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1. Introduction. Let k be a field and ks a separable closure of k with
Galois group Gk = Gal(ks/k). Let C be a smooth projective curve over k
with Jacobian J . Let φ : J → J be a separable isogeny and J [φ] the kernel
of φ : J(ks)→ J(ks). Taking Galois invariants of the short exact sequence

0→ J [φ]→ J(ks)
φ−→ J(ks)→ 0

gives rise to a long exact sequence, which induces another short exact se-
quence

0→ J(k)/φJ(k)
δφ−→ H1(Gk, J [φ])→ H1(Gk, J(ks))[φ]→ 0,

where H1(Gk, J(ks))[φ] stands for the kernel of the map

φ∗ : H1(Gk, J(ks))→ H1(Gk, J(ks))

induced by φ on cohomology. If J(k) is finitely generated, which is the case
if k is finitely generated as a field over its prime subfield, and if φ is not an
automorphism, then often, including in the cases we will treat, the size of
the group J(k)/φJ(k) yields a bound on the rank of the Mordell–Weil group
J(k). As many methods of retrieving arithmetic information about C, such
as the Mordell–Weil sieve and Chabauty’s method, involve the rank of J(k),
it is of interest to be able to bound the size of J(k)/φJ(k), or equivalently,
of its image in H1(Gk, J [φ]). Unfortunately, this group H1(Gk, J [φ]) is in
general very large and hard to handle.

Now assume that k is a global field. For each place v of k, we write kv for
the completion of k at v. Then the local analogues of the map J(k)/φJ(k)→
H1(Gk, J [φ]) for each place v can be put together to give the following
commutative diagram:
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J(k)/φJ(k)
δφ //

��

H1(Gk, J [φ]) //

��

τ

**

H1(Gk, J(ks))[φ]

��∏
v J(kv)/φJ(kv) //

∏
v H1(Gal(ksv/kv), J [φ]) //

∏
v H1(Gk, J(ksv))[φ]

Here
∏
v denotes the product over all places of k. By definition, the Selmer

group Selφ(J, k) is the kernel of τ : it consists of all elements of H1(Gk, J [φ])
that map into the image of the local map

J(kv)/φJ(kv)→ H1(Gal(ksv/kv), J [φ])

for every v. Clearly Selφ(J, k) contains the image of δφ, and it can be shown

that Selφ(J, k) is an effectively computable finite group, which already gives
a bound on J(k)/φJ(k). However, the description of Selφ(J, k) as a subgroup
of H1(Gk, J [φ]) is not amenable to explicit computations.

In [PS], Poonen and Schaefer consider curves C with an affine model
given by yp = f(x), where p is a prime number and f is p-power free and
splits into linear factors over ks. They assume that the characteristic of k
is not equal to p and that k contains a primitive pth root ζ of unity. They
take the isogeny to be φ = 1 − ζ, where ζ acts on C as (x, y) 7→ (x, ζy).
From now on we restrict ourselves to this situation as well. Note that this
includes hyperelliptic curves as the special case p = 2; then the isogeny φ is
multiplication by 2. Upon applying an automorphism of the x-line, we may
assume that the map to the x-line does not ramify at ∞, so that the degree
of f is divisible by p (1). Let f0 be a radical of f , i.e., a separable polynomial
in k[x] with the same roots in ks as f , and set L = k[T ]/f0(T ). We assume
that every point in J(k) can be represented by a k-rational divisor on C.
Poonen and Schaefer define a homomorphism (x − T ) : J(k) → L∗/L∗pk∗

and show that it factors as

(1.1) J(k)→ J(k)/φJ(k)
δφ−→ Selφ(J, k)→ L∗/L∗pk∗.

We will recall the definition of this map in Section 4. For p = 2 and a
polynomial f of degree 4 with a rational root, the curve C is elliptic; the
last map in the factorization is injective in this case and the map (x − T )
gives the usual 2-descent map on C. For p = 2 and deg f = 6, Cassels [Ca1]
had already defined the map (x − T ) (using different notation), but it was
Poonen and Schaefer who related it to the cohomological map δφ through
the given factorization.

In general, and in fact already in Cassels’ case, the last map in the fac-
torization need not be injective; its kernel is trivial or isomorphic to µp.

(1) For this to be true, k has to be sufficiently large. Later k will be a global field,
and there will be no problem.
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Following [PS], the image of Selφ(J, k) in L∗/L∗pk∗ is called the fake Selmer

group Selφfake(J, k); it is a quotient of the true Selmer group Selφ(J, k). This
means that, although the group L∗/L∗pk∗ is easier to work with explic-
itly than Selφ(J, k), information may get lost by studying the image of
J(k)/φJ(k) in the former group instead of the latter.

The aim of this paper is to replace the group L∗/L∗pk∗ by one that is
equally easy to work with and that admits an injection from Selφ(J, k) into
it, and thus also from J(k)/φJ(k). The description of such a group involves
a ‘weighted norm map’ N defined as follows. Let f = c

∏
j f

mj
j be the unique

factorization of f over k with fj monic and c ∈ k∗. For β ∈ L∗ we then set

N(β) =
∏
j

NormLj/k(βj)
mj ,

where βj is the image of β in the field Lj = k[x]/fj(x).
It turns out that the image of the last map Selφ(J, k) → L∗/L∗pk∗ of

the factorization (1.1) is contained in the kernel of the map N : L∗/L∗pk∗ →
k∗/k∗p induced by the weighted norm map. The new group consists of all
elements of this kernel, together with some choice of pth root of their norm.
More precisely, we will prove the following theorem.

Theorem 1.1. Let k be a global field containing a primitive pth root of
unity, and let C, J , L and N be as in the discussion above. Assume that for
each place v of k, the curve C has a kv-rational divisor class of degree 1.
Set Γ = {(δ, n) ∈ L∗ × k∗ | N(δ) = np} and let χ : L∗ → Γ be given by
θ 7→ (θp, N(θ)). Let ι : k∗ → Γ be defined by x 7→ (x, x(1/p) deg f ). Then there
is a homomorphism (x− T, y) : J(k)→ Γ/χ(L∗)ι(k∗) that factors as

J(k)→ J(k)/φJ(k)
δφ−→ Selφ(J, k) ↪→ Γ/χ(L∗)ι(k∗)

and whose composition with the map Γ/χ(L∗)ι(k∗)→ L∗/L∗pk∗ induced by
the projection Γ → L∗ equals the map (x− T ).

The map (x − T, y) will be defined in Section 4. The isomorphic image

of Selφ(J, k) in Γ/χ(L∗)ι(k∗) is the explicit Selmer group Selφexplicit(J, k).

If all one wants is to get the size of the Selmer group (and thus an
upper bound on the Mordell–Weil rank), then the results of [PS] are suffi-
cient, since they tell us exactly the difference between the Fp-dimensions of

Selφ(J, k) and Selφfake(J, k). On the other hand, apart from the intellectual
satisfaction resulting from a nice explicit description of the Selmer group
itself, the additional information given by identifying Selφ(J, k) with the ex-
plicit Selmer group gives us a handle on the covering spaces corresponding
to its elements: in [FTvL] equations for the covering spaces are given in
the genus two case that depend on the image of the Selmer group element
in the fake Selmer group together with a square root of its norm, which
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is precisely the information contained in the corresponding element of the
explicit Selmer group. Explicit models of these covering spaces are useful for
the search of potentially large Mordell–Weil generators and can also serve
as a starting point for second descents. In particular, one can hope that our
explicit Selmer group can be used to extend Cassels’ method for computing
the Cassels–Tate pairing on the 2-Selmer group of an elliptic curve [Ca2],
which uses the quadratic Hilbert symbol on elements of the explicit version
of the Selmer group, to Jacobians of curves of genus two.

Since our results here extend and improve what Poonen and Schaefer
have done, much of this paper is based on [PS], including the weighted norm
map N . The main new element brought in is the group Γ of Theorem 1.1,
which was first introduced in [FTvL]. The recent preprint [BPS] contains in
its appendix a general recipe for turning ‘fake’ Selmer groups into ‘explicit’
ones, which was developed as a generalization of the method given in [ScSt]
for p-descent on elliptic curves with p odd and of the approach described
here. Our result could in principle also be obtained as a special case of this
general recipe. However, the more direct approach used here leads to a much
simpler proof.

In the next section we will introduce some notation, all following [PS].
In Section 3 we identify some cohomology groups with more explicit groups
such as those mentioned in Theorem 1.1. In Section 4 we define the maps
(x− T ) and (x − T, y), so that in the last section we can ‘unfake’ the fake
Selmer group and replace it with the explicit Selmer group by proving The-
orem 1.1.

2. Notation. Our setting will be the same as in [PS]. Let p be a prime.
Let k be a field of characteristic not equal to p and let ks be a separable
closure of k with Galois group Gk = Gal(ks/k). Assume that k contains a
primitive pth root of unity. For any Gk-module A and any integer i ≥ 0
we abbreviate the cohomology group Hi(Gk, A) by Hi(A). Let π : C → P1

be a cyclic cover of P1 over k of degree p such that all branch points are
in P1(ks) \ {∞}. By Kummer theory, the curve C has a (possibly singular)
model in A2(x, y) given by yp = f(x), where f ∈ k[x] factors over ks as

f(x) = c
∏
ω∈Ω

(x− ω)aω

with c ∈ k∗, with 1 ≤ aω < p for all ω in the set Ω ⊂ ks of roots of f ,
and where p divides the degree deg f =

∑
ω aω of f . Set d = #Ω. By the

Riemann–Hurwitz formula the genus of C equals g(C) = (d− 2)(p− 1)/2.

For any k-variety V , we write V s = V ×kks, while κ(V ) and κ(V s) denote
the function fields of V and V s. Let DivCs be the group of all divisors
on Cs. If f ∈ κ(Cs)∗, we denote the divisor of f by div(f) ∈ DivCs. We let
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PrincCs = {div(f) : f ∈ κ(Cs)∗} be the subgroup of principal divisors. Set
PicCs = DivCs/PrincCs. Also set

DivC = H0(DivCs),

PrincC = H0(PrincCs),

PicC = DivC/PrincC.

As in [PS], we consider the divisor m = π∗∞ ∈ DivC, the sum of all p points
above ∞ ∈ P1. For any function h in the function field κ(Cs) of Cs we say
that h is 1 modm if h(P ) = 1 for all points P in the support of m (for a more
general definition, see [PS, Section 2]). Let DivmC

s ⊂ DivCs be the group
of all divisors with support disjoint from m, and let PrincmC

s ⊂ PrincCs

be the subgroup of all principal divisors of functions that are 1 modm. Set
PicmC

s = DivmC
s/PrincmC

s and

DivmC = H0(DivmC
s),

PrincmC = H0(PrincmC
s),

PicmC = DivmC/PrincmC.

Let Div0Cs ⊂ DivCs be the subgroup of divisors of degree 0 and let Div0C,
Pic0mC

s, etc. be the degree-zero parts of the corresponding groups. Let
Div(p)Cs ⊂ DivCs be the subgroup of divisors of degree divisible by p

and let Div(p)C, Pic
(p)
m Cs, etc. be the degree-divisible-by-p parts of the cor-

responding groups. Let J and Jm denote the Jacobian of C and the gener-
alized Jacobian of the pair (C,m), respectively, so that J(ks) = Pic0Cs and
Jm(ks) = Pic0mC

s. We write J [p] and Jm[p] for the kernel of multiplication-
by-p, written as [p], on J(ks) and Jm(ks), respectively. We denote the trivial
group in diagrams by 1.

3. Making cohomology groups explicit. Pick any c0 ∈ k∗ and define
a radical f0 = c0

∏
ω∈Ω(x − ω) ∈ k[x] of f . Set L = k[X]/f0(X) and Ls =

L⊗k ks. We will denote the image of X in L and Ls by T . By the Chinese
Remainder Theorem, the ks-linear maps ρω : Ls → ks, T 7→ ω, combine to
an isomorphism

ρ = (ρω)ω∈Ω : Ls →
∏
ω∈Ω

ks,

which restricts to the diagonal embedding on ks ⊂ Ls. From now on, when-
ever ω is used as index, it ranges over all elements of Ω. Note that the
induced Galois action on

∏
ω k

s is given by acting on the indices as well,
so by σ((aω)ω) = (σ(aσ−1ω))ω. We often identify Ls with

∏
ω k

s through ρ,
thereby identifying T with the element (ω)ω. For any commutative ring R,
we let µp(R) denote the kernel of the homomorphism R∗ → R∗, x 7→ xp.
We abbreviate µp(k) = µp(k

s) by µp and note that ρ induces an isomor-
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phism µp(L
s)→

∏
ω µp. Let the ‘weighted norm map’ N : Ls ∼=

∏
ω k

s → ks

be given by (βω)ω 7→
∏
ω β

aω
ω . Since p divides

∑
ω aω, the kernel of N con-

tains µp. The map N is Galois-equivariant, as for conjugate roots ω, ω′ ∈ Ω
we have aω = aω′ , so it induces a mapN : L→ k. This map is the same as the
norm map N that was defined in the introduction. Let M denote the kernel
of the induced map N : µp(L

s)→ µp. Then we obtain the following commu-
tative diagram, in which the horizontal and vertical sequences are exact:

(3.1)

1

��

1

��
µp

��

µp

��
1 //M //

��

µp(L
s)

��

N // µp // 1

1 //M/µp //

��

µp(L
s)/µp

N //

��

µp // 1

1 1

Note that the map N : µp(L
s) → µp is surjective because we can take 1 in

each component of µp(L
s) ∼=

∏
ω k

s except for one component, say corre-
sponding to ω, where we choose an aωth root of ζ, which exists because the
greatest common divisor (aω, p) equals 1.

We will give a concrete description of the Galois cohomology groups
H1(M) and H1(µp(L

s)) and their images in H1(M/µp) and H1(µp(L
s)/µp).

Let ∂ : L∗ × k∗ → k∗ be the homomorphism that sends (δ, n) to N(δ)n−p

and let ∂s denote the corresponding map from Ls∗ × ks∗ to ks∗. Set

Γ s = ker ∂s = {(δ, n) ∈ Ls∗ × ks∗ | N(δ) = np},
Γ = H0(Γ s) = ker ∂ = {(δ, n) ∈ L∗ × k∗ | N(δ) = np}.

We will write ι for the injection ks∗ → Γ s given by x 7→ (x, x(1/p) deg f ); it
restricts to an injection ι : k∗ → Γ . Let the map χ : Ls∗ → Γ s be given
by θ 7→ (θp, N(θ)). It is surjective, has kernel M , and restricts to a map
χ : L∗ → Γ . The long exact sequence associated to the short exact sequence

(3.2) 1→M → Ls∗ χ−→ Γ s → 1

contains the connecting map δχ : Γ → H1(M), which sends (δ, n) to the
class of the cocycle Gk 3 σ 7→ σ(θ)/θ ∈M for a fixed choice of θ ∈ Ls∗ with
χ(θ) = (δ, n). Similarly, the short exact sequence

(3.3) 1→ µp(L
s)→ Ls∗ x 7→xp−−−→ Ls∗ → 1
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provides a connecting map δp : L∗ → H1(µp(L
s)). Parts of the following

proposition were proved for p = 2 in [FTvL, Proposition 2.6].

Proposition 3.1. The map δχ induces an isomorphism δχ : Γ/χ(L∗)→
H1(M) and an isomorphism from Γ/χ(L∗)ι(k∗) to the image of H1(M)
in H1(M/µp). The map δp induces an isomorphism δp : L∗/L∗p →
H1(µp(L

s)) and an isomorphism from L∗/L∗pk∗ to the image of H1(µp(L
s))

in H1(µp(L
s)/µp). These maps fit in the commutative diagram

µp //

%%

H1(M)

��

// H1(µp(L
s))

��

Γ/χ(L∗)

δχ
77

//

��

L∗/L∗p

��

δp

77

µp //

%%

H1(M/µp) // H1(µp(L
s)/µp)

Γ/χ(L∗)ι(k∗)

δχ
77

// L∗/L∗pk∗
δp

77

where the back face consists of part of the long exact sequences associated
to the horizontal sequences in (3.1), the vertical maps in the front face are
the obvious quotient-by-k∗ maps, the horizontal maps in the front face are
induced by the projection map Γ → L∗, (δ, n) 7→ δ, and the remaining maps
from µp send ζ ∈ µp to the class of (1, ζ).

Proof. The commutativity of the front and back faces are obvious. The
projection map Γ s → Ls∗, (δ, n) 7→ δ, induces a map between the short
exact sequences (3.2) and (3.3). Part of the associated long exact sequences
gives the following diagram:

L∗
χ // Γ

��

δχ // H1(M)

��

// H1(Ls∗)

L∗
x 7→xp // L∗

δp // H1(µp(L
s)) // H1(Ls∗)

By a generalization of Hilbert’s Theorem 90 the group H1(Ls∗) is trivial
(see [Se, Exercise X.1.2]). The commutativity of the quadrilateral in the top
face follows, as well as the fact that the maps δχ and δp in it are isomor-
phisms. Similarly, also using that H1(ks∗) vanishes by Hilbert’s Theorem 90,
the natural maps from the short exact sequence

(3.4) 1→ µp → ks∗
x7→xp−−−→ ks∗ → 1

to (3.2) and (3.3) yield long exact sequences that induce the following dia-
grams:
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k∗/k∗p

��

∼= // H1(µp)

��
Γ/χ(L∗)

∼=
δχ
// H1(M)

k∗/k∗p

��

∼= // H1(µp)

��
L∗/L∗p

∼=
δp
// H1(µp(L

s))

The associated maps on cokernels of the vertical homomorphisms induce
the claimed isomorphisms from L∗/L∗pk∗ to the image of H1(µp(L

s)) in
H1(µp(L

s)/µp) and from Γ/χ(L∗)ι(k∗) to the image of H1(M) in H1(M/µp).
This also implies the commutativity of the left and right faces of the cube
in the diagram. Commutativity of the quadrilateral in the bottom face fol-
lows immediately from the commutativity of the other faces of the cube
and the fact that the quotient map Γ/χ(L∗) → Γ/χ(L∗)ι(k∗) is surjec-
tive. Finally, choose a θ ∈ µp(L

s) with N(θ) = ζ. Then the image of ζ
in H1(M) is represented by the cocycle σ 7→ σ(θ)/θ, which coincides with
δχ((1, ζ)). It follows that also the triangular prism in the diagram com-
mutes.

4. A new map. Let h be a nonzero rational function on C. Then we can
extend evaluation of h on points not in the support of div(h) multiplicatively
to divisors whose support is disjoint from that of div(h) by setting

h(D) =
∏
P

h(P )nP if D =
∑
P

nPP .

If K is a field extension of k that is a field of definition of h, then this defines
a group homomorphism from the group of K-defined divisors with support
disjoint from that of div(h) into the multiplicative group of K.

In the following, we will frequently work with objects defined over L.
There are (at least) two ways of interpreting what these objects mean. We
can either just think of them as L-defined objects (functions, points, etc.),
allowing étale algebras over k instead of only field extensions. Or else we
remind ourselves that the elements of L correspond to Galois-equivariant
maps from Ω into ks; then a function defined over L can be considered as
a Galois-equivariant map from Ω into κ(Cs), etc. Sometimes, we use Ls

in place of L; then the corresponding maps from Ω need not be Galois-
equivariant. In this sense, µp(L

s) denotes the set of maps Ω → µp, and
M denotes the subset of maps η such that N(η) =

∏
ω η(ω)aω = 1.

For example, we let W = (T, 0) ∈ C(L) be a ‘generic ramification point’
on C. In the second interpretation, W corresponds to the map ω 7→ (ω, 0)
that gives all the ramification points on C indexed by the roots of f . In this
section, we will consider the function x− T , which is an L-defined rational
function on C. In our second interpretation, we associate to each ω ∈ Ω the
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rational function x− ω ∈ κ(Cs). We have

div(x− T ) = pW −m and div(y) = TrW − 1

p
(deg f)m,

where TrW =
∑

ω aω(ω, 0) denotes the ‘trace’ of W , the additive analogue
of the weighted norm N . In other words, in our first interpretation W is a
prime divisor in DivCL, while in the second interpretation it corresponds to
a Galois-equivariant map Ω → DivCs sending ω to the prime divisor (ω, 0),
the images of which have weighted sum TrW ∈ DivC.

A divisor on Cs is called good if its support is disjoint from m = π∗∞ and
from the ramification points of π, i.e., disjoint from the support of div(y).
This also means that the support is disjoint from the support of div(x−T ).
Let Div⊥C

s denote the group of good divisors on Cs, and set Div⊥C =
H0(Div⊥C

s). Every divisor class in PicCs and PicmC
s is represented by

a good divisor. Let Div0
⊥C

s, Div0
⊥C, Div

(p)
⊥ Cs, and Div

(p)
⊥ C denote the

obvious groups. By the introductory remarks of this section, the function
x− T defines homomorphisms

(x− T ) : Div⊥C → L∗ and (x− T ) : Div⊥C
s → Ls∗.

We further define the map

α : Jm[p]→ Ls∗, D 7→ (x− T )(D)

h(W )
,

where D is a good divisor representing the class D, and where h ∈ κ(Cs) is
the unique function that is 1 modm and satisfies div(h) = pD. As before,
h(W ) can be interpreted as the map ω 7→ h((ω, 0)) ∈ ks∗. Note that α is
well-defined as for any representative D′ of D there is a function g ∈ κ(Cs)
that is 1 modm with div(g) = D′ − D, so that div(gph) = pD′; by Weil
reciprocity we have

(x− T )(D′)

(gph)(W )
=

(x− T )(div(g) +D)

gp(W )h(W )
=
g(div(x− T ))

g(pW )
· (x− T )(D)

h(W )

=
g(pW −m)

g(pW )
· (x− T )(D)

h(W )

=
g(pW )g(m)−1

g(pW )
· (x− T )(D)

h(W )
=

(x− T )(D)

h(W )
,

since g(m) = 1. We will see that α induces an isomorphism between M and
the kernel of an endomorphism of Jm that we now define.

The group µp acts on C and Cs by letting ζ ∈ µp act as (x, y) 7→ (x, ζy).
Linear extension gives a Galois-equivariant action on DivCs by the group
ring Z[µp]. The element t =

∑
ζ∈µp ζ ∈ Z[µp] sends a point Q ∈ Cs(ks) to the

divisor t(Q) = π∗(πQ), which is linearly equivalent to m. We conclude that t
sends a divisor D ∈ DivCs to a divisor linearly equivalent to (degD)m, and
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the subgroups Div0Cs and Div0
mC

s to PrincCs and PrincmC
s, respectively.

This implies that the induced action of Z[µp] on J , on Jm, on Pic0C, and
on Pic0mC factors through the quotient Z[µp]/t, which is isomorphic to the
cyclotomic subring of k generated by µp.

Fix, once and for all, a primitive pth root of unity ζ ∈ µp, so that this
cyclotomic ring is equal to Z[ζ]. Set

φ = 1− ζ and ψ = −
p−1∑
i=1

iζi

and notice that φψ = p. Note that this is slightly different from [PS], where
φ and ψ are defined as elements of the group ring Z[µp]. Let Jm[φ] and J [φ]
denote the kernels of the action of φ on Jm(ks) and J(ks), respectively.

Proposition 4.1. There is an isomorphism ε : Jm[φ] → M such that
the homomorphism α is the composition of ψ : Jm[p] → Jm[φ] and ε. Fur-
thermore, ε induces an isomorphism J [φ]→M/µp.

Proof. This is extracted from [PS]. Let Jm[p] denote the p-torsion of the
group PicmC

s/〈m′〉, where m′ denotes the class of π∗P for any P ∈ A1(k)
⊂ P1(k). By [PS, Section 7] there is a pairing

ep : Jm[p]× Jm[p]→ µp,

defined for a pair (D1,D2) of classes, represented respectively by divisors D1

and D2 with disjoint support, to be

ep(D1,D2) = (−1)d1d2
h2(D1)

h1(D2)
,

where for i = 1, 2 we have di = degDi, while hi ∈ κ(Cs) is the unique
function such that x−dihi is 1 modm and div(hi) = pDi − dim. Note that
the group Jm[p] ∼= Pic0m(Cs)[p] is a subgroup of Jm[p]. By [PS, Section 6
and Prop. 7.1] there is an isomorphism ε : Jm[φ] → M such that ε(ψD) =
ep(D,W ) for all D ∈ Jm[p]. Let the class D ∈ Jm[p] be represented by a
good divisor D, automatically of degree d1 = 0, and let h ≡ 1 modm be a
function satisfying div(h) = pD. Note that x−1(x − T ) is 1 modm, so that
we can take x−T as the function corresponding to W in the definition of ep.
Therefore, we have

ε(ψD) = ep(D,W ) = (−1)0
(x− T )(D)

h(W )
= α(D),

which shows that α factors as claimed. For the fact that ε induces an iso-
morphism J [φ]→M/µp, see [PS, Section 6].

As in [PS], we denote the isomorphisms Jm[φ] → M and J [φ] → M/µp
from Proposition 4.1 both by ε.



Explicit Selmer groups 143

Next, we define the homomorphism

(γy) : Div
(p)
⊥ Cs → ks∗,

∑
P

nP (P ) 7→ c
− 1
p

∑
nP
∏
P

y(P )nP ,

where c is the leading coefficient of f as before. This map descends to a map

(γy) : Div
(p)
⊥ C → k∗. The name (γy) comes from the fact that if we choose

any pth root γ ∈ ks of c−1, then the map (γy) is the restriction to Div
(p)
⊥ Cs

of evaluation of γy on Div⊥C
s. On Div0

⊥C
s it is also induced by evaluation

of y. Therefore, when appropriate, we may refer to the map (γy) as just y.
We remark that

(4.1) N(x− T ) =
∏
ω

(x− ω)aω = c−1f(x) = c−1yp = (γy)p.

Our main result gives a cohomological interpretation of the combined
map

(x− T, γy) : Div
(p)
⊥ Cs → Ls∗ × ks∗.

To this end, let ε∗ denote the maps on cohomology induced by both maps ε.
The short exact sequences

1→ Jm[φ]→ Jm(ks)
φ−→ Jm(ks)→ 1 and 1→ J [φ]→ J(ks)

φ−→ J(ks)→ 1

induce connecting maps Jm(k) → H1(Jm[φ]) and J(k) → H1(J [φ]) that we
both denote by δφ.

Theorem 4.2. The map

(x− T, γy) : Div
(p)
⊥ Cs → Ls∗ × ks∗, D 7→ ((x− T )(D), (γy)(D)),

induces natural homomorphisms

Pic0mC → Γ/χ(L∗) and Pic0C → Γ/χ(L∗)ι(k∗)

making the following diagram commutative:

Jm(k)

��

δφ // H1(Jm[φ])
ε∗
∼=

//

��

H1(M)

��

Pic0mC

��

∼=
::

(x−T,γy) // Γ/χ(L∗)

δχ

∼=
::

��

J(k)
δφ // H1(J [φ])

ε∗
∼=
// H1(M/µp)

Pic0C
, �

::

(x−T,γy) // Γ/χ(L∗)ι(k∗)
, � δχ

::
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Proof. For any good divisor D =
∑

P nP (P ) of degree divisible by p we
have, using (4.1),

N((x− T )(D)) = (N(x− T ))(D) = (c−1yp)(D) = (γy)(D)p,

so (x−T, γy) induces a homomorphism Div
(p)
⊥ C → Γ . Suppose D ∈ Div0

⊥C
is principal, say D = div(h) for some h ∈ κ(C)∗. Then by Weil reciprocity
we have

(x−T )(D) = (x−T )(div(h)) = h(div(x−T )) = h(pW−m) = h(W )p·h(m)−1

and

(γy)(D) = y(div(h)) = h(div(y)) = h

(
TrW − 1

p
(deg f)m

)
= N(h(W )) · h(m)−(1/p) deg f .

We therefore find

(x− T, γy)(D) = χ(h(W )) · ι(h(m)−1).

This is contained in χ(L∗)ι(k∗) and if h is 1 modm then in fact in χ(L∗). As
every class in Pic0C and Pic0mC is represented by a good divisor, we obtain
the claimed homomorphisms and see that the front face of the diagram
commutes.

The commutativity of the right-side face follows from Proposition 3.1,
while that of the back and left-side faces is obvious. For the top face, take
any D ∈ Pic0mC, represented by a good divisor D ∈ Div0

⊥C, and choose a
class D′ ∈ Pic0mC

s ∼= Jm(ks) with pD′ = D and a good divisor D′ ∈ Div0
⊥C

s

representing D′. Then φ(ψD′) = pD′ = D, so δφ(D) is represented by the
cocycle that sends σ ∈ Gk to σ(ψD′)− ψD′ = ψ(σ(D′)−D′) and ε∗(δφ(D))
is represented by σ 7→ ε(ψ(σ(D′)−D′)). Let h be a function that is 1 modm,
satisfying

div(h) = pD′ −D,

so that div(σ(h)/h) = p(σ(D′) − D′). Therefore, by Proposition 4.1, the
class ε∗(δφ(D)) is represented by the cocycle that sends σ to

ε(ψ(σ(D′)−D′)) = α(σ(D′)−D′) =
(x− T )(σ(D′)−D′)

(σ(h)/h)(W )
=
σ(θ)

θ

for all σ ∈ Gk, with

θ =
(x− T )(D′)

h(W )
.

We now show that χ(θ) = (θp, N(θ)) equals (x − T, γy)(D). In the first
component, we have
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θp =
(x− T )(D′)p

h(W )p
=

(x− T )(pD′)

h(pW )
=

(x− T )(div(h) +D)

h
(
div(x− T ) + 1

p(deg f)m
)

= (x− T )(D)

by Weil reciprocity and the fact that h(m) = 1. In the second component,
we similarly have

N(θ) =
N
(
(x− T )(D′)

)
N(h(W ))

=
y(D′)p

h(TrW )
=

y(pD′)

h
(

div(y) + 1
p(deg f)m

)
=

y(div(h) +D)

h
(

div(y) + 1
p(deg f)m

) = y(D).

This implies that δχ((x − T, γy)(D)) is represented by the cocycle σ 7→
σ(θ)/θ as well, so the top face of the diagram commutes indeed. Finally,
commutativity of the bottom face of the diagram follows from commutativity
of the other faces and the fact that the map Pic0mC → Pic0C is surjective.

The diagrams of Proposition 3.1 and Theorem 4.2 combine to the fol-
lowing diagram:

(4.2)

Jm(k)

��

δφ // H1(Jm[φ]) ∼= H1(M)

��

// H1(µp(L
s))

��

Pic0mC

��

∼=
99

(x−T,y) //

(x−T )

22Γ/χ(L∗)

δχ

∼=
99

//

��

L∗/L∗p

��

δp

∼=
99

J(k)
δφ

// H1(J [φ]) ∼= H1(M/µp) // H1(µp(L
s)/µp)

Pic0C
+ �

99

(x−T,y) //

(x−T )

22Γ/χ(L∗)ι(k∗)
+ � δχ

99

// L∗/L∗pk∗
+ � δp

99

The two compositions of the horizontal maps in the front face of this dia-
gram, indicated by dashed arrows, are the (x− T ) maps that play a major
role in [PS]. Indeed, if we replace the front face by the diagram

Pic0mC

��

(x−T ) // L∗/L∗p

��
Pic0C

(x−T ) // L∗/L∗pk∗

then all information in this restricted diagram can already be found in [PS].
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Remark 4.3. As explained in [PS, Section 10], the group Pic0C is the
largest subgroup of J(k) whose image under the map J(k)→ H1(µp(L

s)/µp)
is contained in the image of L∗/L∗pk∗. Similarly, it is the largest sub-
group whose image under J(k) → H1(J [φ]) is contained in the image of
Γ/χ(L∗)ι(k∗).

5. ‘Unfaking’ the fake Selmer group. In this section, we make the
additional assumption that k is a global field. For each place v of k, we let
kv denote the completion at v, with absolute Galois group Gv = Gal(ksv/kv);
we set Lv = L⊗k kv and

Γv = {(δ, n) ∈ L∗v × k∗v | N(δ) = np} .

We also assume that for each place v of k, the curve C has a kv-rational
divisor class of degree 1. As mentioned in [PS, Section 13], this assumption
is automatically satisfied when the genus g(C) = (d− 2)(p− 1)/2 satisfies
g(C) 6≡ 1 (mod p). It implies that the injection Pic0C → J(k) is an iso-
morphism (see [PS, Prop. 3.2 and 3.3]). As before, we will abbreviate the
product over all places of k to

∏
v. The bottom face of diagram (4.2) then

yields the front face of the following diagram, where, as before, we have
identified H1(J [φ]) with H1(M/µp):

(5.1)

∏
v J(kv)/φJ(kv)

� �

(x−T,y)v
//

(x−T )v
,,∏

v Γv/χ(L∗v)ι(k
∗
v)� _

(δχ)v

��

//
∏
v L
∗
v/L

∗
v
pk∗v� _

(δp)v

��

J(k)/φJ(k) �
�

(x−T,y)
//

r
99

Γ/χ(L∗)ι(k∗)� _

δχ

��

r
99

// L∗/L∗pk∗� _

δp

��

r
99

∏
v J(kv)/φJ(kv)

� �

(δφ)v
//
∏
v H1(Gv, J [φ]) //

∏
v H1(Gv, µp(L

s)/µp)

J(k)/φJ(k) �
�

δφ
//

r
99

H1(J [φ]) //

r
99

H1(µp(L
s)/µp)

r
99

For each map in this front face, there is an analogous map over each com-
pletion kv of k. Taking the product over all places gives the back face of the
diagram, while r denotes each map from a global group to the product of
the analogous local groups.

The image of J(k)/φJ(k) in each of the four global groups is contained
in the inverse image under r of the image of

∏
v J(kv)/φJ(kv) in the corre-

sponding product of local groups. We give three of these inverse images a
name:
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Selφ(J, k) = r−1
(

im
(

(δφ)v :
∏
v

J(kv)/φJ(kv)→
∏
v

H1(Gv, J [φ])
))
,

Selφfake(J, k) = r−1
(

im
(

(x− T )v :
∏
v

J(kv)/φJ(kv)→
∏
v

L∗v/L
∗
v
pk∗v

))
,

Selφexplicit(J, k) = r−1
(

im
(

(x− T, y)v :∏
v

J(kv)/φJ(kv)→
∏
v

Γv/χ(L∗v)ι(k
∗
v)
))
.

The Selmer group Selφ(J, k) is commonly known. The fake Selmer group

Selφfake(J, k) was introduced by Poonen and Schaefer in [PS]. The two groups
are related by an exact sequence

µp → Selφ(J, k)→ Selφfake(J, k)→ 0,

and it is also known when the first map is injective (see [PS, Thm. 13.2]).
However, it is not always obvious whether the image of J(k)/φJ(k) in

Selφ(J, k) maps injectively to Selφfake(J, k). This means that although the
fake Selmer group is more practical to work with explicitly, in doing so in-
formation may be lost. The following theorem shows that no information
is lost when we work instead with the explicit Selmer group Selφexplicit(J, k),
which is just as easy to work with as the fake Selmer group.

Theorem 5.1. The map δχ induces an isomorphism

Selφexplicit(J, k)→ Selφ(J, k).

Proof. The fact that δχ maps Selφexplicit(J, k) injectively to Selφ(J, k) is
clear, so it remains to prove surjectivity. Note that we have an isomorphism
H2(µp) ∼= Br(k)[p]. Therefore, identifying H1(J [φ]) with H1(M/µp) through
ε∗ as before, the long exact sequences associated to the vertical short exact
sequences in diagram (3.1), together with the results of Proposition 3.1, give
rise to a commutative diagram with exact columns:

Γ/χ(L∗)ι(k∗)

δχ
��

// L∗/L∗pk∗

δp
��

H1(J [φ])

δ1
��

// H1(µp(L
s)/µp)

δ2
��

Br(k)[p] Br(k)[p]

An analogous statement holds for every completion kv of k. Now suppose
we have an element ξ ∈ Selφ(J, k). Then by definition r(ξ) is contained in
the image of (δφ)v and therefore in the image of (δχ)v (see diagram (5.1)).
It follows that r(ξ) maps to 0 in

∏
v Br(kv)[p] under the product of the
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local versions of δ1. Since the map Br(k)[p] →
∏
v Br(kv)[p] is injective, we

conclude δ1(ξ) = 0, so there is an element η ∈ Γ/χ(L∗)ι(k∗) with δχ(η) = ξ.

A short diagram chase shows η ∈ Selφexplicit(J, k), so δχ : Selφexplicit(J, k) →
Selφ(J, k) is indeed surjective.

Remark 5.2. Similarly, the map δp induces an isomorphism from

Selφfake(J, k) to the group

r−1
(

im
(∏

v

J(kv)/φJ(kv)→
∏
v

H1(Gv, µp(L
s)/µp)

))
.

Proof of Theorem 1.1. The map (x−T, y) : J(k)→ Γ/χ(L∗)ι(k∗) factors
as

J(k)→ J(k)/φJ(k)→ Selφexplicit(J, k) ⊂ Γ/χ(L∗)ι(k∗).

Theorem 1.1 therefore follows immediately from Theorem 5.1.
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