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1. Introduction and statements of results. Consider the exponen-
tial generating function of a sequence {an}, n ≥ 0,

(1.1) G(s) :=
∞∑
n=0

an
n!
sn, s ∈ C.

For each nonzero rational number r, in [1], we considered the problem of
approximating G(r) with partial sums of the series (1.1). In the case that
an ≡ 1 and s = 1, we asked how well one can approximate e by the partial
sums

∑n
`=0 1/`!. J. Sondow [6] conjectured that exactly two of these par-

tial sums are also convergents to the continued fraction of e. Among several
results, Sondow and K. Schalm [7] proved that, for almost all positive in-
tegers n, the partial sum

∑n
`=0 1/`! is not a convergent to the continued

fraction of e. Thus, the probability of obtaining a convergent to the con-
tinued fraction of e upon randomly choosing one of the first n partial sums
of the power series of e tends to zero as n → ∞. Knowledge of the con-
tinued fraction of e2/a, where a is a nonzero integer, and the best possible
diophantine approximation of e2/a, discovered by S. Ramanujan [5] and re-
discovered by C. S. Davis [4], enabled the authors to prove in [2] that at most
Oa(logM) of the first M convergents to the continued fraction of e2/a are
also partial sums of the corresponding power series. In [1], we considered
general hypergeometric functions pFp(a1, . . . , ap; b1, . . . , bp; r), and showed
that among their first N partial sums, no more than O(logN) are conver-
gents to the continued fraction of pFp(a1, . . . , ap; b1, . . . , bp; r). Observe that
this result includes e2/a as a special case and that this particular corollary
is a dual of the aforementioned result established in [2]. Moreover, when
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an is a real Dirichlet character or when {an}, n > 0, are the coefficients of
an L-series attached to an elliptic curve without complex multiplication, we
proved similar theorems in [1]. Lastly, we remark that in [2], we, in fact,
proved Sondow’s conjecture.

At the focal point of our study in [1] and in this paper are the following
two definitions. For any rational number µ = a/b, with (a, b) = 1, consider
the height H(µ) of µ, given by H(µ) = max{|a|, |b|}. For any real number α,
and any positive real number δ, denote

(1.2) Aα,δ :=

{
µ ∈ Q : |α− µ| < 1

H(µ)1+δ

}
.

In the present paper, we greatly expand our outlook in two different
directions. First, we complement the results from [1] with a positivity ar-
gument. For sequences {an}n∈N of nonnegative integers, we first establish
a general result with the accuracy of the results described in our opening
paragraph. For each such sequence, we define the gap function i(n) to be
the number of consecutive elements equal to zero immediately following an,
that is,

(1.3) i(n) := min{m : m ≥ n+ 1, am 6= 0} − n− 1.

Thus, for sequences in which an > 0, n ≥ 1, the gap function is identically
equal to zero. In what follows, we consider sequences for which the gap
function satisfies

(1.4) lim
n→∞

i(n)

n
= 0.

We shall allow the size of an to be quite large. More precisely, we require
that an = Oε(n

εn) for any ε > 0, which we write in the form

(1.5) lim
n→∞

log(1 + an)

n log n
= 0.

We then have the following result.

Theorem 1.1. Let {an}, n ∈ N, be a sequence of nonnegative integers
satisfying (1.4) and (1.5), and consider the entire function

(1.6) G(s) :=
∞∑
n=1

an
n!
sn.

Then for any positive rational number r and any real number δ > 0, there
are constants C1 > 0, depending only on δ, and C2 > 0, depending on r, δ,
and the given sequence {an}, n ∈ N, such that for all positive integers N ,

(1.7) #

{
n ≤ N : an 6= 0 and

n∑
`=1

a`
`!
r` ∈ AG(r),δ

}
≤ C1 logN + C2.
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Theorem 1.1 is applicable to a large variety of sequences of interest in
number theory. We offer a few classical examples obtained from the Riemann
zeta function ζ(s) and L-functions: ζk(s) =

∑∞
n=1 dk(n)n−s, where dk(n)

denotes the number of ways of writing n as a product of k positive integers;

ζ(s− 1)

ζ(s)
=
∞∑
n=1

ϕ(n)

ns
,

where ϕ(n) denotes Euler’s ϕ-function; and, for any two quadratic Dirichlet
characters χ1 and χ2, ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2), a product which plays
a key role in Siegel’s theorem on possible exceptional (Siegel) zeros; see
Davenport’s text [3, Chapter 21].

We performed substantial calculations in support of our conjecture that,
in each case, values of partial sums coincide with convergents of the con-
tinued fraction only a finite number of times. In particular, for integral
powers of ζ(s) up to the 20th, we calculated the first 2000 partial sums
and convergents. The table below provides a list of coalescing partial sums
and convergents of continued fractions that we found in our calculations
for powers of ζ(s). We conjecture that for any positive integral power of
ζ(s), there are only a finite number of values assumed by both partial sums
and convergents. Moreover, in each of the cases below, we conjecture that
we have found all possible matchings. Observe that for powers k > 6, only
when k = 15 do we find matching partial sums and convergents. Is it true
that for k > 15, there are no further common values?

k Common values

1 {1, 5
3
}

2 {2}
3 {3, 1243

378
}

4 {}
5 {5}
6 {5, 27545

4608
}

7 {}
8 {}
9 {}
10 {}

k Common values

11 {}
12 {}
13 {}
14 {}
15 {16, 27649

1680
}

16 {}
17 {}
18 {}
19 {}
20 {}

Next, for a real Dirichlet character χ, we consider

G(s) = Gχ(s) :=
∞∑
n=1

χ(n)

n!
sn.

In [1], we conjectured that for any real Dirichlet character χ and any nonzero
rational number r, there exist only finitely many positive integers n for
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which the partial sum
∑m

n=1(χ(n)/n!)rn is a convergent to the continued
fraction of Gχ(s). In connection with this conjecture, we showed in [1] that
at most Oχ,r(logN) of the first N partial sums are also convergents to the
continued fraction of Gχ(r). We also raised the natural problem to estimate,
for large x, the largest number of the common values of the partial sums∑m

n=1(χ(n)/n!)rn and the convergents to the continued fraction of Gχ(r)
as χ runs over all real characters of conductor ≤ x. In relation to this, we
prove the following result.

Theorem 1.2. For a real Dirichlet character χ, let `(χ) be the num-
ber of values that are simultaneously partial sums of the power series and
convergents to the continued fraction of Gχ(s). Then

max
q≤x

max
χmod q
χ real

`(χ)� log log x.

In another direction, instead of studying the approximation of one par-
ticular real value of the exponential function, i.e., e2/a, by rational numbers,
we examine the more general and delicate problem of approximating com-
plex numbers of the form α1e

β1 + · · · + αre
βr , where α1, . . . , ar, β1, . . . , βr

are in Q, the algebraic closure of Q in C, by partial sums of their power
series. Before commencing this study, we need to describe the setting and
fix notation.

For any finite field extension K of Q contained in Q, we denote by OK
the ring of integers of K. For any ideal J we let ‖J‖ denote its norm. In what
follows, we use the following notion of height of an algebraic number. Given
θ ∈ Q, there exists a unique polynomial P (X) = C0X

d +C1X
d−1 + · · ·+Cd

∈ Z[X], irreducible over Q, with C0 > 0 and gcd(C0, C1, . . . , Cd) = 1 such
that P (θ) = 0. We let

(1.8) H(θ) := max{C0, |C1|, . . . , |Cd|}.
In particular, if θ = a/q is rational, with a, q ∈ Z, q > 0, (a, q) = 1, then
P (X) = qX − a and H(θ) := max{q, |a|}. We will also use the following
terminology. Given a vector β = (β1, . . . , βr) with β1, . . . , βr ∈ Q, we will
say that β is admissible if the numbers β1, . . . , βr are nonzero and distinct,
and if two components βi and βj have the same largest absolute value, then
the ratio βi/βj is a root of unity.

Now let α = (α1, . . . , αr), β = (β1, . . . , βr), with α1, . . . , αr, β1, . . . , βr ∈
Q− {0} and β admissible, and consider the complex number

(1.9) ρ = α1e
β1 + · · ·+ αre

βr .

We know from the Lindemann–Weierstrass theorem that ρ is transcendental
over Q. We write ρ in the form

(1.10) ρ =

∞∑
`=0

a`
`!
,
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where for any `,

(1.11) a` =
r∑
j=1

αjβ
`
j ,

and consider approximations of ρ by the partial sums
∑n

`=0 a`/`!. To assess
the quality of such an approximation, we consider the height H

(∑n
`=0 a`/`!

)
and the distance from

∑n
`=0 a`/`! to ρ.

For any complex number z and any positive real number τ, we consider
the set

(1.12) Az,τ =

{
θ ∈ Q : |z − θ| ≤ 1

H(θ)τ

}
.

Note that by (1.10) and (1.11),

(1.13)

∣∣∣∣ρ− n∑
`=0

a`
`!

∣∣∣∣ ≤ 1

(n!)1−ε

for any fixed ε > 0 and n large enough in terms of α, β, and ε. Also, at least
in the case when α and β have rational components,

(1.14) H

( n∑
`=0

a`
`!

)
≤ (n!)1+ε

for any fixed ε > 0 and n sufficiently large in terms of α, β, and ε. By (1.13)
and (1.14), it follows that if α and β have rational components, then each
of the sets Aρ,τ , 0 < τ < 1, contains all but finitely many partial sums∑n

`=0 a`/`!. In the following, we focus on the case when τ > 1. Our main
theorem below shows that in this case very few partial sums

∑n
`=0 a`/`!

belong to Aρ,τ . More precisely, we prove the following result.

Theorem 1.3. Let r be a positive integer, let α = (α1, . . . , αr) and β =
(β1, . . . , βr), with α1, . . . , αr, β1, . . . , βr ∈ Q− {0} and β admissible, and let
τ be a real number > 1. Then, for large x,

(1.15) #

{
n ∈ N : n ≤ x,

n∑
`=0

a`
`!
∈ Aρ,τ

}
= Oα,β,τ (log x),

where ρ and the a`’s are given by (1.9) and (1.11). Here, the constant implied
by the Oα,β,τ -symbol is effectively computable.

We conjecture that in each nontrivial instance of our theorem, the num-
ber of matchings of partial sums with convergents of the corresponding con-
tinued fractions is actually finite. To that end, we performed extensive cal-
culations for the cases r = 2, α1 = α2 = 1, β1 = a/b, and β2 = c/d,
with 1 ≤ |a|, |b|, |c|, |d| ≤ 50. In particular, we examined both partial sums
and convergents up to 10,000 terms. The number of common values that
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we found ranged from 0 to 3. In the following table, we list only a few
representative findings.

ρ Common values

e2/19 + e−3/19 {2, 112
57
}

e−9/10 + e4/5 {2, 21
8
}

e−1/30 + e−1/15 {2, 19
10
, 137

72
}

e1/21 + e2/21 {2, 15
7
, 737
343
}

e1/45 + e2/45 {2, 31
15
, 335
162

}

For the exponential sums in the table above, we conjecture that we have
found all the instances where a convergent matches a partial sum. We noticed
that for a = −c = 1 and b = d, i.e., when we examined 2 cosh(1/b), we
always found two common values for the partial sums and convergents. In
fact, it is easy to prove that for cosh(1/b), we always have an intersection
of {2, 2 + 1/b2} of partial sums and convergents. We conjecture that these
are the only coalescing values. Further observations led us to the following
theorem, which we do not prove here. It is likely that the two common values
in Theorem 1.4 below are the only ones.

Theorem 1.4. For any positive integers a and c, and any n that is a
multiple of a+ c and satisfies the inequality

n >

{
a+ c,

4(a3 + c3)

21ac

}
,

both 2 and 2 + (a+ c)/n are common values of partial sums and convergents
for

ρ = ea/n + ec/n.

2. Proof of Theorem 1.1. The proof follows roughly along the same
lines as the proofs of the results from [1] that we delineated in the Introduc-
tion.

Let {an} be a sequence of nonnegative integers satisfying (1.4) and (1.5),
and let G(s) be given by (1.6). Fix a positive rational number r and a real
number δ > 0. Fix a small η > 0, whose precise value will depend on δ only.
For a fixed large integer N , let SG,r,δ,η,N denote the set of integers in the
interval [N, (1 + η)N ] for which an 6= 0 and

n∑
`=1

a`
`!
r` ∈ AG(r),δ.

Next, take any nonempty subset S in SG,r,δ,η,N and denote v = #S. By the
positivity of r and the nonnegativity of an, n ≥ 1, it follows that for any
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integer n,

(2.1) G(r)−
n∑
`=1

a`
`!
rn =

∞∑
`=n+1

a`
`!
rn ≥

an+1+i(n)

(n+ 1 + i(n))!
rn+1+i(n).

By (2.1), (1.4), Stirling’s formula, and the fact that an+1+i(n) ≥ 1, we see
that, uniformly for all integers n ∈ [N, (1 + η)N ],

(2.2) G(r)−
n∑
`=1

a`
`!
rn >

1

nn(1+o(1))
.

For those n ∈ SG,r,δ,η,N , we then find from (2.2) that

H

( n∑
`=1

a`
`!
rn
)
<

(
G(r)−

n∑
`=1

a`
`!
r`
)−1/(1+δ)

< n
1+o(1)
1+δ n

(2.3)

< N
(1+η)(1+o(1))

1+δ N
< N (1−δ/2)N

for 0 < δ < 1, η sufficiently small in terms of δ, and N sufficiently large.

Next, let r = a/b, a, b ∈ Z, b ≥ 1, (a, b) = 1, and for any n ∈ S, let An
be the positive integer for which

(2.4)
n∑
`=1

a`
`!
r` =

An
bnn!

.

Denote Dn := (An, b
nn!). Let n,m ∈ S with n < m. Then

n∑
`=1

a`
`!
r` <

m∑
`=1

a`
`!
r`,

and

Am − bm−nm(m− 1) · · · (n+ 1)An ∈ N.

Uniformly, for all n,m as above, we can conclude that

(Dn, Dm) ≤ (An, Am) ≤ Am − bm−nm(m− 1) · · · (n+ 1)An(2.5)

= bmm!

m∑
`=n+1

a`a
`

`!b`
≤ (m− n)

m!

n!
H(r)m max

n<`≤m
a`

= O

(
m!

n!
H(r)mmo(m)

)
.

If we let LS denote the least common multiple of the Dn’s, with n ∈ S,
then, by Stirling’s formula, we find that

(2.6) ∏
n∈S Dn∏

n,m∈S, n<m(Dn, Dm)
≤ LS ≤ b[(1+η)N ][(1 + η)N ]!�η

(
2bN

e

)(1+η)N

.
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Now, by the definition of Dn,

(2.7)

H

( n∑
`=1

a`
`!
r`
)

= H

(
An
bnn!

)
= max

{
|An|
Dn

,
bnn!

Dn

}
∼ bnn!

Dn
max{1, |G(r)|}

as n→∞, and so by (2.7), (2.3), and Stirling’s formula,

(2.8) Dn ≥
bnn!

N (1−δ/2)N ≥
(
b

e

)N
N δN/2.

By (2.5)–(2.8), we find that(
b

e

)vN
N δvN/2 �η,v

(
2bN

e

)(1+η)N ∏
n,m∈S
n<m

m!

n!
H(r)mmo(m)(2.9)

�η,v

(
2bN

e

)(1+η)N

H(r)
1
2 (1+η)Nv(v−1)No(v2N)

∏
n,m∈S
n<m

m!

n!
.

Observe that the product on the right side of (2.9) can be written in the
simplified form

(2.10)
∏

n,m∈S
n<m

m!

n!
=
∏
n∈S

(n!)v−1−2#{m∈S :m>n}.

On the right side of (2.10), we use the inequality n! ≥ N ! for those n ∈ S for
which v − 1− 2#{m ∈ S : m > n} < 0, and the inequality n! ≤ [(1 + η)N ]!
for those n ∈ S for which v − 1− 2#{m ∈ S : m > n} > 0. It follows that

∏
n,m∈S
n<m

m!

n!
≤


(

[(1 + η)N ]!

N !

)(v2−1)/4
if v is odd,(

[(1 + η)N ]!

N !

)v2/4
if v is even

(2.11)

≤
(

[(1 + η)N ]!

N !

)v2/4
.

By (2.9), (2.11), and Stirling’s formula, we find that

δvN

2
logN ≤ (1 + η)N log

2bN

e
+

(1 + η)Nv(v − 1)

2
logH(r)

(2.12)

+
v2

4

(
(1 + η)N log

(1 + η)N

e
−N log

N

e

)
+ o(v2N logN).

We now let N →∞ while keeping δ, η, and v fixed. It follows that

(2.13)
δv

2
≤ 1 + η +

v2η

4
+ o(v2).
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We see that the inequality (2.13) fails to hold if N is large enough, because,
for a fixed δ > 0 and a given positive integer v, we can choose η small enough
so that δv

2
> 1 + η +

v2η

4
,

which contradicts (2.13) for N sufficiently large.
In conclusion, for such a fixed v and any N sufficiently large, SG,r,δ,η,N

cannot have v elements or more. Lastly, we take a sufficiently large integerN ,
subdivide the interval [1, N ] into intervals of the form [T, (1 + η)T ], and use
the upper bound obtained above for each such interval, provided that T is
sufficiently large. We thus readily obtain the bound (1.7) to complete the
proof of Theorem 1.1.

3. Proof of Theorem 1.2. Let x be large, and let pn, n ≥ 1, be the
nth prime. Define r by

2 · 5 · 7 · · · pr ≤ x < 2 · 5 · 7 · · · pr · pr+1.(3.1)

Then, by (3.1) and the prime number theorem, we have

(3.2) log x ∼
∑

p≤pr+1
p prime

log p ∼ pr+1.

Define

q = 2
r∏

n=3

pn.

By (3.1), we have q ≤ x. Now, choose χ to be the principal character mod-
ulo q. Then

χ(n) =

{
1 if n = 1, 3, 32, 33, . . . ,

0 if n < pr+1 and n 6= 1, 3, 32, 33, . . . ,

and

α :=
∑
n≥1

χ(n)

n!
= 1 +

1

3!
+

1

32!
+

1

33!
+ · · ·+

∑
n≥pr+1

χ(n)

n!
.

We now let k be a nonnegative integer such that 3k+1 < pr+1, and we define
ak as follows:

1 +
1

3!
+

1

32!
+

1

33!
+ · · ·+ 1

(3k)!
=
ak
3k!

.

Then ∣∣∣∣α− ak
3k!

∣∣∣∣ < ∑
n≥(3k+1)!

1

n!
≤ 2

(3k+1)!
<

1

2(3k!)2
.(3.3)

Recalling that for a rational number a/b, if |α− a/b| < 1/(2b2), then a/b is
a convergent for the continued fraction of α, we can see that ak/(3

k!) is a



258 B. C. Berndt et al.

convergent and a partial sum of α. Thus,

`(χ)� log pr+1 ∼ log log x,

by (3.2), which completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3. The proof is based on several lemmas.

Lemma 4.1. Let α = (α1, . . . , αr) and β = (β1, . . . , βr), with α1, . . . , αr,
β1, . . . , βr ∈ Q−{0} and β admissible. There exists a positive integer Nα,β,

depending only on α and β, such that, for any integers m and n satisfying

(4.1) min{m,n} ≥ Nα,β and |m− n| ≥ r,

the partial sums
∑m

`=0 a`/`! and
∑n

`=0 a`/`!, with a` given by (1.11), are
distinct.

Proof. Let α and β be as in the statement of the lemma, and fix a
j0 ∈ {1, . . . , r} for which

(4.2) |βj0 | = max{|β1|, . . . , |βr|}.
Let

(4.3) S = {j ∈ {1, . . . , r} : |βj | = |βj0 |}.
Since β is admissible, we know that for any j ∈ S , βj/βj0 is a root of unity.
Therefore, the function given by

(4.4) ` 7→
∑
j∈S

αj
αj0

(
βj
βj0

)`
takes only finitely many values as ` runs over N. Hence, there exists a con-
stant εα,β ≥ 0 depending only on α and β, such that for any ` ∈ N,

(4.5)
∑
j∈S

αj
αj0

(
βj
βj0

)`
= 0 or

∣∣∣∣ ∑
j∈S

αj
αj0

(
βj
βj0

)`∣∣∣∣ ≥ εα,β.
In other words, for any ` ∈ N,

(4.6)
∑
j∈S

αjβ
`
j = 0 or

∣∣∣ ∑
j∈S

αjβ
`
j

∣∣∣ ≥ εα,β|αj0 | |βj0 |`.
In the case S does not coincide with the entire set {1, . . . , r}, fix a j1 in
{1, . . . , r} −S for which

(4.7) |βj1 | = max{|βj | : j ∈ {1, . . . , r} −S }.
Then, for all `,

(4.8)
∣∣∣ ∑
j∈{1,...,r}−S

αjβ
`
j

∣∣∣ = Oα(|βj1 |`).
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Since |βj1 | < |βj0 |, the upper bound on the right side of (4.8) is exponentially
small compared to the lower bound on the right side of (4.6) as `→∞. By
(1.11), (4.6), and (4.8), for all ` sufficiently large,

(4.9) |a`| = Oα(|βj1 |`) or |a`| ≥ 1
2εα,β|αj0 | |βj0 |

`.

Next, let us remark that the first alternative in (4.6) cannot happen for
#S consecutive values of `. Indeed, assume that, for some m,

(4.10)
∑
j∈S

αjβ
`
j = 0 for ` = m+ 1,m+ 2, . . . ,m+ #S .

The associated Vandermonde determinant is nonzero, since the βj ’s are dis-
tinct; hence the system (4.10) can only have the trivial solution α = 0, which
is not the case here. Therefore, since #S ≤ r, in any set of r consecutive
values of `, at least one of them satisfies the second alternative in (4.6).
It follows that the second alternative in (4.9) holds at least once in any r
consecutive large values of `.

Now let m and n be large positive integers with n ≥ m + r. Let `0 be
the smallest value of ` in {m + 1, . . . , n} for which the second alternative
in (4.9) holds. Thus, `0 ≤ m+ r. It follows that

(4.11) |a`| = Oα,β(|βj1 |`) for m+ 1 ≤ ` < `0,

and

(4.12) |a`0 | ≥ 1
2εα,β|αj0 | |βj0 |

`0 .

Also, trivially from (1.11),

(4.13) |a`| = Oα(|βj0 |`) for all ` > `0.

By (4.13) and (4.12),

(4.14)
∑

`0<`≤n

|a`|
`!

= Oα

( n∑
`=`0+1

|βj0 |`

`!

)
= Oα,β

(
|βj0 |`

m`0!

)
= Oα,β

(
|a`0 |
m`0!

)
.

Also, by (4.11) and (4.12),

(4.15)
∑

m<`<`0

|a`|
`!

= Oα,β

(
|βj1 |`0

(m+ 1)!

)
= Oα,β

(
m`0−m

(
βj1
βj0

)m |a`0 |
`0!

)
.

For m large, the far right-hand sides of (4.14) and (4.15) are negligible
compared to |a`0 |/(`0)!; therefore∣∣∣∣ n∑

`=0

a`
`!
−

m∑
`=0

a`
`!

∣∣∣∣ =

∣∣∣∣ n∑
`=m+1

a`
`!

∣∣∣∣ ≥ a`0
`0!
−

∑
m<`<n
` 6=`0

a`
`!

(4.16)

≥ a`0
2`0!

≥
εα,β|αj0 | |βj0 |

`0

4`0!
.
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This shows that the partial sums
∑n

`=0 a`/`! and
∑m

`=0 a`/`! are distinct,
and completes the proof of Lemma 4.1.

Lemma 4.2. Let α = (α1, . . . , αr) and β = (β1, . . . , βr), with α1, . . . , αr,
β1, . . . , βr ∈ Q − {0} and β admissible, and let ρ be given by (1.9). There
exist a positive integer N ′

α,β
and an ε′

α,β
> 0, depending only on α and β,

such that, for all m ≥ N ′
α,β
,

(4.17)

∣∣∣∣ρ− m∑
`=0

a`
`!

∣∣∣∣ ≥ ε′
α,β

(max{|β1|, . . . , |βr|})m

mrm!
.

Proof. The computations from the proof of Lemma 4.1 were detailed
enough to immediately imply Lemma 4.2 as well. More precisely, using (4.16)
in combination with the fact that `0 ≤ m+ r, we find that

(4.18)

∣∣∣∣ n∑
`=0

a`
`!
−

m∑
`=0

a`
`!

∣∣∣∣ ≥ ε′
α,β
|βj0 |m

mrm!

for some constant ε′
α,β

> 0 depending only on α and β, any m large enough,

and any n ≥ m + r. The right side of (4.18) is independent of n. Letting
n → ∞ while keeping m fixed, and recalling the definition of |βj0 |, we
find that (4.17) holds for all m large enough. This completes the proof of
Lemma 4.2.

Next, let α = (α1, . . . , αr) and β = (β1, . . . , βr), with α1, . . . , αr,
β1, . . . , βr ∈ Q− {0} and β admissible, and consider the number field

K := Q(α1, . . . , αr, β1, . . . , βr).(4.19)

Denote

b := min{d ∈ Z : d ≥ 1, dα1, . . . , dαr, dβ1, . . . , dβr ∈ OK}.(4.20)

With the a`’s defined by (1.11), b`+1a` belongs to OK , for each ρ. Therefore,
writing each partial sum of the series from the right side of (1.10) in the
form

n∑
`=0

a`
`!

=
An

bn+1n!
,(4.21)

we have An ∈ OK for all n. We consider the ideal of OK generated by An
and bn+1n!,

Jn := (An, b
n+1n!), n = 0, 1, 2, . . . ,(4.22)

and examine the size of the norm ‖Jn‖ of Jn. One would naturally expect
to have very little cancellation on the right side of (4.21), and ‖Jn‖ to
be relatively small. Notice that if for some n the partial sum

∑n
`=0 a`/`!

is zero, then An = 0, and the norm of Jn is as large as it can be, namely
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‖Jn‖ = (bn+1n!)[K:Q]. This only happens finitely many times, since∑n
`=0 a`/`! → ρ as n → ∞, and ρ 6= 0. Notice also that if ‖Jn‖ is un-

usually large for one value of n, it will automatically be large for other
nearby values of n that happen to produce the exact same partial sum. By
Lemma 4.1, this phenomenon is harmless, since the multiplicity of each par-
tial sum

∑n
`=0 a`/`!, with n sufficiently large, is bounded by r. The following

lemma, which generalizes to number fields a key result from [1], shows that
with at most a logarithmic number of exceptions, ‖Jn‖ is bounded by nεn

for any fixed ε > 0 and n sufficiently large.

Lemma 4.3. Let α = (α1, . . . , αr) and β = (β1, . . . , βr), with α1, . . . , αr,
β1, . . . , βr ∈ Q − {0} and β admissible. For any ε > 0, there exists an
effectively computable constant C ′

α,β,ε
> 0 such that, for all sufficiently large

real numbers x,

#{n ∈ Z : 1 ≤ n ≤ x, ‖Jn‖ ≥ nεn} ≤ C ′α,β,ε log x,(4.23)

where Jn is defined via (1.11) and (4.19)–(4.22).

Proof. Let α and β be as in the statement of the lemma and fix an ε > 0.
We choose a small η > 0, whose precise value will be given later, and will be
allowed to depend on ε and on the degree of K = Q(α1, . . . , αr, β1, . . . , βr)
over Q. It suffices to show that there exists an effectively computable con-
stant C ′′

α,β,ε,η
and a positive integer N ′′

α,β,ε,η
such that, for any integer

N ≥ N ′′
α,β,ε,η

,

#{n ∈ Z : N ≤ n ≤ N(1 + η), ‖Jn‖ ≥ nεn} ≤ C ′′α,β,ε,η.(4.24)

Then (4.23) follows immediately from (4.24), by writing the interval
[N ′′

α,β,ε,η
, x] as a union of at most d(log x− logN ′′

α,β,ε,η
)/log(1 + η)e inter-

vals of the form [N,N(1 + η)]. In order to prove (4.24), consider such an
interval [N,N(1 + η)] with N large. By requiring N ′′

α,β,ε,η
to be larger than

the positive integer Nα,β from the statement of Lemma 4.1, we may assume
in what follows that N ≥ Nα,β. Consider the exceptional set

Eα,β,ε,η,N := {n ∈ Z : N ≤ n ≤ N(1 + η), ‖Jn‖ ≥ nεn},(4.25)

and construct a subset E∗
α,β,ε,η,N

of Eα,β,ε,η,N as follows. Let n1 be the small-

est element of Eα,β,ε,η,N . Let n2 be the smallest element of Eα,β,ε,η,N that is
≥ n1 + r, let n3 be the smallest element of Eα,β,ε,η,N that is ≥ n2 + r, and
so on, until this procedure stops. Then set

E∗
α,β,ε,η,N

= {n1, n2, . . .}.(4.26)

By the foregoing construction, #Eα,β,ε,η,N ≤ r#E
∗
α,β,ε,η,N

, and so (4.24) will

be proved if we show that there is an effectively computable constant C ′′′
α,β,ε,η
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such that, uniformly for all N sufficiently large,

#E∗
α,β,ε,η,N

≤ C ′′′
α,β,ε,η

.(4.27)

Fix now a positive integer k satisfying

k ≤ #E∗
α,β,ε,η,N

.(4.28)

As a side remark, we emphasize that the argument below would not work
if instead of (4.28) we let k equal #E∗

α,β,ε,η,N
directly. The reason is that in

the argument below k needs to be in a suitable range; if k is too small or
too large, we do not obtain a contradiction.

To proceed, let J denote the least common multiple of the ideals
Jn1 , . . . , Jnk . For 1 ≤ i < j ≤ k, let Jij denote the greatest common divisor
of the ideals Jni and Jnj . Let P be an arbitrary prime ideal of OK , and let
e1, . . . , ek denote the exponents of P in Jn1 , . . . , Jnk , respectively. Then the
exponent of P in J equals max{e1, . . . , ek}, the exponent of P in the prod-

uct
∏

1≤j≤k Jnj equals the sum
∑

1≤j≤k ej , and for any 1 ≤ i < j ≤ k, the

exponent of P in Jij equals min{ei, ej}. Note that the nonnegative integers
e1, . . . , ek always satisfy the inequality

e1 + · · ·+ ek ≤ max{e1, . . . , ek}+
∑

1≤i<j≤k
min{ei, ej}.(4.29)

Indeed, let s ∈ {1, . . . , k} be such that es =max{e1, . . . , ek}. Then es appears
as the first term on the right side of (4.29), each term ei on the left side
with i < s also appears on the right side as min{ei, es}, and each term ej on
the left side with j > s also appears on the right side as min{es, ej}. Also,
all the remaining terms on the right side are nonnegative.

Since the previous discussion applies to all prime ideals of OK , we see
that ∏

1≤j≤k
Jnj divides J

∏
1≤i<j≤k

Jij .(4.30)

Since n1, . . . , nk belong to the exceptional set Eα,β,ε,η,N ,∏
1≤j≤k

‖Jnj‖ ≥
∏

1≤j≤k
n
εnj
j ≥ NkεN .(4.31)

On the other hand, for each j, Jnj divides the principal ideal (bnj+1nj !),

which in turn divides (bbN(1+η)+1cbN(1 + η)c!), and therefore J also divides
this ideal. Taking norms, we find that

‖J‖ ≤ b[K:Q]bN(1+η)+1c(bN(1 + η)c!)[K:Q].(4.32)

Combining (4.32) with Stirling’s formula, we see that for N sufficiently large,

‖J‖ ≤ NN(1+2η)[K:Q].(4.33)
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By (4.30), (4.31), and (4.33), for N sufficiently large,

NkεN ≤ NN(1+2η)[K:Q]
∏

1≤i<j≤k
‖Jij‖.(4.34)

Lastly, in order to bound the product on the right side of (4.34), recall that
by Lemma 4.1, the partial sums

∑nj
`=0 a`/`! with 1 ≤ j ≤ k are distinct. It

follows that for each pair (i, j), 1 ≤ i < j ≤ k, the number wi,j defined by

wi,j := bnj+1nj !

( nj∑
`=0

a`
`!
−

ni∑
`=0

a`
`!

)
= Anj −

bnj−ninj !Ani
ni!

(4.35)

is a nonzero algebraic integer. Moreover, since Anj ∈ Jnj ⊆ Jij and
Ani ∈ Jni ⊆ Jij , by (4.35), we see that wi,j belongs to Jij . Therefore,

‖Jij‖ ≤ |NK/Q(wi,j)| for 1 ≤ i < j ≤ k.(4.36)

Next, we need an alternative way to bound the norm of each element wi,j .
We start by rewriting (4.35) as

wi,j = bnj+1nj !
∑

ni<`≤nj

a`
`!

(4.37)

= bnj+1
(
anj + njanj−1 + · · ·+ nj(nj − 1) · · · (ni + 1)ani

)
.

For any embedding σ of K into C,

σ(wi,j) = bnj+1
(
σ(anj ) + njσ(anj−1) + · · ·+ nj(nj − 1) · · · (ni + 1)σ(ani)

)
.

(4.38)

By (1.11), for each σ and each `,

σ(a`) =
r∑
j=1

σ(αj)σ(βj)
`.(4.39)

If we denote

‖α‖ = max
σ

max
1≤j≤r

|σ(αj)|,(4.40)

and similarly

‖β‖ = max
σ

max
1≤j≤r

|σ(βj)|,(4.41)

then by (4.39)–(4.41),

|σ(a`)| ≤ r‖α‖ ‖β‖`(4.42)

for any σ and `. Combining (4.38) and (4.42), we find that

|σ(wi,j)| ≤ r‖α‖bnj+1 max{‖β‖ni , ‖β‖nj}nnj−ni+1
j .(4.43)

Since nj ≤ N(1 + η) and nj − ni ≤ ηN, we see that for N sufficiently large,

|σ(wi,j)| ≤ N2ηN(4.44)
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uniformly for 1 ≤ i < j ≤ k and all embeddings σ of K into C. Therefore,

|NK/Q(wi,j)| =
∏
σ

|σ(wi,j)| ≤ N2ηN [K:Q](4.45)

for 1 ≤ i < j ≤ k. Combining (4.34), (4.36), and (4.45), we deduce that

kε ≤ (1 + 2η)[K : Q] + k(k − 1)η[K : Q].(4.46)

With ε and the degree [K : Q] fixed, if η is chosen small enough, then the
function given by

t 7→ (1 + 2η)[K : Q] + t(t− 1)η[K : Q]− tε(4.47)

has two real and positive roots t1 < t2. Moreover, if d := [K : Q],

t2 − t1 =

√
(ε+ ηd)2 − 4η(1 + 2η)d2

ηd
.(4.48)

For fixed d and ε, the right-hand side of (4.48) tends to infinity as η → 0.
One can choose an effectively computable η = ηd,ε > 0, depending only
on d and ε, such that (ε+ ηd,εd)2 − 4ηd,ε(1 + 2ηd,ε)d

2 > 0 and such that the
right-hand side of (4.48) is larger than 1. One can then choose an effectively
computable positive integer k = kd,ε, depending only on d and ε, such that
t1 < kd,ε < t2.

In conclusion, since (4.46) fails for ηd,ε and kd,ε, it follows that (4.28) fails
for ηd,ε and kd,ε, for every single sufficiently large N. In other words, (4.27)
holds for all N sufficiently large, with η = ηd,ε and C ′′′

α,β,ε,ηd,ε
= kd,ε−1. This

completes the proof of Lemma 4.3.

Lemma 4.4. Let α = (α1, . . . , αr) and β = (β1, . . . , βr), with α1, . . . , αr,

β1, . . . , βr ∈ Q − {0} and β admissible. For any ε > 0, there exists an
effectively computable constant Cα,β,ε > 0 such that, for all large x,

#

{
n ∈ Z : 1 ≤ n ≤ x, H

( n∑
`=0

a`
`!

)
≤ n(1−ε)n

}
≤ Cα,β,ε log x,(4.49)

where the a`’s are given by (1.11).

Proof. Let α and β be as in the statement of the lemma. Fix an ε > 0
and take a large x. By Lemma 4.3, for all 1 ≤ n ≤ x with at most C ′

α,β,ε
log x

exceptions, we have

‖Jn‖ ≤ nεn.(4.50)

Take such an n, and let dn denote the degree of
∑n

`=0 a`/`! over Q. Let

Pn(X) = cn,0X
dn + cn,1X

dn−1 + · · ·+ cn,dn ∈ Z[X]
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be irreducible over Q, such that cn,0 > 0, gcd(cn,0, cn,1, . . . , cn,dn) = 1, and

Pn

( n∑
`=0

a`
`!

)
= 0.(4.51)

By (4.21) and (4.51), we derive

cn,0A
dn
n + cn,1A

dn−1
n bn+1n! + · · ·+ cn,dnb

(n+1)dn(n!)dn = 0.(4.52)

It follows from (4.52) that cn,0A
dn
n is a multiple of bn+1n! in OK . Let Dn

denote the greatest common divisor of the positive integers cn,0 and bn+1n!,
and write

cn,0 = Dnµn, bn+1n! = Dnνn, (µn, νn) = 1.(4.53)

Then µnA
dn
n is a multiple of νn in OK , and since (µn, νn) = 1 and νn divides

bn+1n!, it follows that the principal ideal (νn) divides the ideal generated by
Adnn and bn+1n!. Since this ideal divides Jdnn , it follows that (νn) divides Jdnn .
Taking norms and using (4.50), we find that

ν[K:Q]
n ≤ ‖Jdnn ‖ ≤ nεndn .(4.54)

The degree dn is bounded by [K : Q], and so (4.54) implies that

νn ≤ nεn.(4.55)

By (4.53) and (4.55), and the definition of height given by (1.8), we deduce
that

H

( n∑
`=0

a`
`!

)
≥ cn,0 ≥ Dn =

bn+1n!

νn
≥ bn+1n!

nεn
.(4.56)

This completes the proof of Lemma 4.4, by an appeal to Stirling’s formula.

Proof of Theorem 1.3. Let α, β, and τ be as in the statement of the
theorem. Take a large x, and let n ≤ x be such that

∑n
`=0 a`/`! ∈ Aρ,τ , with

ρ given by (1.10). Thus,

(4.57)

∣∣∣∣ρ− n∑
`=0

a`
`!

∣∣∣∣ ≤ 1

H(
∑n

`=0 a`/`!)
τ
.

Combining (4.57) with Lemma 4.2, for n ≥ N ′
α,β

, we have

H

( n∑
`=0

a`
`!

)
≤ nr/τ (n!)1/τ

(ε′
α,β

)1/τ (max{|β1|, . . . , |βr|})n/τ
.(4.58)

Letting now ε = (1−1/τ)/2, we see that the right side of (4.58) is ≤ n(1−ε)n
for n large enough. Thus, Lemma 4.4 is applicable, and in combination with
(4.58) completes the proof of Theorem 1.3.
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