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Explicit estimates for the summatory function of Λ(n)/n
from the one of Λ(n)

by

Olivier Ramaré (Lille)

1. Introduction. We define classically

ψ(x) =
∑
n≤x

Λ(n),

ψ̃(x) =
∑
n≤x

Λ(n)/n.

There has been a good amount of work to find explicit asymptotics for
ψ(x) (see for instance [15]–[18] and [13]). The quantity ψ̃(x) has been much
less studied, though [16, Theorem 6] gives an estimate. There has been
an attempt in a more general setting in [10], and recent attention has been
turned to the Mertens product, as in [2]. The problem here is that one would
really want to deduce such an estimate from the ones concerning ψ(x), but
such a method is missing. The aim of this paper is to provide a fairly simple
roundabout (see Theorem 1.1 below).

Let us note that the prime number theorem in the form ψ(x) = (1 +
o(1))x is “elementarily” equivalent to

(1.1) ψ̃(x) = log x− γ + o(1).

So in a sense, we are concerned with a quantitative version of this equiva-
lence. A simple integration by parts is not enough, as it looses a log-factor.
In effect, an estimate of the form |ψ(x) − x)|/x ≤ 0.01 for x large enough
transfers into something like |ψ̃(x) − log x + γ| ≤ 0.01 log x which is of no
interest. The Landau equivalence theorem can however be made explicit,
but does not yield a saving better than 1/

√
log x in a rough form; allowing

a saving of any power of log x is already theoretically not obvious (see [9]
for instance). Here is a conjecture.
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Conjecture (Strong form of Landau equivalence theorem, I). There
exist positive constants c1 and c2 such that

|ψ̃(x)− log x+ γ| ≤ c1 max
x/c2<y≤c2x

|ψ(y)− y|
y

+ c2x
−1/4.

Such a conjecture holds (almost trivially) true under the Rieman Hy-
pothesis. The result of [3] indicates that such an inequality does not hold in
the case of Beurling generalized integers. Indeed they show that the condi-
tion ψP(x) ∼ x does not ensure that ψ̃P(x)− log x has a limit, with obvious
notations.

Let us end this introduction with a remark: in [7], the authors exhibit,
under the Riemann Hypothesis, a pseudo-periodic function that (essentially)
takes the value (ψ̃(e−y) + y)ey/2 when y < 0 and (ψ(ey) − ey)e−y/2 when
y > 0. This means that the values of ψ and of ψ̃ may be more closely linked
than in the above conjecture.

We are not able to prove our conjecture, but show in Lemma 2.2 that

ψ̃(x)− log x+ γ − ψ(x)− x
x

is a well-controlled function. Here are some consequences of our formula.

Theorem 1.1. For x ≥ 8 950, we have

ψ̃(x) = log x− γ +
ψ(x)− x

x
+O∗

(
1

2
√
x

)
+O∗(1.75 · 10−12).

Furthermore when log x ≥ 9270, we have (with R = 5.696 93)

ψ̃(x) = log x− γ +
ψ(x)− x

x
+O∗

(
1

2
√
x

)
+O∗

(
1 + 2

√
(log x)/R

2π
exp
(
−2
√

(log x)/R
))
.

Corollary. For x > 1, we have

ψ̃(x) = log x− γ +O∗(1.833/log2 x).

Furthermore, for 1 ≤ x ≤ 1010, we have ψ̃(x) = log x− γ +O∗(1.31/
√
x).

For x ≥ 23, we have ψ̃(x) = log x− γ +O∗(0.0067/log x).

As a comparison, [16, Theorem 6] proposes an inequality similar to the
last one above, but with 1/2 = 0.5 instead of 0.0067. No error term with a
saving of 1/log2 x is proposed.

Notation. We use the classical counting function

(1.2) N(T ) =
∑
ρ

0<γ≤T

1,
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where ρ = β + iγ is a zero of the Riemann zeta-function. Furthermore, by
f(x) = O∗(g(x)) we mean |f(x)| ≤ g(x).

The computations required have been done via Pari/GP (see [12]).

2. An explicit formula. We will need [14, Lemma 4]:

Lemma 2.1. Let g be a continuously differentiable function on [a, b] with
2 ≤ a ≤ b <∞. Then

b�

a

ψ(t)g(t) dt =

b�

a

tg(t) dt−
∑
ρ

b�

a

tρ

ρ
g(t) dt

+

b�

a

(
log 2π − 1

2 log(1− t−2)
)
g(t) dt.

Here is our main formula.

Lemma 2.2. For x ≥ 1, we have

ψ̃(x) = log x− γ +
ψ(x)− x

x
+
∑
ρ

xρ−1

ρ(ρ− 1)
+
B(x)

x
.

where the sum is over the zeroes ρ of the Riemann zeta function that lie in
the critical strip 0 < =s < 1 (the so-called nontrivial zeroes) and B(x) is
the bounded function given by

B(x) = 1
2 + log 2π − 1

2(x− 1) log(1− x−1).

The main point of the lemma is that the sum over the zeroes is uniformly
convergent, a feature not shared by the explicit formulae for ψ(x) or ψ̃(x).
In fact, the main difficulty is carried by the term (ψ(x)− x)/x.

Proof. We simply proceed by integration by parts:

ψ̃(x) =

x�

1

ψ(t)
dt

t2
+
ψ(x)

x
= log x− γ +

∞�

x

(ψ(t)− t) dt
t2

+
ψ(x)− x

x
.

Note that the existence of the integral requires a strong enough form of
the equivalence between ψ(t) and t. Next we apply the explicit formula of
Lemma 2.1 to get

Y�

x

(ψ(t)− t) dt
t2

= −
∑
ρ

Y�

x

tρ−2 dt

ρ
+

Y�

x

(
log 2π − 1

2 log(1− t−2)
) dt
t2

= −
∑
ρ

Y ρ−1 − xρ−1

ρ(ρ− 1)
+

Y�

x

(
log 2π − 1

2 log(1− t−2)
) dt
t2
.
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Since (1.1) is known to hold, and
∑

ρ 1/|ρ(ρ−1)| is convergent, we can send
Y to infinity and get

Y�

x

(ψ(t)− t) dt
t2

=
∑
ρ

xρ−1

ρ(ρ− 1)
+

∞�

x

(
log 2π − 1

2 log(1− t−2)
) dt
t2
.

3. Known bounds on ψ(x). In [13], we find that

(3.1) |ψ(x)− x| ≤
√
x (8 ≤ x ≤ 1010).

If we change
√
x to

√
2x, this is valid from x = 1 onwards. Furthermore

(3.2) |ψ(x)− x| ≤ 0.8
√
x (1 500 ≤ x ≤ 1010).

By [4, Théorème 1.3] improving on [18, Theorem 7], we have

(3.3) |ψ(x)− x| ≤ 0.0065x/log x (x ≥ exp(22)).

We readily extend this estimate to x ≥ 3 430 190 by using (3.1), and then
to x ≥ 1 514 928 by direct inspection.

We quote [4, Théorème 1.4] and [5, Theorem 5.2]:

|ϑ(x)− x| ≤ 3.965x/log2 x (x > 2),(3.4)

|ϑ(x)− x| ≤ 515x/log3 x (x > 2),(3.5)

In fact [5, Theorem 5.2] proposes the constant 21 instead of 515 in this
inequality, but this preprint has not been published. We will not use this
bound but take this opportunity to record this fact.

We go from ϑ to ψ by using [17, Theorem 6]

(3.6) 0 ≤ ψ(x)− ϑ(x) ≤ 1.0012
√
x+ 3x1/3 (x > 0).

Lemma 3.1. For x ≥ 7 105 266, we have

|ψ(x)− x|/x ≤ 0.000 213.

Proof. We start with the estimate from [17, (4.1)]:

(3.7) |ψ(x)− x|/x ≤ 0.000 213 (x ≥ 1010).

We extend it to x ≥ 14 500 000 by using (3.1). We conclude by direct in-
spection.

Lemma 3.2. For x > 1, we have

|ψ(x)− x| ≤ 1.830x/log2 x, |ψ(x)− x| ≤ 516x/log3 x.

Proof. Indeed, we readily find that

|ψ(x)− x|(log x)2

x
≤ |ψ(x)− ϑ(x)|(log x)2

x
+ |ϑ(x)− x|(log x)2

x

≤ min

(
1.0012(log x)2√

x
+

3(log x)2

x2/3
+

515

log x
, 0.0065 log x

)
,
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which is not more than 1.830, on using the first estimate for x ≥ exp(281.5)
and the second one for the smaller values. We prove the second estimate in
the same way:

|ψ(x)− x|(log x)3

x
≤ |ψ(x)− ϑ(x)|(log x)3

x
+ |ϑ(x)− x|(log x)3

x

≤ min

(
1.0012(log x)3√

x
+

3(log x)3

x2/3
+ 515, 0.0065 log2 x

)
,

which is not more than 516, on using again the first estimate for x ≥
exp(281.5) and the second one for the smaller values. For lower x, we first
use

|ψ(x)− x| ≤ (log2 x/(1.830
√
x))1.830x/log2 x,

which extends our bound till x ≥ 55. A very primitive GP script shows that

|ψ(x)− x| ≤ 1.417x/log2 x (1 ≤ x ≤ 105).

We proceed similarly for the bound with log3 x.

4. Lemmas on the zeroes. We quote from [14]:

Lemma 4.1. If T is a real number ≥ 103 then

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+O∗

(
0.67 log

T

2π

)
.

This is a version of Theorem 19 of [15], relying on [1].

Lemma 4.2. For T ≥ 103, we have∑
γ≥T0

1/γ2 ≤ log(T/(2π))

2πT
+ 0.67

2 log(T/(2π)) + 1/2

T 2
.

Proof. We denote by S the sum to be evaluated and we simply use
integration by parts:

S = 2

∞�

T

N(t)−N(T )

t3
dt

≤ 2

(2π)2

∞�

T/(2π)

u log u− u+ 7
8 + 0.67 log u

u3
du

−
T
2π log T

2π −
T
2π + 7

8 − 0.67 log T
2π

T 2

≤ log(T/(2π))

2πT
+ 0.67

2 log(T/(2π)) + 1/2

T 2
,

and the lemma follows readily.
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Lemma 4.3. We have
∑

ρ 1/|ρ(ρ− 1)| ≤ 0.047, where ρ ranges over all
nontrivial zeroes of ζ.

In particular, we do not impose =ρ > 0. We prove this lemma by using
the file of the first 105 zeroes provided by Odlyzko [11].

We in fact used zeroes only up to height 10 000 and ran the computations
using 28 digits precision on GP/Pari. Note that when =ρ = 1/2, we have
ρ(ρ − 1) = −|ρ|2. Truncation of the imaginary parts only increases the
sum, while the high enough precision takes care of the machine error. The
restricted sum is about 0.023 02 (with =ρ > 0). We next use Lemma 4.2
to handle the tail of the series. We finally double the value to remove the
condition =ρ > 0, and round the value up.

We also know, thanks to [6], that the zeroes ρ in the critical strip and
satisfying |=ρ| ≤ 2.44 · 1012 = T0 are all on the line <ρ = 1/2. We handle
zeros with large imaginary part by using the following theorem from [8].

Lemma 4.4. Every zero ρ = β + iγ of ζ in the strip 0 < β < 1 and with
γ ≥ 10 satisfies

β ≤ 1− ϕ(γ) = 1− 1/(R log γ), R = 5.696 93.

5. Proof of Theorem 1.1. We start with Lemma 2.2. Let us set

(5.1) J(x) =
∑
ρ

xρ−1

ρ(ρ− 1)
.

By considering the symmetry ρ 7→ 1− ρ, we get (remember that no zero of
ζ lies on the segment [0, 1])

J(x) =
∑
ρ,
=ρ>0

xρ−1 + x−ρ

ρ(ρ− 1)
.

We are ready to majorize J(x):

J(x) ≤
∑
|γ|≤T0

x−1/2

|ρ|2
+
∑
γ>T0

(
x−1/2

|ρ(ρ− 1)|
+

x−ϕ(γ)

|ρ(ρ− 1)|

)

≤ 0.047√
x

+
∑
γ>T0

x−ϕ(γ)

γ2
.

We first bound x−ϕ(γ) by 1 and get, by Lemma 4.2,

J(x) ≤ 0.047√
x

+
log(T0/(2π))

2πT0

(
1 + 1.36

2π

T0

)
≤ 0.047√

x
+ 1.75 · 10−12.

This proves the first part of Theorem 1.1. For large x, we can take advantage
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of the zero free region. We set ϕ2(γ) = x−ϕ(γ)/γ2 and get

J(x) ≤ 0.047√
x
−
∞�

T0

(N(t)−N(T0))ϕ
′
2(t) dt

≤ 0.047√
x
−
∞�

T0

(N∗(t)−N(T0))ϕ
′
2(t) dt−

∞�

T0

(N(t)−N∗(t))ϕ′2(t) dt

≤ 0.047√
x

+ (N∗(T0)−N(T0))ϕ2(T0)

+

∞�

T0

N∗(t)′ϕ2(t) dt−
∞�

T0

(N(t)−N∗(t))ϕ′2(t) dt

≤ 0.047√
x

+ 3 · 10−24x−ϕ(T0) +

∞�

T0

x−ϕ(t) log(t/(2π)) dt

2πt2

+

∞�

T0

∣∣∣∣ log x

2R
− log2 t

∣∣∣∣ 2x−ϕ(t) log(t/(2π)) dt

t3 log2 t
.

We now assume log x ≥ 2R log2 T0 and infer the bound

J(x) ≤ 0.047√
x

+ 6 · 10−24x−ϕ(T0)

+

∞�

T0

x−ϕ(t) log(t/(2π)) dt

2πt2
+ 0.67

∞�

T0

x−ϕ(t) dt

t3

≤ 0.047√
x

+ 6 · 10−24x−ϕ(T0) +

∞�

T0

x−ϕ(t) log(t/6.25) dt

2πt2

≤ 0.047√
x

+

∞�

T0

x−ϕ(t) log t dt

2πt2
.

Define

I =

∞�

T0

exp

(
− log x

R log t
− log t

)
log t dt

2πt
=

∞�

log T0

exp

(
− log x

Ru
− u
)
u du

2π
,

and set
log x

Ru
+ u = v,

which gets solved in (u2 − uv + (log x)/R = 0)

2u = v ±
√
v2 − 4(log x)/R.
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We further get

4u du =
(
v ±

√
v2 − 4(log x)/R

)(
1± v√

v2 − 4(log x)/R

)
dv

=

(
v ±

√
v2 − 4(log x)/R± v2√

v2 − 4(log x)/R
+ v

)
dv

=

(
2v ± 2v2 − 4(log x)/R√

v2 − 4(log x)/R

)
dv

so that I gets rewritten as

I =

∞�

2
√

(log x)/R

e−v
(
v +

v2 − 2(log x)/R√
v2 − 4(log x)/R

)
dv

4π

+

log x
R log T0

+log T0�

2
√

(log x)/R

e−v
(
v − v2 − 2(log x)/R√

v2 − 4(log x)/R

)
dv

4π
,

which yields

I ≤
∞�

2
√

(log x)/R

ve−v
dv

2π
=

1 + 2
√

(log x)/R

2π
exp
(
−2
√

(log x)/R
)
.

It is then immediate to conclude the proof of Theorem 1.1.

6. Proof of the Corollary. When log x ≤ 2R log2 T0, but x ≥ 1010,
we use Lemma 3.2 to get

|ψ̃(x)− log x+ γ| log2 x ≤ 1.830 +
log2 x

2
√
x

+ 1.68 · 10−12 log2 x ≤ 1.833.

When 8 950 ≤ x ≤ 1010, we have

|ψ̃(x)− log x+ γ| log2 x ≤ 1.3 log2 x√
x

+ 1.68 · 10−12 log2 x ≤ 1.14.

When log x ≥ 2R log2 T0, the bound becomes

1.830 +
1 + 2

√
(log x)/R

2π
exp
(
−2
√

(log x)/R
)

log2 x ≤ 1.832.

We complete the proof by direct inspection. For the limited range bound,
we write

|ψ̃(x)− log x+ γ|
√
x ≤ 1.3 + 1.68 · 10−12

√
x ≤ 1.31

when x ≥ 8 950. We again conclude by direct inspection.
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When log x ≤ 2R log2 T0, but x ≥ 1010, we have

|ψ̃(x)− log x+ γ| log x ≤ 0.0065 +
log x

2
√
x

+ 1.68 · 10−12 log x ≤ 0.0067.

When 8 950 ≤ x ≤ 1010, we have

|ψ̃(x)− log x+ γ| log x ≤ 1.3 log x√
x

+ 1.68 · 10−12 log x ≤ 0.0003.

When log x ≥ 2R log2 T0, the bound becomes

0.0065 +
1 + 2

√
(log x)/R

2π
exp
(
−2
√

(log x)/R
)

log2 x ≤ 0.0066.

We complete the proof by direct inspection.
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