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1. Introduction. Using the classical Nagell–Lutz Theorem, Mazur’s
deep result, and the reduction modulo primes homomorphism, it is relatively
easy to calculate the torsion of any given elliptic curve over Q. This calcula-
tion may be slighty more complicated for infinite (one-parameter) families of
such curves. Among them the families Ea : y2 = x3+ax and Eb : y

2 = x3+b
occupy a special place (without loss of generality we can and will assume
that a and b are nonzero integers 4th and 6th power free respectively). Their
respective j -invariants are 1728 and 0. Both families have complex multipli-
cation by a fourth and third root of unity respectively. For E = Ea or Eb,
let E(Q)tors denote the torsion subgroup of the Mordell–Weil group E(Q).
The following results are well known (see for instance [K, Theorems 5.2, 5.3,
p. 134].

Proposition 1.1. We have

Ea(Q)tors ∼=


Z/2Z if a 6= 4 and a 6= −square,
(Z/2Z)2 if a = −square,
Z/4Z if a = 4.

Proposition 1.2. We have

Eb(Q)tors ∼=


{0} if b 6= square and b 6= cube and b 6= −432,
Z/2Z if b = cube and b 6= 1,
Z/3Z if b = −432 or (b = square and b 6= 1),
Z/6Z if b = 1.

Note that Ea(Q)tors is a 2-group. Let E(Q)[2] denote the kernel of
the multiplication by 2 map in E(Q). It is easy to see that Ea(Q)[2] =
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{∞} ∪ {(x, 0) ∈ Q×Q : x3 + ax = 0}. Then by Proposition 1.1, we get

(1.1) Ea(Q)tors = Ea(Q)[2] for a 6= 4

(note that E4(Q)[2] ∼= Z/2Z). On the other hand, for b 6= −432 = −2433 we
have the following alternative formulation of Proposition 1.2:

(1.2) Eb(Q)tors ∼=


{0} if b 6= square and b 6= cube,
Z/2Z if b 6= square and b = cube,
Z/3Z if b = square and b 6= cube,
Z/6Z if b = square and b = cube.

In some sense the natural generalizations of elliptic curves with j -invar-
iants 1728 and 0 are the hyperelliptic curves Cn,A : y2 = xn + Ax and
Cn,A : y2 = xn+A (and their Jacobians Jn,A and Jn,A) respectively. In [JU,
Theorem 2.2] we proved that

(1.3) J5,A(Q)tors = J5,A(Q)[2] for all A ∈ Q\{0}.

This was used to give interesting applications to ranks of octic twists. Let us
also mention that, in the case of twisted Fermat curves Cp

m : xp + yp = m,
uniform boundedness of #Jac(Cp

m)(Q)tors for a fixed odd prime p was used
to obtain certain information about the behaviour of ranks in the infinite
family Jac(Cp

m)(Q) (see [DJ]).
In this paper we show that for any nonzero rational A the torsion sub-

group of J7,A(Q) is a 2-group (Theorem 3.2), and for A 6= 4a4,−1728,
−1259712 this subgroup is equal to J7,A(Q)[2] (Theorem 3.11). This is a
variant of the corresponding results for J3,A (A 6= 4) and J5,A (formulas
(1.1) and (1.3)). We prove that for the excluded values of A (possibly ex-
cept −1728) the group J7,A(Q) has a point of order 4 and for almost all
such A we completely determine its torsion subgroup (Theorem 3.12). We
give an explanation of the case A = −1728 (Remarks 3.16). We also com-
pletely determine the Q-rational torsion of Jp,A for all odd primes p, and for
A ∈ Q\{0} such that A 6= (−1)(p−1)/2p times a square (Theorem 4.1). This
is a generalization of formula (1.2). We discuss the excluded case and explain
difficulties (Remarks 4.5). Note that in [JTU] we investigated the ranks of
2n-twists of k-tuples of Jn,A without computing the torsion subgroups.

2. Useful lemmas. For a smooth projective curve C defined over a field
K let JC denote its Jacobian variety. Let JC(K)tors denote the subgroup of
K-rational torsion points of JC(K) and let JC(K)[2] be the kernel of multi-
plication by 2 on JC(K). By definition, a divisor D ∈ Div(C) is K-rational
if it is invariant under the action of the absolute Galois group Gal(K/K).
Note that if D = n1P1+ · · ·+nrPr with n1, . . . , nr 6= 0 then to say that D is
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K-rational does not mean that P1, . . . , Pr ∈ C(K). It suffices for Gal(K/K)
to permute the Pi’s in an appropriate fashion.

The following lemma will be used in both Sections 3 and 4.

Lemma 2.1. Let C be a smooth projective curve of genus g ≥ 1 defined
over the finite field Fq. Set Nk := #C(Fqk) for k ∈ N. Then #JC(Fq) is
completely determined by N1, . . . , Ng. Moreover,

• if g = 2 then

#JC(Fq) =
N2

1 +N2

2
− q,

• if g = 3 then

(2.1) #JC(Fq) =
N3

1

6
+
N1N2

2
+
N3

3
− qN1,

• if Nk = 1 + qk for k = 1, . . . , g then

(2.2) #JC(Fq) = 1 + qg.

Proof. It is known (see for example [HS, Exercise A.8.11]) that

(2.3) #C(Fqn) = qn + 1− (αn
1 + · · ·+ αn

2g),

where P (T ) :=
∏2g

i=1(1−αiT ) is a polynomial with integer coefficients which
satisfies P (T ) = qgT 2gP

(
1
qT

)
. Then

#J(Fq) = P (1) =

2g∏
i=1

(1− αi),

therefore

(2.4) #J(Fq) = (−1)gsg +
g−1∑
i=0

(−1)i(1 + qg−i)si,

where si = si(α1, . . . , α2g) denotes the ith fundamental symmetric polyno-
mial (by definition s0 := 1). Let ti = ti(α1, . . . , α2g) := αi

1 + · · · + αi
2g be

the ith Newton polynomial. Since Nk = qk + 1 − tk(α1, . . . , α2g), using the
Newton formulas

(2.5) ksk =

k∑
i=1

(−1)i−1tisk−i

and (2.4), we are done.

In the proof of our main result in Section 3 we use the following formu-
lation of the Chebotarev Density Theorem (cf. [SL]).

Lemma 2.2. Let f be a polynomial with integer coefficients and leading
coefficient 1. Assume that its discriminant ∆f does not vanish. Let C be a
conjugacy class of the Galois group G of f (i.e. G = Gal(K/Q) where K is
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the splitting field of f). Let σp ∈ G denote the Frobenius substitution of the
prime p (i.e. σp(x) ≡ xp (mod p) where p is a prime lying above p in OK).
Then the set of primes p not dividing ∆f for which σp belongs to C has a
density, and this density equals #C/#G.

Proof. See for example [SL, pp. 35–36].

Corollary 2.3. Under the above assumptions there are infinitely many
primes p such that the polynomial f has the same decomposition type over Fp

as the cycle pattern of σp viewed as an element of the permutation group of
the zeroes of f .

3. The curves y2 = x7 + Ax. Consider the family of curves (over Q)
CA := C7,A : y2 = x7 + Ax where A is a nonzero rational. The curve CA is
hyperelliptic of genus 3. Without loss of generality we may assume that A is
a 12th power free integer. Note that disc(x7+Ax) = −46656A7 = −2636A7,
hence the curve CA has good reduction at primes p - 6A. Let JA be the
Jacobian variety of CA. The aim of this section is to describe the torsion
subgroup of JA(Q). We start with some useful information about the curve
CA and its Jacobian JA (cf. [KTW]).

The curve CA has the automorphisms σ(x, y) := ( 3
√
A/x,

3
√
A2 y/x4) de-

fined over Q( 3
√
A) and ρ(x, y) = (ζ212x, ζ12y) defined over Q(ζ12) where ζ12

is a primitive 12th root of unity. Clearly, ρ has order 12, σ has order 2 and
σρ = ρ5σ. These morphisms induce endomorphisms on the Jacobian JA.
Thus the endomorphism ring of JA contains Z[ζ12].

The quotient of CA by the group generated by σ is the elliptic curve EA,1

with equation

(3.1) EA,1 : y
2 = x3 − 3

3
√
Ax,

and an explicit quotient map is given by

(3.2) (x, y) 7→
(
x+

3
√
A

x
,
y

x2

)
.

A regular differential on CA invariant under σ is (x2 − 3
√
A)dx/y.

The quotient of CA by the group 〈ρ4〉 is the elliptic curve EA,2 with
equation

(3.3) EA,2 : y
2 = x3 +Ax,

and an explicit quotient map is given by

(3.4) (x, y) 7→ (x3, xy).

A regular differential on CA invariant under ρ4 is xdx/y.
Since the elliptic curves EA,1, EA,2 correspond to linearly independent

differentials on CA, one concludes that the Jacobian JA is isogenous (over Q)
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to a product of three elliptic curves EA,1, EA,2, EA,3. Moreover,

(3.5) EA,3 = (1− σ)(1− ρ4)(1− ρ8)JA.
This is because (1 − σ)(1 − ρ4)(1 − ρ8) acts as multiplication by 6 on the
differential (x2 + 3

√
A)dx/y and sends the two differentials (x2 − 3

√
A)dx/y

and xdx/y to 0.
Now we give a full characterization of the group JA(Q)[2].

Lemma 3.1. We have

JA(Q)[2] ∼=



Z/2Z if A 6= cube and A 6= −square (case 1),
(Z/2Z)2 if (A = cube and A 6= −square

and A 6= 27× sixth power)
or (A = −square and A 6= cube) (case 2),

(Z/2Z)3 if A = 27× sixth power (case 3),
(Z/2Z)4 if A = −sixth power (case 4).

In particular, if A is as in case 1 then

(3.6) JA(Q)[2] = 〈[(0, 0)−∞]〉.

Let a denote a square free positive integer. If A = a3 (a 6= 3) then

(3.7) JA(Q)[2] = 〈[(0, 0)−∞], [(
√
−a, 0) + (−

√
−a, 0)− 2∞]〉;

if A = −a2 then

(3.8) JA(Q)[2] =

〈
[(0, 0)−∞],[

( 3
√
a, 0) +

(
−1 + i

√
3

2
3
√
a, 0

)
+

(
−1− i

√
3

2
3
√
a, 0

)
− 3∞

]〉
;

if A = 27a6 then

(3.9) JA(Q)[2] =

〈
[(0, 0)−∞], [(ia

√
3, 0) + (−ia

√
3, 0)− 2∞],[(

3a+ ia
√
3

2

)
+

(
3a− ia

√
3

2

)
− 2∞

]〉
;

and if A = −a6 then

(3.10) JA(Q)[2] =

〈
[(0, 0)−∞], [(a, 0)−∞], [(−a, 0)−∞],[(

a− ia
√
3

2
, 0

)
+

(
a+ ia

√
3

2
, 0

)
− 2∞

]〉
.

Here [D] denotes the equivalence class of the divisor D in JA.
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Proof. Note that (0, 0) ∈ CA(Q), hence [(0, 0) − ∞] ∈ JA(Q)[2]. It is
well known that every point in JA(Q)[2] can be uniquely written as D =∑
niPi − (

∑
ni)∞, where Pi = (xi, 0) ∈ CA(Q) are pairwise distinct, ni ∈

{0, 1} and
∑
ni ≤ 3. Therefore the group JA(Q)[2] is completely determined

by factorization of the polynomial f(x) := x6 +A over Q.
Note that f has a rational root if and only if A = −a6. In this case f(x)

factors over Q as (x−a)(x+a)(x2−ax+a2)(x2+ax+a2). Hence we obtain
(3.10). It is easy to check that f is irreducible over Q if and only if A is as
in case 1. Then JA(Q)[2] = {O, [(0, 0)−∞]}.

If f has no rational roots but is reducible over Q then A is as in case 2
or 3. In particular, if A = a3 (a 6= 3) then f(x) = (x2 + a)(x4 − ax2 + a2),
hence we get (3.7). If A = −a2 then f(x) = (x3−a)(x3+a) and we get (3.8).
If A = 27a6 then f(x) = (x2 + 3a2)(x2 − 3ax + 3a2)(x2 + 3ax + 3a2), and
we are done.

Now we attempt to describe JA(Q)tors.

Theorem 3.2. For all A ∈ Q \ {0} the group JA(Q)tors is a 2-group of
order ≤ 64. Moreover, if A is not a cube then #JA(Q)tors ≤ 4.

The proof of Theorem 3.2 splits into a few lemmas. In order to compute
#JA(Q)tors it is helpful to consider JA(Fp) for several primes p - 6A. This is
because reduction modulo p induces an embedding JA(Q)tors ↪→ JA(Fp) (cf.
[HS, Theorem C.1.4, p. 263]) and therefore

(3.11) #JA(Q)tors |#JA(Fp).

By Lemma 2.1, we have

#JA(Fp) =
#CA(Fp)

3

6
+

#CA(Fp)#CA(Fp2)

2
(3.12)

+
#CA(Fp3)

3
− p#CA(Fp),

so it is enough to compute #CA(Fpk) for k = 1, 2, 3.

Lemma 3.3. If p ≡ 3 (mod 4) then #CA(Fpl) = 1+pl for all odd positive
integers l.

Proof. Let l be an odd positive integer. The curve CA has the point
(0, 0) and the point at infinity. Since p ≡ 3 (mod 4), −1 is not a square
in Fpl . Moreover (−x)7 + A(−x) = −(x7 + Ax), hence each pair {x,−x}
with x ∈ F×

pl
gives two distinct points of CA(Fpl), namely either (±x, 0), or

(x,±
√
x7 +Ax), or (−x,±

√
−x7 −Ax). This establishes the formula.
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In order to compute #CA(Fp2) as well as #CA(Fp), #CA(Fp3) for p ≡ 1

(mod 4), we will use Jacobsthal sums. Let q = pk, e ∈ N and a ∈ Fq. The
Jacobsthal sum φe(a) of order e is defined by

φe(a) =
∑
x∈Fq

(
x

q

)(
xe + a

q

)
,

where
( ·
q

)
is the quadratic character of Fq. For a ∈ Z we define φe(a) :=

φe (a mod p). We list their basic properties (see [KR1]):

Lemma 3.4.

(i) If gcd(e, q − 1) = e1 then φe(a) = φe1(a).

(ii) If e | (q − 1) but 2e - (q − 1) then φe(a) = 0.

(iii) φe(abe) =
(
b
q

)e+1
φe(a) for b ∈ F×q .

(iv) #CA(Fq) = 1 + q + φ6(A).

It will be helpful to consider φ6 and φ2 too. The next lemma is due to
Katre and Rajwade [KR2, Theorem 2].

Lemma 3.5. Let p ≡ 1 (mod 4), q = pn and a ∈ Fq \{0}. Let p = u20+v
2
0

where u0 ≡ 1 (mod 4) and in case a is not a square in Fq, v0 is uniquely
given by a(q−1)/4 ≡ u0/v0 (mod p). Then

φ2(a) =


−2u if a is a 4th power in Fq,

2u if a is a square but not a 4th power in Fq,

2v if a is not a square in Fq,

where

u = un0 −
(
n

2

)
un−20 v20 +

(
n

4

)
un−40 v40 − · · · ,

v = v0

((
n

1

)
un−10 −

(
n

3

)
un−30 v30 + · · ·

)
.

The following two lemmas are due to Berndt and Evans [BE, p. 423].

Lemma 3.6. Let q = p2, p ≡ 3 (mod 4) and a ∈ Fp2 \ {0}. Then

φ6(a) =


6p if a is a 12th power in Fq,

−6p if a is a 6th power but not a 12th power in Fq,

0 otherwise.

In the next lemma the values of φ6(a) will be displayed in a table.
Columns will indicate the residuacity of a ∈ Fp2 \ {0}.
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Lemma 3.7. Let p = 12k + 5. Write p = u20 + v20, where u is odd. Then

φ6(a) square cube 4th power

−2(p− 2u2
0) yes yes yes

2(p− 2u2
0) yes yes no

4(p− 2u2
0) yes no yes

−4(p− 2u2
0) yes no no

±12|u0v0| no yes no
0 no no no

The above lemmas do not allow us to calculate #JA(Fp) for p ≡ 1
(mod 12). In these cases we will apply Lemma 3.8 below (due to Haneda,
Kawazoe and Takahashi [HKT]). We write down only selected cases from
[HKT, Theorems 5.1, 5.2] useful for our purposes. The values of#JA(Fp) will
be displayed in tables; columns will indicate the residuacity of A ∈ Fp \ {0}.

Lemma 3.8. Let p ≡ 1 (mod 12) and write p = u2 + v2, where u ≡
1 (mod 4). Then if 3 |u, we have

#JA(Fp) square cube 4th power

(1− 2u+ p)(1 + 2u+ p)2 yes yes yes
(1− 2u+ p)(1− 2u+ 4u2 − p− 2pu+ p2) yes no yes
(1 + 2u+ p)(1 + 2u+ 4u2 − p+ 2pu+ p2) yes no no
(1 + 2u+ p)(1− 2u+ p)2 yes yes no

and if 3 | v, we have

#JA(Fp) square cube 4th power

(1− 2u+ p)3 yes yes yes
(1− 2u+ p)(1 + 2u+ 4u2 − p+ 2pu+ p2) yes no yes
(1 + 2u+ p)(1− 2u+ 4u2 − p− 2pu+ p2) yes no no
(1 + 2u+ p)3 yes yes no

The following elementary lemma is useful when computing the residuacity
of a ∈ Fpn (n = 1, 2, 3).

Lemma 3.9. Let p > 3 be a prime. Then:

(i) −1 is a 4th power in Fp if and only if p ≡ 1 (mod 8),
(ii) if

(
a
p

)
= 1 then a is a 4th power in Fp2 ,

(iii) if
(
a
p

)
= −1 and p ≡ 1 (mod 4) then a is a square but not a 4th

power in Fp2 ,
(iv) if a is a square and a cube in Fp then a is a 12th power in Fp2,
(v) if p ≡ 3 (mod 4) then every integer is a 4th power in Fp2 ,
(vi) a is a cube in Fp if and only if a is a cube in Fp2,
(vii) a is a square in Fp if and only if a is a square in Fp3,



The torsion of the Jacobians 209

(viii) a is a 4th power in Fp if and only if a is a 4th power in Fp3 ,
(ix) if p ≡ 2 (mod 3) then every integer is a cube in Fp (hence in

Fp2, Fp3 too),
(x) if p ≡ 1 (mod 12) then −3 is a 4th power in Fp if and only if 3 | v

where p = u2 + v2 with odd u.

Proof. The proof of (i)–(ix) is straightforward. The assertion (x) follows
from [L, pp. 158–159].

Proof of Theorem 3.2. We will show that #JA(Q)tors is a power of 2.
Indeed, let r be an odd prime. By the Chinese Remainder Theorem and
the Dirichlet Prime Number Theorem, we can choose a prime p such that
p > 6|A|, p ≡ 3 (mod 8), p ≡ 1 (mod r). Then, by Lemma 3.3, we have
#CA(Fp) = 1 + p, #CA(Fp3) = 1 + p3.

If A is a cube in Fp then by Lemma 3.9, we deduce that A is a 12th
power in Fp2 . Therefore by Lemma 3.6, we have #CA(Fp2) = 1+ p2 +6p, so
by (3.12) we get #JA(Fp) = (1 + p)3, and by (3.11), #JA(Q)tors | (1 + p)3.
Hence r - #JA(Q)tors and ord2(#JA(Q)tors) ≤ 6.

If A is not a cube in Fp then by Lemmas 3.6 and 3.9, we obtain #CA(Fp2)
=1+p2. Hence#JA(Fp)=1+p3, and so r - #JA(Q)tors and ord2(#JA(Q)tors)
≤ 2 < 6.

If A is not a cube in Z, then by the Chebotarev Density Theorem, there
exists a prime p such that p > 6|A|, p ≡ 3 (mod 8) and A is not a cube
in Fp. By the above, #JA(Q)tors ≤ 4, and the assertion follows.

The following lemma will be helpful in proving Theorem 3.11, our second
main result of this section.

Lemma 3.10. Let p - 6A. Then
(i) if p ≡ 3 (mod 8) and A is a cube in Fp then ord2(#JA(Fp)) = 6,
(ii) if p ≡ 3 (mod 8) and A is not a cube in Fp then ord2(#JA(Fp)) = 2,
(iii) if p ≡ 5 (mod 8), p ≡ 2 (mod 3) and A is not a square in Fp then

ord2(#JA(Fp)) = 6,
(iv) if p ≡ 1 (mod 8), p ≡ 2 (mod 3) and A is a square but not a 4th

power in Fp then ord2(#JA(Fp)) = 4,
(v) if p ≡ 5 (mod 8), p ≡ 2 (mod 3) and A is a 4th power in Fp then

ord2(#JA(Fp)) = 4,
(vi) if p ≡ 5 (mod 8), p ≡ 1 (mod 3), −3 is a 4th power and A is a

12th power in Fp then ord2(#JA(Fp)) = 6,
(vii) if p ≡ 1 (mod 3) and (p ≡ 5 (mod 8) and A is a 4th power but not

a cube in Fp or p ≡ 1 (mod 8) and A is a square but neither a 4th
power nor a cube in Fp) then ord2(#JA(Fp)) = 2,

(viii) #JA(Fp)[2] = 64 if and only if p ≡ 1 (mod 3) and −A is a 6th
power in Fp,
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(ix) #JA(Fp)[2] = 16 if and only if p ≡ 2 (mod 3) and −A is a square
in Fp,

(x) #JA(Fp)[2] = 8 if and only if −A is not a square but is a cube in
Fp,

(xi) #JA(Fp)[2] = 4 if and only if −A is not a cube but is a square in
Fp,

(xii) #JA(Fp)[2] = 2 if and only if −A is neither a square nor a cube
in Fp.

Proof. Parts (i) and (ii) follow from the proof of Theorem 3.2.
(iii) For such p, by Lemma 3.9, A is a square and a cube (but not a 4th

power) in Fp2 , and A is not a square in Fp or Fp3 . Since gcd(6, p − 1) = 2
we have φ6 = φ2 in Fp and Fp3 (note that the same is true for (iv) and (v)).
Moreover, A(p3−1)/4 ≡ −A(p−1)/4 (mod p). Hence, by Lemmas 3.5 and 3.7,
we get#CA(Fp) = 1+p−2v20,#CA(Fp2) = 1+p2+2p−4u20 and#CA(Fp3) =
1+ p3+6u20v0− 2v30 where p = u20+ v

2
0, u0 ≡ 1 (mod 4) and v0 ≡ 2 (mod 4).

By (3.12) we obtain ord2(#JA(Fp)) = 6.
(iv) By Lemma 3.9, A is also a square but not a 4th power in Fp3 and is

a 12th power in Fp2 . Hence, by Lemmas 3.5 and 3.7, we obtain #CA(Fp) =
1+p+2u0,#CA(Fp2) = 1+p2−2p+4u20 and#CA(Fp3) = 1+p3+2u30−6u0v20
where p = u20 + v20, u0 ≡ 1 (mod 4), v0 ≡ 0 (mod 4). Therefore by (3.12) we
get ord2(#JA(Fp)) = 4.

(v) This follows by the same method as in (iii) and (iv).
(vi)–(vii) These follow directly from Lemmas 3.8 and 3.9.
(viii)–(xi) We argue similarly to the proof of Lemma 3.1. Note that

#JA(Fp)[2] = 64 if and only if x7 + Ax has seven roots in Fp. The poly-
nomial x7+Ax splits into linear factors in Fp if and only if A = −6th power
in Fp and a primitive 6th root of unity belongs to Fp. The latter condition
is equivalent to p ≡ 1 (mod 3).

Now we are ready to give a full characterization of JA(Q)tors for almost
all A’s. Remember that, without loss of generality, we assume that A is a
12th power free integer.

Theorem 3.11. If A /∈ 4N4 ∪ {−1728,−1259712} then JA(Q)tors =
JA(Q)[2].

Proof. First of all note that by Theorem 3.2, we have JA(Q)tors=JA(Q)[2]
if and only if JA(Q)tors contains no element of order 4. Next, observe that if
a prime p - 6A then JA(Q)tors is isomorphic to a subgroup of JA(Fp), in par-
ticular ord2(#JA(Q)tors) ≤ ord2(#JA(Fp)). Note that if ord2(#JA(Fp)) =
ord2(#JA(Fp)[2]) then JA(Fp) contains no elements of order 4 and hence the
same is true for JA(Q)tors. Now we need to consider a few (not necessarily
disjoint) cases.
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Assume that A is neither a cube nor 1,−2,−3, 6 times a square (in Z).
By the Chebotarev Density Theorem (see Lemma 2.2 and Corollary 2.3),
there exists a prime p such that p > 6|A|, p ≡ 3 (mod 8), A is not a cube
modulo p and −A is a square in Fp (in fact the set of such primes has positive
analytic density).

Indeed, consider the polynomial h(x) := (x2+1)(x2−2)(x2+A)(x3−A)
and its splitting field K (over Q). Then K = Q(i,

√
2,
√
3,
√
A, 3
√
A) and

K/Q is a Galois extension of degree ≤ 48. There exists an automorphism
σ ∈ Gal(K/Q) such that σ(i) = −i, σ(

√
2) = −

√
2, σ(

√
3) = −

√
3, σ(

√
A) =

−
√
A and σ( 3

√
A) = ω 3

√
A where ω3 = 1, ω 6= 1. If we arrange the zeroes

of h in the following order: i,−i,
√
2,−
√
2,
√
−A,−

√
−A, 3

√
A,ω 3
√
A,ω2 3

√
A

then σ, viewed as an element of the symmetric group on nine letters, is
the product (1, 2)(3, 4)(5)(6)(7, 8, 9) of disjoint cycles, i.e. has cycle pattern
2, 2, 1, 1, 3. By Corollary 2.3, there exist infinitely many primes p such that h
has decomposition type 2, 2, 1, 1, 3 over Fp, i.e. the polynomials x2+1, x2−2
and x3−A are irreducible over Fp but x2 +A splits over Fp. Therefore such
primes p have the desired properties. By Lemma 3.10(ii) & (xi), for such p
we get ord2(#JA(Fp)) = 2 and #JA(Fp)[2] = 4. Hence JA(Q)tors = JA(Q)[2]
for such A.

Now let A be a square, say A = a2 (without loss of generality a > 0).
If a is neither a square nor twice a square then we can find a prime p such
that p > 6|A|, p ≡ 1 (mod 8), p ≡ 2 (mod 3) and

(
a
p

)
= −1. Then by

Lemma 3.10(iv) & (ix), ord2(#JA(Fp)) = 4 and #JA(Fp)[2] = 16. Therefore
Ja2(Q)tors = Ja2(Q)[2]. If a is a square (so A is a 4th power) then we choose
a prime p > 6|A| such that p ≡ 5 (mod 8) and p ≡ 2 (mod 3). Hence again
by Lemma 3.10(v) & (ix), we conclude that Jc4(Q)tors = Jc4(Q)[2]. Note
that the case a = 2c2 is excluded.

Let A = −2a2 (a > 0). Again by the Chebotarev Density Theorem (we
omit the details because the explanation is similar to that above), there exists
a prime p > 6|A| such that p ≡ 1 (mod 8), p ≡ 2 (mod 3) and A is a square
but not a 4th power in Fp (note that

(
A
p

)
=
(−2

p

)
= 1, hence by Lemma 3.9

the last condition is equivalent to
(√

2 a
p

)
= −1 where

√
2 denotes any square

root of 2 in Fp). Then by Lemma 3.10(iv) & (ix), we get ord2(#JA(Fp)) = 4
and #JA(Fp)[2] = 16. Hence JA(Q)tors = JA(Q)[2] for such A.

Let A = 6a2 (a > 0). Once again by the Chebotarev Density Theorem,
there exists a prime p > 6|A| such that p ≡ 5 (mod 8), p ≡ 2 (mod 3) and
A is a 4th power in Fp (as previously, the last condition is equivalent to(√

6a
p

)
= 1 where

√
6 denotes any square root of 6 in Fp). Hence by Lemma

3.10(v) & (ix), we obtain ord2(#JA(Fp)) = ord2(#JA(Fp)[2]) = 4.
Now let A = −3a2 (a > 0). Assume that a is not three times a cube in Z

(then A is not a cube). For a prime p ≡ 1 (mod 12) write p = u2 + v2 where
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u ≡ 1 (mod 4). By the Chebotarev Density Theorem, there exists a prime
p > 6|A| such that p ≡ 1 (mod 3), A is not a cube in Fp, p ≡ 1 (mod 8) and
A is not a 4th power in Fp, and similarly there exists a prime p > 6|A| such
that p ≡ 1 (mod 3), A is not a cube in Fp, p ≡ 5 (mod 8) and A is a 4th
power in Fp. Note that A is a 4th power in Fp if and only if

(√−3 a
p

)
= 1,

and by Lemma 3.9(x), the last condition is equivalent to
(
a
p

)
= 1 and 3 | v,

or
(
a
p

)
= −1 and 3 |u. Hence (in both cases) by Lemma 3.10(vii) & (xi), we

get ord2(#JA(Fp)) = ord2(#JA(Fp)[2]) = 2.
Assume now that a = 3c3 where c 6= 2, 6 (without loss of generality c is

positive and square free) so A = −27c6, A 6= −1728,−1259712. Once again,
by the Chebotarev Density Theorem, there exists a prime p > 6|A| such that
p ≡ 5 (mod 8), p ≡ 1 (mod 3), and −3 and A are both 4th powers in Fp

(the last two conditions are equivalent to 3 | v and
(
c
p

)
= 1). Therefore by

Lemma 3.10(vi) & (viii), we obtain

ord2(#JA(Fp)) = ord2(#JA(Fp)[2]) = 6.

Now assume that A is a cube, say A = b3 (by the above we may assume
that b is not 1,−2,−3, 6 times a square in Z). Then we can find a prime
p > 6|A| such that p ≡ 3 (mod 8), p ≡ 1 (mod 3) and

(
b
p

)
= −1. Hence −A

is a 6th power in Fp, and by Lemma 3.10(i) & (viii), we obtain ord2(#JA(Fp))
= 6 and #JA(Fp)[2] = 64, so Jb3(Q)tors = Jb3(Q)[2] and we are done.

Theorem 3.12. For A = 4a4 and −1259712 the group JA(Q)tors has an
element of order 4. Moreover,

(i) if a 6= 2 then

J4a4(Q)tors = 〈[(
3
√
2a2, 2a2

3
√
4a) + (ω

3
√
2a2, 2a2ω2 3

√
4a)

+ (ω2 3
√
2a2, 2a2ω

3
√
4a)− 3∞]〉

∼= Z/4Z

(ω is a primitive 3rd root of unity),
(ii) we have

J−1259712(Q)tors ⊃ 〈[(0, 0)−∞]〉 × 〈[(9− 3
√
21, 29160− 5832

√
21)

+ (9 + 3
√
21, 29160 + 5832

√
21)− 2∞]〉

∼= Z/2Z× Z/4Z.

Proof. Assume that A = 4a4. By (3.4) we have a map (over Q) from CA

to the elliptic curve EA,2 : y2 = x3 + 4a4x. The curve EA,2 is isomorphic
over Q to E4,2 : y

2 = x3 + 4x. The elliptic curve E4,2 has a point of order 4,
namely P = (2, 4). Taking the preimage of P we get three points P1 =

(
3
√
2a2, 2a2 3

√
4a), P2 = (ω

3
√
2a2, 2a2ω2 3

√
4a) and P3 = (ω2 3

√
2a2, 2a2ω 3

√
4a)
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on CA(Q(ω,
3
√
2a2)). Then the divisor D = P1+P2+P3− 3∞ is Q-rational.

Using Cantor’s algorithm (see for instance [MWZ, Theorem 51]) we easily
check that 2D ∼ (0, 0) − ∞, hence [D] has order 4 in JA(Q). Next, by
Theorem 3.2, we have #J4a4(Q)tors ≤ 4 for a 6= 2 (note that a is positive
and cube free), and (i) is proved.

Now assume that A = −1259712 = −2639. In this case we have the map
(3.2), defined over Q, from CA to the elliptic curve EA,1 : y2 = x3 + 324x
(which is isomorphic to y2 = x3 + 4x). Just as above, taking the preimage
of (2, 4) we obtain a Q-rational divisor

D′ = (9− 3
√
21, 29160− 5832

√
21) + (9 + 3

√
21, 29160 + 5832

√
21)

on CA and we check that

2D′ ∼ (0, 0) + (6
√
3, 0) + (−6

√
3, 0)− 3∞.

Therefore [D′] has order 4 in JA(Q). Using Lemma 3.1, we obtain the asser-
tion.

The case A = −1728 = −2633 is more delicate. We are unable to give a
complete answer in this case (see explanations in Remarks 3.16(iii)). But we
present some information below.

Proposition 3.13. The Jacobian J−1728 is isogenous over Q to the prod-
uct of three elliptic curves y2 = x3 + 36x, y2 = x3 − 108x, y2 = x3 + 4x. In
particular J−1728(Q) has rank 0.

Proof. Observe that for A = −1728 the maps (3.2), (3.4) and the elliptic
curves EA,1, EA,2 (3.1), (3.3) are defined over Q. In fact, E−1728,1 : y2 =
x3 +36x and E−1728,2 : y2 = x3− 1728x ∼= y2 = x3− 108x. Note that, as an
endomorphism of J−1728, the map (1−σ)(1−ρ4)(1−ρ8) is Galois-invariant,
therefore indeed its image is an abelian variety of dimension 1 defined over Q.
Hence the elliptic curve E−1728,3 = (1− σ)(1− ρ4)(1− ρ8)J−1728 is defined
over Q too, and J−1728 is isogenous over Q to E−1728,1×E−1728,2×E−1728,3.

Now we give an explicit equation for E−1728,3 with accuracy up to 2-
isogeny (cf. [KTW]). First observe that ρ3 commutes with ρ and σ, hence it
defines an automorphism of order 4 on E−1728,3. It follows that E−1728,3 (as
well as E−1728,1 and E−1728,2) has complex muliplication by Z[i]. Next, since
J−1728 has good reduction at all primes >3, the same holds for E−1728,3.
Therefore an equation for E−1728,3 is of the form y2 = x3 + dx where d =
±2s3t with 0 ≤ s, t ≤ 3. Since the curve with d is 2-isogenous to the one
with −4d, we may assume that d > 0. The exact value of d is then found
using the equality

#CA(Fp) = #EA,1(Fp) + #EA,2(Fp) + #EA,3(Fp)− 2(p+ 1),

which holds for all primes p of good reduction. Evaluating this for p = 5
shows d ∈ {4, 9, 24, 54}. The case p = 13 shows that d /∈ {9, 24, 54}. So
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one concludes E−1728,3 : y2 = x3 + 4x. Using Magma [BCP] we find that
the Mordell–Weil groups E−1728,k(Q) have rank 0 (k = 1, 2, 3), and hence
J−1728(Q) has rank 0 too. The proof is complete.

Corollary 3.14. The point at infinity and (0, 0) are the only Q-rational
points on the curve C−1728.

Proof. Assume that P = (a, b) ∈ C−1728(Q). By Proposition 3.13, the
divisor D = P −∞ is torsion in J−1728(Q). Due to Grant’s analogue of the
Lutz–Nagell Theorem [G, Theorem 3, p. 968], it follows that a, b ∈ Z, and
either b = 0 or b2 | disc(x7− 1728x) = 248327. Checking all possible values of
a and b using Magma [BCP], we complete the proof.

Proposition 3.15. For all primes p > 3 the group J−1728(Fp) has a
point of order 4.

Proof. Let A = −1728 = −2633 and let p > 3 be a prime. By Lemma
3.10(viii)–(xii), we obtain

ord2(#JA(Fp)[2]) =


6 if p ≡ 1 (mod 12),
4 if p ≡ 11 (mod 12),
3 if p ≡ 5, 7 (mod 12).

On the other hand, by Lemmas 3.5–3.8 (the details are left to the reader),
we get

ord2(#JA(Fp)) ≥

{
7 if p ≡ 1 (mod 12),
6 if p ≡ 5, 7, 11 (mod 12).

Hence in all cases ord2(#JA(Fp)) > ord2(#JA(Fp)[2]), which completes the
proof.

Remarks 3.16. (i) As in the proof of Proposition 3.13, we can show that
for A = −1259712 the Jacobian JA is isogenous over Q to EA,1×EA,2×E−A,3

where

EA,1 : y
2 = x3 + 4x, EA,2 : y

2 = x3 − 12x and EA,3 : y
2 = x3 + 36x.

Moreover, EA,1 and EA,3 have rank 0 over Q but EA,2 has rank 1 and the
point (−2,−4) generates EA,2(Q) modulo torsion. Hence JA(Q) has rank 1
and taking an appropriate preimage we find the divisor

(−6 3
√
3, 3888/

3
√
3) + (−6ω 3

√
3, 3888ω2/

3
√
3) + (−6ω2 3

√
3, 3888ω/

3
√
3)− 3∞

of infinite order in JA(Q).
(ii) Note that the curves C−1728 and C−1259712 are isomorphic overQ(

√
3).

In fact, the group J−1728(Q(
√
3)) contains an element of order 4. Namely,

D = (3 +
√
21, 72(5

√
3 + 3

√
7)) + (3−

√
21, 72(5

√
3− 3

√
7))− 2∞
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is the divisor on C−1728 defined over Q(
√
3) and 2D ∼ (0, 0) + (2

√
3, 0) +

(−2
√
3, 0)− 3∞.

(iii) The group J−1728(Q) has an element of order 4 if and only if there
exists D ∈ J−1728(Q) such that 2D ∼ Di where Di ∈ J−1728(Q)[2]\{O}, i.e.
(i = 1, 2, 3) D1 = (0, 0) −∞, D2 = (

√
12, 0) + (−

√
12, 0) − 2∞ and D3 =

(0, 0) + (
√
12, 0) + (−

√
12, 0) − 3∞. Reduction over F5 and the embedding

J−1728(Q) ↪→ J−1728(F5) show that D1, D2 /∈ 2J−1728(Q), so it only remains
to check D3.

Any divisor on the curve is equivalent to the unique reduced divisor (see
[MWZ, Theorem 47]), hence it is enough to consider three cases:D = P1−∞,
D = P1 + P2 − 2∞ and D = P1 + P2 + P3 − 3∞. Let Pj = (xj , yj) for
j = 1, 2, 3 and let 〈A(x), B(x)〉 denote the Mumford representation of the
divisor 2D (see [MWZ, pp. 17–19] for details). It is easy to see that the
Mumford representation of the divisor D3 is 〈x3 − 12x, 0〉.

In the first case 2D is still reduced, so clearly it is not equivalent to D3.
In the second case, first note that P1 6= P2. Indeed, otherwise P1 ∈

C−1728(Q), and by Corollary 3.14, P1 = (0, 0), so D = 2(0, 0) − 2∞ ∼ O.
Using Cantor’s algorithm [MWZ, Theorem 51] we have computed A(x) =
x3+a2x

2+a1x+a0 and B(x) = b2x
2+b1x+b0 where ai, bj ∈ Q(x1, x2, y1, y2).

The divisor 2D is Q-rational if and only if Q(x1, x2, y1, y2) is a quadratic
extension of Q and σ(x1) = x2, σ(y1) = y2 where σ denotes the generator of
the Galois group of this extension. Moreover, 2D ∼ D3 if and only if they
have the same Mumford representations (as reduced divisors). Unfortunately,
the system of equations a2 = 0, a1 = −12, . . . is too complicated, and our
computers are unable to solve it.

The last case is even worse. Note that all Pi are pairwise distinct (other-
wise, P1, P2, P3 ∈ C−1728(Q), and 2D ∼ O). The numerators of appropriate
functions ai, bj ∈ Q(x1, x2, x3, y1, y2, y3) have more terms and greater degrees
than the ones in the second case.

4. The curves y2 = xp + A. Consider the family of curves (over Q)
Cp,A : y2 = xp + A, where p is an odd prime and A is a nonzero rational.
The curve Cp,A is hyperelliptic of genus (p− 1)/2. Without loss of generality
we may assume that A is a 2p-power free integer. Note that disc(xp +A) =
(−1)(p−1)/2ppAp−1, hence the curve Cp,A has good reduction at a prime q if
q - 2pA. Let Jp,A be the Jacobian variety of Cp,A. Note that the curve Cp,A

has the automorphism (x, y) 7→ (ζpx, y) where ζp is a primitive pth root of
unity. Hence the Jacobian Jp,A has complex multiplication by ζp. In contrast
to Section 3, no reduction to the elliptic curve case is possible for Cp,A. Set
p∗ := (−1)(p−1)/2p.

The aim of this section is to prove the following:
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Theorem 4.1. We have

Jp,A(Q)tors ∼=



{0} if A 6= square and A 6= p∗ × square
and A 6= pth power,

Z/2Z if A 6= square and A 6= p∗ × square
and A = pth power,

Z/pZ if A = square and A 6= pth power,
Z/2pZ if A = square and A = pth power,
{0} or Z/pZ if A = p∗ × square and A 6= pth power,
Z/2Z or Z/2pZ if A = p∗ × square and A = pth power.

Moreover, we know the following torsion points: [(− p
√
A, 0)−∞] of order 2,

[(0,
√
A)−∞] of order p and [(0,

√
A) + (− p

√
A, 0)− 2∞] of order 2p.

The proof of Theorem 4.1 breaks into three lemmas.

Lemma 4.2. We have #Jp,A(Q)tors ∈ {1, 2, p, 2p}.

Proof. We will show that Jp,A(Q)tors ⊂ Z/2pZ. Observe first that

(4.1) #Cp,A(Fln) = ln + 1 if p - ln − 1.

Indeed, the map x 7→ xp is an automorphism of F×ln , hence x 7→ xp + A
is one-to-one on Fln . If l is the primitive root modulo p then (4.1) holds
for n = 1, . . . , (p− 1)/2. Hence, by Lemma 2.1, we obtain #Jp,A(Fl) =

l(p−1)/2 + 1. For a prime l - 2pA reduction modulo l induces an embedding
Jp,A(Q)tors ↪→ Jp,A(Fl) (cf. [HS, Theorem C.1.4, p. 263]), therefore

(4.2) #Jp,A(Q)tors |#Jp,A(Fl).

Take a prime q - 2p. We will show that Jp,A(Q) has no q-torsion. Choose a
prime l - 2pA such that l is a primitive root modulo p and l ≡ 1 (mod q).
Then l(p−1)/2 + 1 ≡ 2 (mod q), hence q - #Jp,A(Fl). Now we can deduce
bounds for 2- and p-torsion. Taking a prime l - 2pA such that l is a primitive
root modulo p and l ≡ 1 (mod 4) we have 4 - #Jp,A(Fl). Similarly, taking a
prime l - 2pA such that l is a primitive root modulo p and p2 - l(p−1)/2 + 1
we obtain p2 - #Jp,A(Fl), and the assertion follows.

Lemma 4.3. Jp,A(Q) has a point of order 2 if and only if A is a pth
power.

Proof. Suppose that A = Bp with B ∈ Z. Then the divisor D =
(−B, 0) − ∞ is rational and represents a point of order two in Jp,A(Q).
Conversely, it is well known that every point in Jp,A(Q)[2] can be uniquely
written as D =

∑
niPi − (

∑
ni)∞, where Pi = (xi, 0) are pairwise distinct,

ni ∈ {0, 1} and
∑
ni ≤ (p− 1)/2. Since the polynomial xp + A is either
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irreducible over Q or has a rational root, therefore Jp,A(Q)[2] 6= {O} implies
that A is a pth power.

Lemma 4.4. If A is a square then Jp,A(Q) has a point of order p. Assume
futhermore that A /∈ p∗N2. Then the converse statement is true.

Proof. If A = B2 then the rational divisorD = (0, B)−∞ is not principal
but pD = div(B − y).

Now suppose that A is not a square. First, we show that there are in-
finitely many odd primes q such that q ≡ 1 (mod p) and

(
A
q

)
= −1. If

A = ±2pa2 or A = ±2a2 then we can take q such that q ≡ 1 (mod p) and
q ≡ 5 (mod 8). If A = −a2 or A = −p∗a2 then we choose q ≡ 1 (mod p),
q ≡ 3 (mod 4). In all other cases there exists an odd prime l 6= p such that
ordl(A) is odd. By the Chinese Remainder Theorem and the Dirichlet Prime
Number Theorem, there are infinitely many primes q such that q is congru-
ent to 1 modulo 8, modulo p and modulo all primes dividing A except l and
q ≡ r (mod l), where

(
r
l

)
= −1. Such a q has the desired property.

Next, we consider the group homomorphism h : F×qn → F×qn , h(x) = xp.
Observe that #kerh = p. Moreover, A is a square in Fqn if and only if n is
even. Hence

#Cp,A(Fqn) ≡
{
1 (mod p) if n is odd,
3 (mod p) if n is even.

Using Lemma 2.1 we find that #Jp,A(Fq) ≡ 1 (mod p). By (4.2) we conclude
that Jp,A(Q) has no point of order p.

Remarks 4.5. (i) The excluded case Cp,p∗a2 is more difficult. For p = 3
these curves are elliptic and E−3a2 = C3,−3a2 = J3,−3a2 . By Proposition
1.2, we have E−3a2(Q)tors ∼= Z/3Z if and only if a = 223; in the remaining
cases E−3a2(Q)tors = {O} except for E−27(Q)tors ∼= Z/2Z. For p = 5 we
have J5,5a2(Q)tors ∼= Z/5Z only when a = 2452. For other values of a we
have J5,5a2(Q)tors = {O} except for J5,55(Q)tors ∼= Z/2Z. On the other hand,
one can show that p |#Jp,±pa2(Fq) for any prime q - 2pA. Hence the group
Jp,±pa2(Fq) always contains a point of order p.

(ii) The cases p = 3 and p = 5 suggest that Jp,(−1)(p−1)/222(p−1)pp(Q)tors
∼= Z/pZ, but on the other hand J7,−21277(Q)tors is trivial. Indeed, one can
easily check that J7,−21277(F11)[7] has order 7, so the same is true for
J7,−21277(Q11)[7]. Since −7 is a square mod 11, this group is generated by the
class of the divisor (0, 2673

√
−7)−∞. But this divisor is not defined over Q.

(iii) In general (for p > 5), if there is a p-torsion point in Jp,p∗a2(Q) then
Jp,p∗a2(Q(

√
p∗))[p] = (Z/pZ)2, since the curve Cp,p∗a2 is isomorphic to Cp,a′2

(over Q(
√
p∗)), which also contributes p-torsion. If there is an odd prime q

such that
( q
p

)
=
(p∗

q

)
= 1, q - a, q 6≡ 1 (mod p) and p2 - #Jp,p∗a2(Fq) then

we get a contradiction.
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