. For 1 ≤ i < n, we set fi = xi and fn = ax̃. We also set fK =
(fr, fs),K = {r, s} and f iK := fr

∂fs

∂xi
−fs ∂fr

∂xi
. Recall that for a vector t ∈ Zn+,

we denote by t the sum of its components. We will extend this notation
as follows. For J ⊂ {1, . . . , n}, we will set tJ :=

∑
j∈J tj . We now take a

nonzero vector w ∈
∧k(V ′),

(5.12) w =
∑
I

wIeI .

Here I ⊂ {0, 1, . . . , n}, #I = k, and at least one coefficient wI is nonzero.
When gβ,tux acts on w, the coefficient of e0 ∧ eJ with J ⊂ {0, 1, . . . , n},
#J = k − 1, 0 /∈ J is

(5.13) 2−kβt2t−tJ
(
w0∪J +

∑
j /∈J, j 6=0

wj∪Jfj

)
,

while that of e0 ∧ e∗i ∧ eJ with #J = k − 2 is

(5.14) 2−kβt2t−tJ
( ∑
j /∈J, j 6=0

w0∪j∪J
∂fj
∂xi

+
∑

#K=2
K∩J 6=∅, 0/∈K

wJ∪Kf iK

)
.

We will use the following elementary observation which follows from the
linear independence of the fi’s for 1 ≤ i ≤ n − 1 over B: for any subset J
of {0, 1, . . . , n} with #J = k, n /∈ J , and for any nonzero c ∈ Rk+1 with
‖c‖ ≥ 1,

(5.15) sup
x∈B

∥∥∥c0 +
∑
j∈J

cjfj

∥∥∥� 1;

here and in the rest of the section, � will be taken to mean ≥ a positive
constant depending on B and/or a. In particular, this bounds the terms in
the parentheses in (5.13) and (5.14) by a constant as above as long as fn is
not present.

Now it can be assumed that at least one component of the vector t,
say ti, is not very small, say ‖t‖ = ti ≥ t/n. If 1 ≤ i ≤ n− 1, we can reorder
the ti’s if necessary to assume that t1 ≥ t/n. On the other hand, the linear
dependence in the last coordinate means that we must separately consider



178 A. Ghosh

the case when tn ≥ t/n. We first assume that

t1 ≥ t/n.
The elementary but key observation we will use is that for any nonempty
J ⊂ {1, . . . , n} with 1 /∈ J ,

(5.16) 2t−tJ ≥ 2t/n.

In uxw, we can clearly always find eK with 1 /∈ K.

5.4. Case A. We assume first that

(5.17) eK as above is of the form e0 ∧ eJ .

Then either J contains n or not. Assume first that n ∈ J . Then the term

w0∪J +
∑

j /∈J, j 6=0

wj∪Jfj ,

which accompanies e0 ∧ eJ , does not contain fn and so in view of (5.16)
(since 1 /∈ J) and (5.15),

(5.18) sup
x∈B
‖gβ,tuxw‖ � 2(−kβ+1/n)t.

If we cannot find a J such that n /∈ J , then in w =
∑
wKeK , any wK such

that 1 /∈ K and n ∈ K is zero. We now look for J with #J = k − 1 such
that n /∈ J . Then eK = e0 ∧ eJ can be written as

(5.19) w0∪J +
∑

j /∈J, j 6=0,n

wj∪Jfj + wJ∪nfn.

By assumption, wJ∪n = 0. If one of the other integers w∗ is nonzero, we can
apply (5.18) once more.

5.5. Case B. Suppose Case A is not satisfied, i.e. in uxw, there is no
e0 ∧ eJ with 1 /∈ J . We can then find

(5.20) eK = e0 ∧ e∗i ∧ eJ
with 1 /∈ J . Recall that the coefficient of the above term is of the form (5.14).
We now proceed exactly as before, namely we start with the assumption that
n ∈ J . Since n ∈ J , fn does not appear in the above expression. Therefore,
we can use (5.15) to get

(5.21) sup
x∈B
‖gβ,tuxw‖ � 2−kβt2t−tJ .

In view of (5.16), we have

(5.22) sup
x∈B
‖gβ,tuxw‖ � 2(−kβ+1/n)t.

We treat the situation when n /∈ J in exactly the same fashion as in Case A
and arrive at
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Lemma 5.4. For every β > 0, every t ∈ Zn+ with t1 ≥ t/n, and every
Γ ∈P(Λ) with 1 < rank(Γ ) < n+ 1,

(5.23) sup
x∈B
‖H(x)Γ‖ � 2(−kβ+1/n)t.

We now consider the case when

tn ≥ t/n.

Similar to (5.16) we find that for any nonempty J ⊂ {1, . . . , n} with n /∈ J ,

(5.24) 2t−tJ ≥ 2t/n.

We will proceed in a manner similar to the proof of Lemma 5.4. As before,
we can always find eK with n /∈ K.

5.6. Case A redux. We assume first that

(5.25) eK as above is of the form e0 ∧ eJ

with n /∈ J . The coefficient of such a term can be written as

(5.26) w0∪J +
∑

j 6=0,n; j /∈J

wj∪Jfj + wJ∪nfn,

or

(w0∪J + wJ∪na0) +
∑

j 6=0,n; j /∈J

(wj∪J + ajwJ∪n)fj + wJ∪n
∑
j∈J

ajfj .

Note that fn does not appear in the above list and so the functions above
are linearly independent over B. The only problem is that the terms wj∪J +
ajwJ∪n need not be integers and so could be small. We will deal with this
situation in the following manner. If wJ∪n = 0, then we can use (5.24) along
with (5.15) to get

(5.27) sup
t∈B
‖gβ,tuxw‖ � 2(−kβ+1/n)t.

On the other hand, if wJ∪n is nonzero, we will focus attention on the term
wJ∪n

∑
j∈J ajfj . Since the aj ’s are all nonzero by assumption, this term is

nonzero. Moreover, since |wJ∪naj | ≥ |aj | for each j, we get

wJ∪n
∑
j∈J

ajfj � #J min
j∈J
|aj | � min

1≤j≤n
|aj |.

Thus, we can use (5.15) and (5.24) once more to get the bound (5.27).
On the other hand, if there are no terms of the form e0 ∧ eJ with n /∈ J ,

i.e. we can assume that all the integers appearing in (5.26) are zero, we then
consider
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5.7. Case B redux. We assume uxw contains a vector eK of the form
e0 ∧ e∗i ∧ eJ with n /∈ K. The coefficient of such a term can be written as

(5.28)
∑

j /∈J, j 6=0,n

w0∪j∪J
∂fj
∂xi

+ w0∪J∪n
∂fn
∂xi

+
∑

#K=2,K∩J=∅
0,n/∈K

wK∪Jf
i
K +

∑
#K=2,K∩J=∅

0/∈K,n∈K

wK∪Jf
i
K .

By assumption, the integers w0∪j∪J and wK∪J above are zero. Thus the only
nonzero terms are

w0∪J∪n
∂fn
∂xi

= w0∪J∪n

(
a1
∂f1

∂xi
+ · · ·+ an−1

∂fn−1

∂xi

)
.

In view of (5.15), we can conclude that for some i,∥∥∥∥w0∪J∪n
∂fn
∂xi

∥∥∥∥� 1,

which implies that

(5.29) sup
x∈B
‖gβ,tuxw‖ � 2−kβt2−tn/22t−tJ .

Thus we can use (5.24) to get

(5.30) sup
t∈B
‖gβ,tuxw‖ � 2t[−kβ+1/n].

We have thus proved, analogous to Lemma 5.4:

Lemma 5.5. For every β > 0, every t ∈ Zn+ with tn ≥ t/n, and every
Γ ∈P(Λ) with 1 < rk(Γ ) < n+ 1,

(5.31) sup
x∈B
‖H(x)Γ‖ � 2(−kβ+1/n)t.

We now gather our calculations to prove Proposition 4.2. We take β <
1/n2 and using Lemmas 5.4 and 5.5, we choose T0 > 0 such that for every
w ∈

∧k(V ′) with 1 < k ≤ n + 1 (2) and for every t ∈ Zn+ with t ≥ T0, we
have

(5.32) sup
x∈B
‖gβ,tuxw‖ ≥ 1.

For β as above, we choose a 0 < γ < β and T (β) > 0 as in Lemma 5.3. Take
T to be the bigger of T0 and T (β). It thus follows that for any Γ ∈ P(Λ),
for any t ∈ Zn+ with t ≥ T ,

(5.33) sup
x∈B
‖H(x)Γ‖ ≥ 2−γt,

(2) For the case k = n + 1, the analogues of Lemmas 5.4 and 5.5 are immediate.
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which establishes Proposition 4.2, thus completing the proof of Theorem
1.3.

6. Weighted Diophantine approximation. We now turn to Theo-
rem 1.2. The proof follows in a manner similar to Theorem 1.3. We need to
replace (3.4) by

(6.1) gβ,t,s = diag
(

2−βt

2−nt/s
, 2−βt, . . . , 2−βt,

2−βt

2t/s1
, . . . ,

2−βt

2t/sn

)
,

where s =
∑n

i=1 si. It is straightforward to see that a version of Lemma 5.3
can be obtained using (1.10). For the higher rank cases, we no longer have
to consider the separate cases and can use Lemma 5.4 to obtain an analogue
of Proposition 4.2.
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