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1. Introduction. In [7] it is shown that for any quadruple of pairwise
distinct elliptic curves Ei, i = 1, 2, 3, 4, with j-invariant j = 0 there exists a
polynomial D ∈ Z[u] such that the sextic twists of Ei, i = 1, 2, 3, 4, by D(u)
have positive ranks. A similar result was proved for quadruples of elliptic
curves with j-invariant equal to 1728.

These results have been generalized in [4] to curves of the form y2 =
xn+A, where n is divisible by an odd prime and A ∈ Z\{0}. The main tool
in the proof was a (partial) characterization of possible torsion subgroups of
the Jacobian variety associated with the curve y2 = xp + A, where p is an
odd prime and A ∈ Z \ {0}.

A natural question arises whether similar results could be obtained for k-
tuples (for appropriate k) of hyperelliptic curves of the form C : y2 = x5+Ax
(of genus 2), which are (in some sense) natural generalizations of elliptic
curves with j-invariant equal to 1728. The quartic twist of the curve C
by D has the form CD : y2 = x5 + AD2x. The octic twist of C by D is
CD : y2 = x5 + ADx. In view of the results obtained in [7] and [4] we ask
the following question.

Question 1.1. Let Ci : y2 = x5 +aix where ai ∈ Z\{0} for i = 1, . . . , n,
and suppose that Ci 6= Cj for i 6= j. What is the maximal number, say N ,
for which there exists a polynomial D ∈ Z[u] such that the Jacobian of the
octic twist of Ci by D has positive rank for all i = 1, . . . , N?

This is a difficult problem and we only give a lower bound on N . It is
clear that to this end we need two things. We must be able to construct
rational points on appropriate curves and show that these points lead to
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divisor classes which are of infinite order in the Jacobian variety. In the
case of elliptic curves we know a full characterization of possible torsions
over Q. This characterization of the torsion subgroup of elliptic curves with
j-invariant j ∈ {0, 1728} was used in the proofs of the results obtained in [7].

However, no characterization of the torsion of the Jacobian of the curve
y2 = x5 +Ax is known yet. So, in Section 2 we begin our investigations with
a full characterization of the torsion subgroup of the Jacobian of the curve
CA : y2 = x5 + Ax, where A ∈ Z \ {0}. We denote by JA the Jacobian
variety associated with CA and by JA(Q)tors its group of Q-rational torsion
points. Remember that, by definition, the divisor D ∈ Div(CA) is Q-rational
if it is invariant under the action of the absolute Galois group Gal(Q̄/Q).
Note that if D = n1P1 + · · · + nrPr with n1, . . . , nr 6= 0 then to say that
D is Q-rational does not mean that P1, . . . , Pr are Q-rational. It suffices for
Gal(Q̄/Q) to permute the Pi’s in an appropriate fashion, or in other words,
{P σ1 , . . . , P σr } = {P1, . . . , Pr} for each σ ∈ Gal(Q̄/Q). In Theorem 2.2 we
characterize the set JA(Q)tors. Next we show that for the constant N in
Question 1.1 we have N ≥ 4 (Theorem 3.1).

2. Characterization of the torsion subgroup of JA(Q). Consider
the family of curves (over Q) CA : y2 = x5 + Ax, where A is a nonzero
rational. The curve CA is hyperelliptic of genus 2. Without loss of generality
we can (and will) assume that A is an 8-powerfree integer. In this section we
describe the group JA(Q)tors completely. Note that disc(x5 +Ax) = 256A5.
Let p denote a prime such that p - 2A. We start with the following lemma.

Lemma 2.1. We have

JA(Q)[2] ∼=


Z/2Z if A 6= ±� or (A = � and 2

√
A 6= �) (case 1),

(Z/2Z)2 if (A = � and 2
√
A = �)

or (A = −� and
√
−A 6= �) (case 2),

(Z/2Z)3 if
√
−A = � (case 3).

In particular if A is as in case 1 then

(1) JA(Q)[2] = {0, [(0, 0)−∞]}.
Let a denote a squarefree positive integer. If A = a4/4 then

(2) JA(Q)[2]

=
{

0, [(0, 0)−∞], [((−a+ ia)/2, 0) + ((−a− ia)/2, 0)− 2∞],
[((a+ ia)/2, 0) + ((a− ia)/2, 0)− 2∞]

}
.

If A = −a2 then

(3) JA(Q)[2] =
{

0, [(0, 0)−∞], [(
√
a, 0) + (−

√
a, 0)− 2∞],

[(i
√
a, 0) + (−i

√
a, 0)− 2∞]

}
.
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If A = −a4 then

(4) JA(Q)[2] =


0, [(0, 0)−∞], [(a, 0)−∞],
[(−a, 0)−∞], [(0, 0) + (a, 0)− 2∞],
[(0, 0) + (−a, 0)− 2∞], [(a, 0) + (−a, 0)− 2∞],
[(ia, 0) + (−ia, 0)− 2∞]

 .

Proof. It is well known that every point in JA(Q̄)[2] can be uniquely
written as D =

∑
niPi − (

∑
ni)∞, where Pi = (xi, 0) are pairwise disjoint,

ni ∈ {0, 1},
∑
ni ≤ 2. Therefore the group JA(Q)[2] is completely deter-

mined by the factorization of the polynomial f(x) := x4 + A over Q. Note
that f has a rational root if and only if A = −a4. In this case f(x) factors as
(x− a)(x+ a)(x2 + a2). Hence we have (4). It is easy to check that f is irre-
ducible over Q if and only if A is as in case 1. Then JA(Q)[2]={0, [(0, 0)−∞]}.
If f has no rational roots but is reducible over Q then A is as in case 2. In
particular if A = a4/4 then f(x) = (x2 + ax+ a2/2)(x2 − ax+ a2/2), hence
we get (2). If A = −a2 then f(x) = (x2 − a)(x2 + a) and we are done.

We shall prove the following theorem.

Theorem 2.2. We have JA(Q)tors = JA(Q)[2].

The proof of Theorem 2.2 splits into a few lemmas. In order to compute
#JA(Q)tors consider JA(Fp) for several primes p - 2A, since the reduction
modulo p homomorphism induces an embedding JA(Q)tors ↪→ JA(Fp) (see
for example [2, p. 70]) and therefore

(5) #JA(Q)tors |#JA(Fp).

Since ([2, formula (8.2.7)])

(6) #JA(Fp) = 1
2(#CA(Fp)2 + #CA(Fp2))− p,

it is enough to compute #CA(Fpk) for k = 1, 2.

Lemma 2.3. If p 6≡ 1 (mod 8) then #CA(Fp) = 1 + p.

Proof. The point (0, 0) and the point at infinity lie on the curve CA. Let
p ≡ 3 (mod 4). Since −1 is not a square in Fp, each pair (x,−x), where
x ∈ F∗p, contributes two points to CA(Fp). If p ≡ 5 (mod 8) then −1 is a
square but not a fourth power in Fp. Since (ix)5 +A(ix) = i(x5 +Ax), each
quadruple x,−x, ix,−ix gives four points of CA(Fp). Therefore our assertion
follows.

In order to compute #CA(Fp2) and #CA(Fp) for p ≡ 1 (mod 8) we will
use Jacobsthal sums.

Let q = pk, e ∈ N and a ∈ Fq. The Jacobsthal sums ϕe(a) of order e are
defined by
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ϕe(a) =
∑
x∈Fq

(
x

q

)(
xe + a

q

)
,

where
( ·
q

)
is the quadratic character of Fq. Following [5] we list a few of their

properties.

Lemma 2.4. Let ϕe(a) be the Jacobsthal sum of order e for a.

(1) If (e, q − 1) = e1 then ϕe(a) = ϕe1(a).
(2) If e | (q − 1) but 2e - (q − 1) then ϕe(a) = 0.
(3) ϕe(abe) = (b/q)e+1ϕe(a) for b ∈ F×q .
(4) #CA(Fq) = 1 + q + ϕ4(A).

Lemma 2.5. Let q = p2.

(1) Suppose p ≡ 1 or 3 (mod 8) and write p = u2 + 2v2. Then

ϕ4(A)=


−4(2u2 − p) if A is an 8th power in Fq,
4(2u2 − p) if A is a 4th power but not an 8th power in Fq,
0 if A is a square but not a 4th power in Fq,
±8uv otherwise.

(2) Suppose p ≡ 5 or 7 (mod 8). Then

ϕ4(A) =


4p if A is an 8th power in Fq,
−4p if A is a 4th power but not an 8th power in Fq,
0 otherwise.

Proof. The proof can be found in [1, pp. 420–421].

Lemma 2.6. The following properties hold:

(1) If
(
a
p

)
= 1 then a is a fourth power in Fp2.

(2) If
(
a
p

)
= −1 and p ≡ 1 (mod 4) then a is a square but not a fourth

power in Fp2 .

Proof. This is an easy calculation.

Now, we are ready to prove the following

Lemma 2.7. The group JA(Q)tors is a 2-group.

Proof. One should consider a few cases. In all the cases we will compute
#JA(Fp) using the formula (6) and Lemmata 2.4–2.6. Fix an odd prime l.

Suppose that A is neither ±� nor ±5�. Then we can find a prime p such
that p ≡ 5 (mod 8),

(
A
p

)
= −1, l - (1 + p2) and p - A. Note that for p ≡ 5

(mod 8) and
(
A
p

)
= −1 we have #JA(Fp) = 1 + p2. Hence by (5) we get

l - #JA(Q)tors. Moreover, 1+p2 ≡ 2 (mod 4) so #JA(Q)tors = 2. In general,
if A is not ±� we have only #JA(Q)tors = 2 · 5m, m ≥ 0.
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Suppose that A = a2 and a > 0. For p ≡ 5 (mod 8) such that
(
a
p

)
= 1

we get #CA(Fp) = 1 + p and #CA(Fp2) = 1 + p2 + 4p (A is an 8th power in
Fp2). Hence #JA(Fp) = (p + 1)2 ≡ 4 (mod 8). If l > 3 or a is not 6� then
we can find a prime p > A such that p ≡ 5 (mod 8),

(
a
p

)
= 1 and l - (p+ 1).

Therefore #Ja2(Q)tors = 2m3n, where 1 ≤ m ≤ 2, and where n = 0 if a is
not 6�. Moreover by Lemma 2.1 we obtain Jc4/4(Q)tors

∼= (Z/2Z)2.
Consider the case a = 6c2 with c > 0. It is sufficient to show that 3 -

#J36c4(Q)tors. By Lemma 2.4(3) we have ϕ4(36c4) =
(
c
q

)
ϕ4(62) where q = p

or q = p2. Let p ≡ 17 (mod 24) and p = u2 + 2v2. Since 6 is neither a square
in Fp nor a 4th power in Fp2 we get #C36c4(Fp) = 1 + p and #C36c4(Fp2) =
1 + p2 + 8u2 − 4p. Consequently, #J36c4(Fp) = (p− 1)2 + 4u2 6≡ 0 (mod 3).

Suppose now that A = −a2 with a > 0. It is easy to see that #J−a2(Fp) =
(p + 1)2 ≡ 4 (mod 8) for p ≡ 5 (mod 8) and

(
a
p

)
= −1. If a is not a square

or l > 3 then we can find a prime p ≡ 5 (mod 8) such that
(
a
p

)
= −1,

p > a and l - (p + 1). Hence #J−a2(Q)tors = 2m3n, where 1 ≤ m ≤ 2, and
where n = 0 if in addition a is not 3�. By Lemma 2.1 in both cases we get
J−a2(Q)tors

∼= (Z/2Z)2. On the other hand if a is not a 2� or l > 3 then we
can find a prime p ≡ 5 (mod 8) such that

(
a
p

)
= 1, p > a and l - (p − 1)

(now #J−a2(Fp) = (p − 1)2 ≡ 16 (mod 32)). Therefore if a is neither 2�
nor 3� we have #J−a2(Q)tors = 2m where 1 ≤ m ≤ 4. Now let a = 3c2,
i.e. A = −9c4. As in the earlier case, we take p ≡ 17 (mod 24) and get
3 - #J−9c4(Fp) = (p− 1)2 + 4u2.

We are left with the case A = ±5a2. In both cases it is enough to prove
that 5 - #JA(Q)tors. For every a ∈ N there exists a prime p > |A| such that
p ≡ 7 (mod 8), p ≡ 1 (mod 5) and

(
a
p

)
= 1. Then, as in the previous cases,

we combine Lemmata 2.4–2.6 to get #J±5a2(Fp) = (p+1)2 ≡ 2 (mod 5) and
we are done.

Lemma 2.8. The group JA(Q)tors contains no element of order 4.

Proof. In view of the previous proof it is sufficient to investigate JA(Q)tors

for A = a2 where a 6= 2� and for A = −c4. In the first case #JA(Q)tors = 2
or 4. For prime p > a such that p ≡ 5 (mod 8) choose b such that b2 ≡ −a2

(mod p). Then x5 + Ax factors in Fp as x(x2 − b)(x2 + b) (the factors are
irreducible) and 4 ‖ #Ja2(Fp). Hence #Ja2(Fp)[2] = 4. By the embedding
JA(Q)tors ↪→ JA(Fp) we conclude that Ja2(Q)tors has no elements of or-
der 4. Similarly for A = −c4 taking p ≡ 5 (mod 8) with p > c we have
16 ‖ #J−c4(Fp) and #J−c4(Fp)[2] = 16. Therefore J−c4(Q)tors contains no
elements of order 4 and the assertion follows.

Gathering the results from Lemmata 2.7 and 2.8 completes the proof of
Theorem 2.2.
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3. An interesting application. In this section we give an interesting
application of Theorem 2.2 to Question 1.1. More precisely, we prove the
following theorem.

Theorem 3.1. Let a, b, c, d ∈ Z \ {0} be pairwise distinct and consider
the curves

C1 : y2
1 = x5

1 + ax1, C2 : y2
2 = x5

2 + bx2,

C3 : y2
3 = x5

3 + cx3, C4 : y2
4 = x5

4 + dx4.

Then there exists a polynomial D ∈ Z[u] such that the Jacobian variety of
the octic twist of the curve Ci by D has positive rank for i = 1, 2, 3, 4. In
other words, for the constant N defined in the introduction we have N ≥ 4.

Proof. We will show that the set of rational curves on the variety

W :
y2
1 − x5

1

ax1
=
y2
2 − x5

2

bx2
=
y2
3 − x5

3

cx3
=
y2
4 − x5

4

dx4

is nonempty. Due to the characterization of the torsion of the Jacobian of the
curve y2 = x5 +Ax given in Theorem 2.2 it is enough to show the existence
of a nontrivial rational curve on the variety W, i.e. a curve L : xi = fi(u),
yi = gi(u) which satisfies the condition y2

i − x5
i 6= 0 for i = 1, 2, 3, 4. Define

a rational function f(x, y) = (y2 − x5)/x and put

(7)
x1 = x2 = x3 = T, x4 = u2T,

y1 = pT 2, y2 = qT 2, y3 = rT 2, y4 = sT 2,

where p, q, r, s and T are indeterminates. Now, if T = (−bp2 + aq2)/(a− b),
then the first equation defining the hypersurface W holds. On the other
hand, if T = (−cq2 + br2)/(b − c), then the second equation defining W
holds. Finally, for T = (dr2u2− cs2)/(u2(d− cu8)) the third equation holds.
Hence if the system of equations

−bp2 + aq2

a− b
=
−cq2 + br2

b− c
=
dr2u2 − cs2

u2(d− cu8)

has a nontrivial Q(u)-rational solution, then there exists a rational curve
on W. The above system is equivalent to

(8)
{

(a− b)r2 = (c− b)p2 + (−c+ a)q2,
(a− b)s2 = u2((d− bu8)p2 + (−d+ au8)q2).

From the geometric point of view the variety defined by (8), as an intersection
of two quadratic surfaces with rational point [p : q : r : s] = [1 : 1 : 1 : u5],
is birationally equivalent to an elliptic curve of the form y2 = x3 + Ax+ B
for some A,B ∈ Z[u] which depend on a, b, c, d. Although it is possible to
give precise values of A and B (this could be done using the result from [6,
p. 77]), for our purposes it is enough to find one nontrivial Q(u)-point (i.e.
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different from [±1 : ±1 : ±1 : ±u5]) on the curve defined by (8). Now, we
will construct the desired solution of (8). Using the standard method we can
find parametric solutions to the first equation in (8):

p = b− c− 2(2a− b− c)t+ (b− c)t2,
q = 4a− 3b− c− 2(b− c)t+ (b− c)t2,
r = 4a− b− 3c− 2(b− c)t+ (−b+ c)t2,

where t is a rational parameter. We substitute this parametrization into the
second equation in (8), getting the curve defined over the field Q(u) by the
equation C : s2 =

∑4
i=0Ai(u)t4−i =: f(t), where

A0 = (b− c)2u10,

A1 = 4u4(b− c)(−2d+ (b+ c)u8),

A2 = 8(2a− b− c)du2 − 2(4ab− 3b2 + 4ac− 2bc− 3c2)u10,

A3 = 4u2(b− c)(2d− (4a− b+ c)u8),

A4 = − 8(2a− b− c)du2 + (16a2 − 8ab+ b2 − 8ac− 2bc+ c2)u10.

Note that on C we have a Q(u)-rational point at infinity Q = [t : s : w] =
[1 : (b−c)u5 : 0]. Moreover, under our assumption that Ci 6= Cj for i 6= j, the
polynomial f is not even (i.e. f(t) 6= f(−t)). We use the point Q to compute
the value of D(u) we are looking for. Set t = S, s = (b− c)u5S2 +mS + n,
where m,n are indeterminates. We have ((b− c)u5S2 +mS + n)2 − f(S) =∑4

i=1 ai(m,n)Si, where ai ∈ Z[m,n, u]. It is easy to check that the system
of equations a1(m,n) = a2(m,n) = 0 has a unique solution m,n given by

m = m(u) =
2(−2d+ (b+ c)u8)

u3
,

n = n(u) =
−8d2 + 4(2a+ b+ c)du8 − (4ab− b2 + 4ac+ 2bc− c2)u16

(b− c)u11
.

For m,n as above the equation a3(m,n)S3 + a4(m,n)S4 = 0 has a triple
root at S = 0 and a rational root S given by

S = S(u) = −a3(m(u), n(u))
a4(m(u), n(u))

=
au8 − d

(b− c)u8
.

Thus, the point P = (S(u), (b−c)u5S(u)2+m(u)S(u)+n(u)) lies on C. Using
the computed values of m,n and S and performing all necessary calculations
and simplifications in order to get polynomial values of p, q, r, s and

D(u) =
y2
1 − x5

1

ax1
=
y2
2 − x5

2

bx2
=
y2
3 − x5

3

cx3
=
y2
4 − x5

4

dx4
,

we get

p(u) = d2 + 2(a− b− c)du8 − (3a2 − 2ab− b2 − 2ac+ 2bc− c2)u16,
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q(u) = d2 − 2(a− b+ c)du8 + (a2 + 2ab− 3b2 − 2ac+ 2bc+ c2)u16,

r(u) = d2 − 2(a+ b− c)du8 + (a2 − 2ab+ b2 + 2ac+ 2bc− 3c2)u16,

s(u) = u5(3d2 − 2(a+ b+ c)du8 − (a2 − 2ab+ b2 − 2ac− 2bc+ c2)u16),

and

D(u) = 8u8(d+ (a− b− c)u8)(−d+ (a+ b− c)u8)(−d+ (a− b+ c)u8)T (u)3,

where

T (u) = (a2 − 2ab+ b2 − 2ac− 2bc+ c2)2u32

− 4(a3 − a2b− ab2 + b3 − a2c+ 10abc− b2c− ac2 − bc2 + c3)du24

+ 2(3a2 + 2ab+ 3b2 + 2ac+ 2bc+ 3c2)d2u16− 4(a+ b+ c)d3u8 + d4.

From the above we can see that the points

P1 = (x1, y1) = (T (u), p(u)T (u)),
P2 = (x2, y2) = (T (u), q(u)T (u)),
P3 = (x3, y3) = (T (u), r(u)T (u)),

P4 = (x4, y4) = (u2T (u), s(u)T (u)),

lie on curves Ci,D, which are the octic twists of Ci by D(u) for i = 1, 2, 3, 4.
Note that for any e ∈ Z \ {0} the genus of the curve C(e) : y2 = eD(u)

is ≥ 2. Thus from Faltings’ theorem [3] the set of rational points on C(e)
is finite. We thus see that for all but finitely many u the Jacobian, say
Ji, of the curve Ci,D(u) for i = 1, 2, 3, 4 has trivial torsion subgroup via
our characterization from Theorem 2.2. But in the Jacobian Ji(Q) we have
the class of the divisor (Pi) − (∞). This implies that the rank of Ji(Q) is
positive.

Remark 3.2. By the same arguments as in the proof of Theorem 3.1
one can find a polynomial D ∈ Z[u, v, w] such that the octic twist of the
hyperelliptic curve Ci by D(u, v, w) has positive Q(u, v, w)-rank for i =
1, 2, 3, 4. Indeed, instead of (7), we take

x1 = u2T, x2 = v2T, x3 = w2T, x4 = T,

y1 = pT 2, y2 = qT 2, y3 = rT 2, y4 = sT 2,

and then the same reasoning leads to the intersection of two quadric surfaces
defined over Q(u, v, w) by{

u2v2(bu8 − av8)r2 = −v2w2(cv8 − bw8)p2 + u2w2(cu8 − aw8)q2,
u2v2(bu8 − av8)s2 = v2(b− dv8)p2 − u2(a− du8)q2,

with Q(u, v, w)-rational point [p : q : r : s] = [u5 : v5 : w5 : 1]. Using
the standard method it is possible to find a parametric solution (with pa-
rameter t) of the first equation of our system. Inserting the parametrization
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obtained in the second equation of the system reduces the problem to finding
a nontrivial Q(u, v, w)-rational point (i.e. a point (t0, s0) whose t-coordinate
satisfies t0 6= 0) on a curve of the form C : s2 =

∑4
i=0 ai(u, v, w)ti. This can

be done using exactly the same method as in the proof above. After necessary
simplifications we get a polynomial D ∈ Z[u, v, w] and point Pi = (xi, yi)
on the curve Ci,D which is the octic twist of the curve Ci for i = 1, 2, 3, 4.
Moreover, one can show that the set of Q(u, v, w)-rational points on C is
infinite.
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