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Large families of pseudorandom binary sequences and
lattices by using the multiplicative inverse
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1. Introduction. The need for pseudorandom binary sequences arises
in many cryptographic applications. For example, common cryptosystems
employ keys that must be generated in a random fashion. Many crypto-
graphic protocols also require random or pseudorandom inputs at various
points, e.g., for auxiliary quantities used in generating digital signatures, or
for generating challenges in authentication protocols. Therefore a theoretical
study of pseudorandom properties of binary sequences is of interest.

Motivated by these facts, in 1997 C. Mauduit and A. Sárközy [6] initiated
a comprehensive study of finite pseudorandom binary sequences

EN = (e1, . . . , eN ) ∈ {−1,+1}N .
First they introduced the following pseudorandom measures.

Definition 1.1. The well-distribution measure of EN is defined by

W (EN ) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣,
where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N .

Definition 1.2. The correlation measure of order l of EN is defined by

Cl(EN ) = max
M,D

∣∣∣ M∑
n=1

en+d1 · · · en+dl

∣∣∣,
where the maximum is taken over all D = (d1, . . . , dl) and M with 0 ≤ d1 <
· · · < dl ≤ N −M .

The sequence EN is considered to be a “good” pseudorandom sequence
if both W (EN ) and Cl(EN ) (at least for small l) are “small” in terms of N .
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Later J. Cassaigne, C. Mauduit and A. Sárközy [3] proved that this termi-
nology is justified since for almost all EN ∈ {−1,+1}N , both W (EN ) and

Cl(EN ) are less than N1/2(logN)c. In [1] and [2] N. Alon, Y. Kohayakawa,
C. Mauduit, C. G. Moreira and V. Rödl continued the work in this direction
and investigated the typical and minimal values of these measures.

In this paper we give a large family of pseudorandom binary sequences
constructed by using the multiplicative inverse. We shall prove the following
result in Section 2.

Theorem 1.1. Suppose that p is a prime and f(x) ∈ Fp[x] has degree
k with 0 < k < p. Denote by Rp(n) the least non-negative residue of n
modulo p, and for (a, p) = 1, denote by a−1 the multiplicative inverse of a
satisfying aa−1 ≡ 1 (mod p) and 1 ≤ a−1 ≤ p−1. Define the binary sequence
Ep = (e1, . . . , ep) by

en =

{
+1 if (f(n), p) = 1, Rp(f(n)−1) < p/2,

−1 if either (f(n), p) = 1 and Rp(f(n)−1) > p/2, or p | f(n).

Then

W (Ep)� kp1/2(log p)2.

Furthermore, assume that 0 is the unique zero of f in Fp. Then also

Cl(Ep)� klp1/2(log p)l+1.

The same estimates were obtained by C. Mauduit and A. Sárközy [7]
under the additional assumption that f has no multiple zero in Fp. For the
estimate of Cl(Ep), instead of the assumption that f has a unique zero at 0,
they assumed that l ∈ N with 2 ≤ l ≤ p, and one of the following conditions
holds: (i) l = 2; (ii) (4k)l < p.

Remark 1.1. The family defined above is large, and it can be generated
relatively fast. Indeed, for example all the polynomials of the form

f(x) = x(x2 − a1) · · · (x2 − ak),

where a1, . . . , ak are pairwise distinct quadratic non-residues modulo p, can
be used in the construction above. The only difficulty is to find a quadratic
non-residue b; then we may take any b1, . . . , bk from Fp and define ai = bb2i
for i = 1, . . . , k. This construction becomes especially simple if we restrict
ourselves to primes p of the form p = 4k − 1, because then we can take
b = −1.

In 2006 P. Hubert, C. Mauduit and A. Sárközy [4] extended this con-
structive theory of pseudorandom binary sequences to several dimensions.
Let

InN = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.
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A function η : InN → {−1,+1} is called an n-dimensional binary N -lattice
or briefly a binary lattice.

The following pseudorandom measure was introduced in [4].

Definition 1.3. Let k∈N, and let ui (i=1, . . . , n) denote the n-dimen-
sional vector whose ith coordinate is 1 and the others are 0. Then write

Qk(η) = max
B,d1,...,dk,T

∣∣∣ t1∑
j1=0

· · ·
tn∑

jn=0

η(j1b1u1 + · · ·+ jnbnun + d1)

× · · · × η(j1b1u1 + · · ·+ jnbnun + dk)
∣∣∣,

where the maximum is taken over all n-dimensional vectors B = (b1, . . . , bn),
d1, . . . ,dk, T = (t1, . . . , tn) whose coordinates are non-negative integers,
b1, . . . , bn are non-zero, d1, . . . ,dk are distinct, and all the points j1b1u1 +
· · ·+ jnbnun + di occurring in the multiple sum belong to InN . Then Qk(η)
is called the pseudorandom measure of order k of η.

An n-dimensional binary N -lattice η is considered to be a “good” pseu-
dorandom binary lattice if Qk(η) is “small” in terms of N for small k. P. Hu-
bert, C. Mauduit and A. Sárközy [4] proved that this terminology is justi-
fied since for a fixed k ∈ N and for a truly random n-dimensional binary
N -lattice η, we have Nn/2 � Qk(η) � Nn/2(logNn)1/2 with probability
> 1− ε.

In Section 3 we will prove the following result:

Theorem 1.2. Let q=pn, Fq a finite field, f(x) ∈ Fq[x] with deg(f)>0,
and let v1, . . . , vn be linearly independent elements of Fq over Fp. Set

B1 =
{ n∑

i=1

uivi : 0 ≤ u1 ≤ (p− 3)/2, u2, . . . , un ∈ Fp

}
,

Bj =
{ n∑

i=1

uivi : u1 = · · · = uj−1 = (p− 1)/2,

0 ≤ uj ≤ (p− 3)/2, uj+1, . . . , un ∈ Fp

}
for j = 2, . . . , n, and B =

⋃n
j=1Bj. Define

η(x) = η((x1, . . . , xn))

=


+1 if f(x1v1 + · · ·+ xnvn) 6= 0

and f(x1v1 + · · ·+ xnvn)−1 ∈ B,

−1 otherwise.

Assume that 0 is the unique zero of f in Fq, and its multiplicity is c < p.
Then

Qk(η)� 2kk deg(f)nkq1/2(log p+ 2)n+k.
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In [8], with the assumption “f has a unique zero at 0, of multiplicity < p”
replaced by “f has no multiple zero in Fq, 0 < k,deg(f) < p, k + deg(f) ≤
p+1 and k deg(f) < q/2”, C. Mauduit and A. Sárközy obtained the estimate

Qk(η) < (2k+3 + 1)k deg(f)nkq1/2(log p+ 2)n+k.

Remark 1.2. Our family is large, since there are many polynomials f(x)
satisfying the given conditions.

2. Proof of Theorem 1.1. We need the following lemmas.

Lemma 2.1 ([5, Lemma 2]). For n ∈ Z and p an odd prime, we have

1

p

∑
|a|<p/2

vp(a)e(an/p) =

{
+1 if Rp(n) < p/2,

−1 otherwise,

where vp(a) is a function of period p such that vp(0) = 1, and

vp(a) =

O(1) if a is even,

−2ip

πa
+O(1) if a is odd.

Lemma 2.2 ([10, Theorem 1]). Let p be a prime number and ψ be a
non-trivial additive character of Fp. Let Q/R be a rational function over Fp

such that the polynomial R has s distinct roots in Fp, and assume that Q/R
is not a constant or linear polynomial. Write d = max(deg(R),deg(Q)− 1).
Then for 1 ≤ N ≤ p, we have∣∣∣∣ ∑

0≤n≤N−1
R(n)6=0

ψ

(
Q(n)

R(n)

)∣∣∣∣ ≤ (d+ s)
√
p

(
4

π2
log p+ 0.38 +

N + 0.64

p

)
.

Now we prove Theorem 1.1. For a, b, t with 1 ≤ a ≤ a+ (t− 1)b ≤ p, by
Lemmas 2.1 and 2.2 we have

t−1∑
j=0

ea+jb =
1

p

∑
|h|<p/2

vp(h)
t−1∑
j=0

f(a+jb)6=0

e

(
hf(a+ jb)−1

p

)
+O(k)

� 1

p

∑
|h|<p/2
h6=0

|vp(h)| · kp1/2 log p+ k � kp1/2(log p)2.

Therefore

W (Ep) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣� kp1/2(log p)2.
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For 0 ≤ d1 < · · · < dl ≤ p−M , by Lemma 2.1 we get

M∑
n=1

en+d1 · · · en+dl =
1

pl

M∑
n=1

f(n+d1)···f(n+dl)6=0

∑
|h1|<p/2

vp(h1)e

(
h1f(n+ d1)

−1

p

)

× · · · ×
∑
|hl|<p/2

vp(hl)e

(
hlf(n+ dl)

−1

p

)
+O(kl)

=
1

pl

∑
|h1|<p/2

vp(h1) · · ·
∑
|hl|<p/2

vp(hl)

×
M∑
n=1

f(n+d1)···f(n+dl)6=0

e

(
h1f(n+ d1)

−1 + · · ·+ hlf(n+ dl)
−1

p

)
+O(kl)

=
1

pl

∑
|h1|<p/2
h1 6=0

vp(h1) · · ·
∑
|hl|<p/2
hl 6=0

vp(hl)

×
M∑
n=1

f(n+d1)···f(n+dl)6=0

e

(
h1f(n+ d1)

−1 + · · ·+ hlf(n+ dl)
−1

p

)

+O((log p)l−1) +O(kl).

Define

Q(n) =
l∑

i=1

hi

l∏
j=1
j 6=i

f(n+ dj) and R(n) =
l∏

j=1

f(n+ dj).

Then

M∑
n=1

f(n+d1)···f(n+dl)6=0

e

(
h1f(n+ d1)

−1 + · · ·+ hlf(n+ dl)
−1

p

)

=
M∑
n=1

R(n)6=0

e

(
Q(n)

R(n)p

)
.

As f(x) = 0⇔ x = 0, we have Q(n) 6= 0 for n = −d1, . . . ,−dl since the hi’s
are nonzero. Thus Q(n) cannot be the 0 polynomial. Since deg(Q) < deg(R),
Q/R is not a constant or linear polynomial. By Lemmas 2.1 and 2.2 we



128 H. N. Liu

get

M∑
n=1

en+d1 · · · en+dl �
1

pl

( ∑
|h|<p/2
h6=0

|vp(h)|
)l
· klp1/2 log p+ (log p)l−1 + kl

� klp1/2(log p)l+1.

Therefore

Cl(Ep) = max
M,D

∣∣∣ M∑
n=1

en+d1 · · · en+dl

∣∣∣� klp1/2(log p)l+1.

This proves Theorem 1.1.

3. Proof of Theorem 1.2. We need the following lemma.

Lemma 3.1 ([8, Lemma 4]). Assume that q = pn is a prime power;
Q(x)/R(x) is a nonzero rational function over Fq such that deg(Q) < deg(R)
and there is no polynomial L(x) ∈ Fq[x] with (L(x))p |R(x) and deg(L) > 0;
ψ is a nontrivial additive character of Fq; and B ⊆ Fq is a box of the form

B =
{ n∑
j=1

jivi : 0 ≤ ji ≤ ti, i = 1, . . . , n
}
,

where v1, . . . , vn are linearly independent over the prime field of Fq. Then∣∣∣∣ ∑
z∈B

R(z) 6=0

ψ

(
Q(z)

R(z)

)∣∣∣∣ < 3(deg(R) + 1)q1/2(2 + log p)n.

Now we prove Theorem 1.2. Let q = pn and Fq be a finite field, and
let ψ1 be the canonical additive character of Fq. Let b1, . . . , bn be positive

integers, and write di = (d
(i)
1 , . . . , d(i)n ) for i = 1, . . . , k. Define

B′ =
{ n∑

i=1

ji(bivi) : 0 ≤ ji ≤ ti for i = 1, . . . , n
}
,

z = j1(b1v1) + · · ·+ jn(bnvn), zl = d
(l)
1 v1 + · · ·+ d(l)n vn, l = 1, . . . , k.

It is easy to show that

2

(
1

q

∑
b∈B

∑
r∈Fq

ψ1(r(x− b))−
1

2

)
=

{
+1 if x ∈ B,

−1 if x 6∈ B.
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Thus for f(x1v1 + · · ·+ xnvn) 6= 0 we have

η(x) =
2

q

∑
r∈Fq

∑
b∈B

ψ1(−rb)ψ1(rf(x1v1 + · · ·+ xnvn)−1)− 1

=
2

q

∑
r∈F∗q

∑
b∈B

ψ1(−rb)ψ1(rf(x1v1 + · · ·+ xnvn)−1)

+O(q−1/2 log q (log p)n).

Therefore

(3.1)

t1∑
j1=0

· · ·
tn∑

jn=0

η(j1b1u1 + · · ·+ jnbnun + d1)

× · · · × η(j1b1u1 + · · ·+ jnbnun + dk)

=
∑
z∈B′

f(z+z1)···f(z+zk)6=0

k∏
i=1

(
2

q

∑
ri∈F∗q

∑
bi∈B

ψ1(−ribi)ψ1(rif(z + zi)
−1)

+ O(q−1/2 log q (log p)n)

)
+O(k deg f)

=
2k

qk

∑
r1∈F∗q

∑
b1∈B

ψ1(−r1b1) · · ·
∑
rk∈F∗q

∑
bk∈B

ψ1(−rkbk)

×
∑
z∈B′

f(z+z1)···f(z+zk)6=0

ψ1(r1f(z + z1)
−1 + · · ·+ rkf(z + zk)−1)

+ O(q1/2 log q (log p)n).

Define

Q(z) =
k∑

i=1

ri

k∏
j=1
j 6=i

f(z + zj) and R(z) =

k∏
j=1

f(z + zj).

Then ∑
z∈B′

f(z+z1)···f(z+zk)6=0

ψ1(r1f(z + z1)
−1 + · · ·+ rkf(z + zk)−1)

=
∑
z∈B′

R(z) 6=0

ψ1

(
Q(z)

R(z)

)
.

Since f(z) = 0 ⇔ z = 0, we have Q(z) 6= 0 for z = −d1, . . . ,−dl. Thus
Q/R is a nonzero rational function over Fq with deg(Q) < deg(R). On the
other hand, since 0 is the unique zero of f(z) in Fq with multiplicity c < p,
it follows that −z1, . . . ,−zk are the zeros of R(z) with multiplicity c < p
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each. Therefore there is no polynomial L(x) ∈ Fq[x] with (L(x))p |R(x) and
deg(L) > 0. Then from Lemma 3.1 we have

(3.2)
∑
z∈B′

f(z+z1)···f(z+zk) 6=0

ψ1(r1f(z + z1)
−1 + · · ·+ rkf(z + zk)−1)

< 3(k deg(f) + 1)q1/2(2 + log p)n.

By [8, (3.26) and (3.29)] we know that

(3.3)
∑
r∈F∗q

∣∣∣∑
z∈B

ψ1(rz)
∣∣∣ < nq(log p+ 3/2).

Then from (3.1)–(3.3) we get

t1∑
j1=0

· · ·
tn∑

jn=0

η(j1b1u1 + · · ·+ jnbnun + d1)

× · · · × η(j1b1u1 + · · ·+ jnbnun + dk)

� 2k

qk

(∑
r∈F∗q

∣∣∣∑
b∈B

ψ1(−rb)
∣∣∣)k · k deg(f)q1/2(log p+ 2)n + q1/2 log q (log p)n

� 2kk deg(f)nkq1/2(log p+ 2)n+k.

Therefore

Qk(η)� 2kk deg(f)nkq1/2(log p+ 2)n+k.

This completes the proof of Theorem 1.2.
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[8] C. Mauduit and A. Sárközy, Construction of pseudorandom binary lattices by using
the multiplicative inverse, Monatsh. Math. 153 (2008), 217–231.

[9] C. J. Moreno and O. Moreno, Exponential sums and Goppa codes: I, Proc. Amer.
Math. Soc. 111 (1991), 523–531.
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