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Small values of the Riemann zeta function on the critical line

by

Justas Kalpokas and Paulius Šarka (Vilnius)

1. Introduction and main results. The Riemann zeta function sat-
isfies the well-known functional equation ζ(s) = ζ(1− s)χ(s), where

χ(s) = 2sπs−1 sin
(
1
2πs
)
Γ (1− s).

The functional equation implies that the values of χ on the critical line
1/2+ iR lie on the unit circle. Given an angle φ ∈ [0, π), we denote by tn(φ),
n = 1, 2, . . . , the generalized Gram points, the positive roots of the equation

e2iφ = χ(1/2 + it)

in ascending order. These roots correspond to the intersections of the curve
t 7→ ζ(1/2+it) with straight lines eiφ through the origin (see [KS]). Of special
interest are the intersections with the real line. In this case φ = 0, and the
roots are called Gram’s points [Gr].

Fig. 1. (a) Values at tn(π/4); (b) values at Gram’s points tn(0).
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Recently the first named author, Korolev and Steuding proved that the
negative values (and, more generally, values with any fixed argument) of
the Riemann zeta function on the critical line can be arbitrarily large in
absolute value [KKS]. In other words, the graph in Figure 1 expands to all
directions with the minimum speed of (log T )5/4 for values of ζ(1/2 + it)
with t ∈ [T, 2T ].

A natural question to ask is the opposite one: how small the nonzero
values of the Riemann zeta function on the critical line can be? Christ states
in his thesis [C, p. 56] that there is an interval A ⊂ [0, 2π) of length at least
π/4 such that for every θ ∈ A there is a sequence tn ∈ [2,∞) with

ζ(1/2 + itn) 6= 0, lim
n→∞

ζ(1/2 + itn) = 0, arg ζ(1/2 + itn) ≡ θ mod 2π.

Recently Korolev [Kor] obtained a more precise result. Extending the ideas
of Selberg [Se] and Radziwiłł [R] he proved that if ζ(1/2+ itn(0)) 6= 0 (note
that ζ(1/2 + itn(0)) ∈ R) then

min
tn(0)∈[0,T ]

|ζ(1/2 + itn(0))| < exp

(
− log log T

ϕ(T )

)
,

where ϕ(T ) is an unbounded and increasing function as T →∞.
In this paper we further improve and generalize the results of Christ and

Korolev:

Theorem 1.1. For φ ∈ [0, π),

min
tn(φ)∈[0,T ]

|ζ(1/2+ itn(φ))| < exp

(
−
(

1√
6
+o(1)

)√
log T

log log T

)
as T →∞.

We prove Theorem 1.1 by considering the following two discrete moments:

S0(T ) =
∑

0<tn(φ)≤T

|X(1/2 + itn(φ))|2,(1.1)

S2(T ) =
∑

0<tn(φ)≤T

|ζ(1/2 + itn(φ))|2|X(1/2 + itn(φ))|2,(1.2)

where X(s) is a Dirichlet polynomial

X(s) =
∑
n≤X

xn
ns

with X ≤ T.(1.3)

It is easy to see that these moments can be used to estimate small values of
the Riemann zeta function at Gram points in the following way:

min
tn(φ)∈[0,T ]

|ζ(1/2 + itn(φ))|2 ≤ S2(T )/S0(T ).

In order to minimize the quantity on the right-hand side we use the resonance
method introduced by Soundararajan [So], and in order to obtain asymptotic
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formulas for S0(T ) and S2(T ) we use a method introduced by Kalpokas,
Korolev and Steuding [KKS].

Using the same ideas with minor modifications we also obtain a re-
sult concerning extremal values of the Riemann zeta function at generalized
Gram points:

Theorem 1.2. For φ ∈ [0, π),

max
tn(φ)∈[0,T ]

|ζ(1/2 + itn(φ))| > exp

((
1√
6
+ o(1)

)√
log T

log log T

)
as T →∞.

It would be interesting to improve Theorem 1.1 by controlling the sign
as well as angle of generalized Gram points. Writing t+n (φ) if e−iφζ(1/2 +
itn(φ)) ≥ 0, and t−n (φ) if e−iφζ(1/2 + itn(φ)) < 0, we would like to find
arbitrarily small nonzero t+n (φ) and t−n (φ) values. One possible approach
would be to use the inequality

min
t±n (φ)∈[0,T ]

|ζ(1/2 + it±n (φ))|2 ≤ S2(T )
( ∑
0<t±n (φ)≤T

|X(1/2 + it±n (φ))|2
)−1

,

and find a lower bound for∑
0<t±n (φ)≤T

|X(1/2 + it±n (φ))|2 = #{t±n (φ) | t±n (φ) ∈ [0, T ]}
∑
n≤X

|xn|2

n
+ E ,

where

E =
∑
n≤X

xn
n

∑
m≤X

xm
m

∑
0<t±n (φ)≤T

(
m

n

)1/2+it±n (φ)

.

We conjecture that E is smaller than the main term, but we have not been
able to prove this. We can, however, conditionally estimate the main term:

Theorem 1.3. If the Riemann hypothesis is true then

#{t±n (φ) | t±n (φ) ∈ [0, T ]} � T (log T )−7/2−ε.

2. Technical lemmas. We start with the theorem of Kopetzky [Kop]
that establishes an asymptotic formula for the sum of the divisor function
over an arithmetic progression:

Lemma 2.1. For any constants r and m we have∑
n≤x

n≡amodm

d(n) = ξ1(a,m)x log x+
(
(2C−1)ξ1(a,m)−2ξ2(a,m)

)
x+O(x1/2),
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where

(2.1)

ξ1(a,m) =
1

m2

m∑
σ=1

(σ,m)|a

(σ,m),

ξ2(a,m) =
1

m2

m∑
σ=1

(σ,m)|a

(σ,m)(C −mC(σ,m))

and C(a,m) is defined by

(2.2)
∑
n≤x

n≡amodm

1

n
=

1

m
log x+ C(a,m) +O

(
1

x

)
.

Next we consider twisted sums of ξ1 and ξ2:

Lemma 2.2. Consider the following sums for the quantities ξ1(a,m) and
ξ2(a,m) defined in (2.1):

Σ1 =

m∑
a=1

exp

(
−2πika

m

)
ξ1(a,m), Σ2 =

m∑
a=1

exp

(
−2πika

m

)
ξ2(a,m).

Then

Σ1 =
(m, k)

m
and Σ2 =

(m, k)

m
log

m

(m, k)
.

Proof. Substitute the value of ξ1(a,m) into Σ1 and change the order of
summation:

Σ1 =
1

m2

m∑
a=1

exp

(
−2πika

m

) m∑
σ=1

(σ,m)|a

(σ,m)

=
1

m2

m∑
σ=1

(σ,m)

m∑
a=1

(σ,m)|a

exp

(
−2πika

m

)
.

The last sum
m∑
a=1

(σ,m)|a

exp

(
−2πika

m

)
=

m/(σ,m)∑
a′=1

exp

(
−2πi ka

′

m
(σ,m)

)

is equal to zero unless m
(σ,m) | k, in which case it is equal to m

(σ,m) . The only
values of σ that satisfy this condition are multiples of m

(m,k) , and there are
(m, k) of them in the interval [1,m]. Hence

Σ1 = (m, k)/m.
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Next we evaluate Σ2. From Lemma 2.1 we substitute the value of ξ2(a,m)
into Σ2 and change the order of summation. We have

Σ2 =
1

m2

m∑
a=1

exp

(
−2πika

m

) m∑
σ=1

(σ,m)|a

(σ,m)(C0 −mC(σ,m))

= C0
(m, k)

m
− 1

m

m∑
σ=1

(σ,m)C(σ,m)

m∑
a=1

(σ,m)|a

exp

(
−2πika

m

)
.

Using the same arguments we used for Σ1 we get

Σ2 = C0
(m, k)

m
− 1

m

m∑
σ=1

C(σ,m)(σ,m)

m/(σ,m)∑
a′=1

exp

(
−2πi ka

′

m
(σ,m)

)

= C0
(m, k)

m
−

m∑
σ=1
m

(m,k)
|σ

C(σ,m).

By definition of the Euler–Lehmer constants in (2.2) we have

m∑
σ=1
m

(m,k)
|σ

C(σ,m) = lim
x→∞

(m,k)∑
σ′=1

∑
n≤x

n≡σ′ m
(m,k)

mod m

1

n
− (m, k)

m
log x

= lim
x→∞

∑
n≤x
m

(m,k)
|n

1

n
− (m, k)

m
log x

= lim
x→∞

∑
n≤x

n≡0 mod m
(m,k)

1

n
− 1

m/(m, k)
log x = C

(
0,

m

(m, k)

)
.

From Lehmer [L, formula (2)] we have

C

(
0,

m

(m, k)

)
= C0

(m, k)

m
− (m, k)

m
log

m

(m, k)
.

Hence,

Σ2 =
(m, k)

m
log

m

(m, k)
.

The following lemma evaluates the key sum that emerges when searching
for the asymptotic of S2(T ).
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Lemma 2.3. Let xn be an arbitrary sequence. Then the sum

S =
∑
m≤X

xm
m

∑
k≤X

xk
∑
n≤ Tm

2πk

d(n) exp

(
−2πink

m

)
log

nk

m

is equal to(
T

2π

(
log

T

2π

)2

+ (2C0 − 2)
T

2π
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k)

+
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

k

− 2
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

(m, k)
+O(X2X0X1T

1/2 log T ),

where d(n) is the divisor function, C0 is the Euler constant, X0=maxn≤X |xn|
and X1 =

∑
n≤X |xn|/n.

Proof. We rewrite S as

S =
∑
m≤X

xm
m

∑
k≤X

xk

m∑
a=1

exp

(
−2πika

m

) ∑
1<n≤ Tm

2πk
n≡amodm

d(n) log
kn

m

=
∑
m≤X

xm
m

∑
k≤X

xk

m∑
a=1

exp

(
−2πika

m

)
S(a,m, k, T ).

For the last sum we use Abel’s summation. We have

S(a,m, k, T ) = log
T

2π

∑
n≤ Tm

2πk
n≡amodm

d(n)−
Tm/2πk�

1

∑
n≤u

n≡amodm

d(n)

(
log

uk

m

)′
du

= A1 −A2.

From Lemma 2.1 we get

A1 =
T

2π

(
log

T

2π

)2m

k
ξ1(a,m)

+
T

2π

(
log

T

2π

)(
m

k

(
log

m

k

)
ξ1(a,m) +

m

k

(
(2C − 1)ξ1(a,m)− 2ξ2(a,m)

))
+O

((
Tm

k

)1/2

log T

)
,



Riemann zeta function on the critical line 207

and after integrating and using Lemma 2.1 again we get

A2 = ξ1(a,m)

(
Tm

2πk
log

Tm

2πk
− Tm

2πk

)
+
(
(2C − 1)ξ1(a,m)− 2ξ2(a,m)

)Tm
2πk

+O

((
Tm

k

)1/2)
.

Substituting A1 and A2 into S(a,m, k, T ) and using the notation of (1.3) we
find that the error term of S is bounded by

�
∑
m≤X

xm
m

∑
k≤X

xk

m∑
a=1

exp

(
−2πika

m

)(
Tm

k

)1/2

log T

� X2X0X1T
1/2 log T.

For the main term we use the values of Σ1 and Σ2 calculated in Lemma 2.1.
Substituting we see that the contribution of A1 to S is

SA1 =

(
T

2π

(
log

T

2π

)2

+ (2C0 − 1)
T

2π
log

T

2π

) ∑
m≤X
k≤X

xmxk
mk

(m, k)

+
T

2π

(
log

T

2π

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

k

− 2
T

2π

(
log

T

2π

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

(m, k)
,

and the contribution of A2 to S is

SA2 =

(
T

2π
log

T

2π
+ (2C0 − 2)

T

2π

) ∑
m≤X
k≤X

xmxk
mk

(m, k)

+
T

2π

∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

k
− 2

T

2π

∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

(m, k)
.

The main term of S is equal to SA1 − SA2 , hence

S =

(
T

2π

(
log

T

2π

)2

+ (2C0 − 2)
T

2π
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k)

+
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

k
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− 2
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

(m, k)

+O(X2X0X1T
1/2 log T ).

The last two lemmas are variations of Gonek’s Lemma:

Lemma 2.4. For m = 0, 1, 2, . . . , A large and A < r ≤ B ≤ 2A, uni-
formly for a ∈ (1, 2],

B�

A

(
t

2π

)a−1/2
exp

(
it log

(
t

er

))(
log

r

2π

)m
dt

= (2π)1−arae−ir+πi/4
(
log

r

2π

)m
+O(Aa−1/2(logA)m).

Proof. This is a combination of Lemmas 3 and 4 from [G] (in the original
paper the remainder term is not uniform in a > 1).

Lemma 2.5. Suppose the series f(s) =
∑∞

n=1 αnn
−s converges absolutely

for <s > 1 and
∑∞

n=1 |αn|n−σ � (σ − 1)−γ for some γ ≥ 0 as σ → 1 + 0.
Next, let X(s) be a Dirichlet polynomial as defined in (1.3). Then, uniformly
for a ∈ (1, 2],

J =
1

2πi

a+iT�

a+i

f(s)X(s)X(1− s)χ
′

χ
(s) ds

= − T

2π

(
log

T

2πe

) ∑
m≤X
mn≤X

αnxmxmn
mn

+O

(
Xa(log T )2X 2

0

(a− 1)γ+1

)
,

where X0 = maxn≤X |xn| and the implicit constant is absolute.

Proof. This is a simplified version of Lemma 5 from Kalpokas, Korolev
and Steuding [KKS] and a variation of Lemma 5.1 from Ng [N].

3. Asymptotic formulas for S0(T ) and S2(T ). In this section we find
asymptotic formulas for the discrete moments S0(T ) and S2(T ) defined by
(1.1) and (1.2), respectively.

Proposition 3.1 ([KKS, Proposition 9]). Let X(s) be a Dirichlet poly-
nomial as defined in (1.3). Then for any φ ∈ [0, π), as T →∞,

(3.1) S0(T ) =
T

2π

(
log

T

2πe

) ∑
n≤X

|xn|2

n
+O(R0),
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where

R0 = X
√
T (log T )2

∑
n≤X

|xn|2

n
+X(log T )3X 2

0 ,

X0 = maxn≤X |xn| and X1 =
∑

n≤X |xn|/n. All implicit constants are abso-
lute.

Proposition 3.2. Let X(s) be a Dirichlet polynomial as defined in (1.3).
Then for any φ ∈ [0, π), as T →∞,

S2(T ) =

(
T

2π

(
log

T

2π

)2

+ (2C0 − 2)
T

2π
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k)(3.2)

+
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

k

− 2
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

xmxk
mk

(m, k) log
m

(m, k)

+ 2 cos(2φ)
T

2π

(
log

T

2πe

) ∑
m≤X
mk≤X

d(n)xmxmk
mk

+O(R2),

where

R2 = XX 2
1 T

1/2(log T )2 +XX 2
0 (log T )

4 + X0X1XT
1/2(log T )3

+X2X0X1T
1/2 log T,

X0 = maxn≤X |xn| and X1 =
∑

n≤X |xn|/n. All implicit constants are abso-
lute.

Proof. We follow the proof of [KKS, Proposition 10]. We will use the
following formulas (see [I, formula 2.17]):

(3.3) χ(σ + it) =

(
|t|
2π

)1/2−σ−it
exp(i(t+ π/4))(1 +O(|t|−1)) for |t| ≥ 1

and

(3.4)
χ′

χ
(σ + it) = − log

|t|
2π

+O(|t|−1) for |t| ≥ 1.

We begin with the estimations

|ζ(1/2 + it)| � T 1/6, |X(1/2 + it)| ≤
√
X X1;

the first one is a well-known bound from zeta function theory (obtained
by using van der Corput’s method) and the second is straightforward. It is
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sufficient to obtain (3.2) for the sum over the interval c < tn(φ) ≤ T , where
c > 32π is a large absolute constant.

Next, without loss of generality we may set T = 1
2(tν(φ) + tν+1(φ)).

Indeed, otherwise we may replace T by the closest value T1 of such type.
Then the error of such replacement in the right-hand side of (3.2) is bounded
by (

log
T

2π

)−1(
log

T

2π

) ∑
m≤X
mn≤X

|xmxmn|
mn

� X 2
0 (log T )

2,

where we have used the asymptotic T
2π log T +O(T ) for the number of tn(φ)

≤ T (see [KS, Theorem 1]). Since the points s = 1/2+ itn(φ) are the roots of
the function χ(s)− e2iφ, the sum in question can be rewritten as a contour
integral:∑

c<tn(φ)≤T

|ζ(1/2 + itn(φ))|2 |X(1/2 + itn(φ))|2

=
1

2πi

�

�

ζ(s)ζ(1− s)X(s)X(1− s) χ′(s)

χ(s)− e2iφ
ds;

here � stands for the counterclockwise oriented rectangular contour with
vertices a+ ic, a+ iT , 1− a+ iT , 1− a+ ic, where a = 1 + (log T )−1. Let
I1 and I3 be the integrals over the right and left sides of the contour, and
I2 and I4 be the integrals over the top and bottom edges. We may assume
the constant c is so large that

|χ(a+ it)| =
(
t

2π

)1/2−a
(1 +O(t−1)) ≤ 2

(
t

2π

)−1/2
< 1/2

for any t > c. By (3.3), (3.4) and geometric progression, for σ > 1/2,

(3.5)
1

χ(s)− e2iφ
=

−e−2iφ

1− e−2iφχ(s)
= −e−2iφ

(
1 +

∞∑
k=1

e−2kiφχ(s)k
)
.

In view of (3.5) we have

I1 =
1

2πi

a+iT�

a+ic

ζ(s)ζ(1− s)X(s)X(1− s) χ′(s)

χ(s)− e2iφ
ds

= −e
−2iφ

2πi

a+iT�

a+ic

ζ(s)2

χ(s)
X(s)X(1− s)χ′(s)

(
1 +

∞∑
k=1

e−2ikφχ(s)k
)
ds

= −e−2iφ(j1 + j2),
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where

j1 =
1

2πi

a+iT�

a+ic

ζ(s)2X(s)X(1− s)χ
′

χ
(s) ds,

j2 =
1

2πi

a+iT�

a+ic

ζ(s)2X(s)X(1− s)χ
′

χ
(s)

∞∑
k=1

e−2ikφχ(s)k ds.

We observe that for s = a+ it,

|X(a+ it)| ≤
∑
n≤X

|xn|
na
≤ X1, |X(1− a− it)| ≤

∑
m≤X

ma|xm|
m

� XX1,

∣∣∣∣ ∞∑
k=1

e−2ikφχ(a+ it)k
∣∣∣∣ ≤ 2

(
t

2π

)−1/2 ∞∑
k=0

1

2k
� t−1/2.

Thus, we have

|j2| � ζ(a)XX1X1

T�

c

log t dt√
t
� X

√
T (log T )2X 2

1 .

Applying Lemma 2.5 to j1 we get

I1 = e−2iφ
T

2π

(
log

T

2πe

) ∑
m≤X
mn≤X

d(n)xmxmn
mn

+O
(
X
√
T (log T )2X 2

1 +X(log T )4X 2
0

)
.

In a similar way we may compute I3. First we observe that

I3 = −
1

2π

T�

c

ζ(1− (a− it))ζ(a− it)X(1− (a− it))X(a− it)

× χ′(1− (a− it))
χ(1− (a− it))− e2iφ

dt.

We define X1(s) =
∑

n≤X xnn
−s and take the conjugate of I3. This in

combination with X(s) = X1(s) yields

I3 = −
1

2π

T�

c

ζ(1− (a+ it))ζ(a+ it)X1(1− (a+ it))X1(a+ it)

× χ′(1− (a+ it))

χ(1− (a+ it))− e−2iφ
dt.

Hence

I3 = −
1

2πi

a+iT�

a+ic

ζ(1− s)ζ(s)X1(1− s)X1(s)
χ′(1− s)

χ(1− s)− e−2iφ
ds.
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In view of ζ(1− s) = ζ(s)χ(1− s), χ(1− s)χ(s) = 1, (3.4) and (3.5) we find
that

I3 = −
1

2πi

a+iT�

a+ic

ζ(s)2χ(1− s)X1(1− s)X1(s)
χ′

χ
(s)

×
(
1 +

∞∑
k=1

e−2ikφχ(s)k
)
ds

= − 1

2πi

a+iT�

a+ic

ζ(s)2χ(1− s)X1(1− s)X1(s)
χ′

χ
(s) ds

− e−2iφ 1

2πi

a+iT�

a+ic

ζ(s)2X1(1− s)X1(s)
χ′

χ
(s) ds

− 1

2πi

a+iT�

a+ic

ζ(s)2X1(1− s)X1(s)
χ′

χ
(s)

∞∑
k=1

e−2ikφχ(s)k ds

= j3 + j4 + j5.

The expressions for j4 and j5 can be obtained by replacing X(s) with X1(s)
and X(1 − s) with X1(1 − s) in the expressions for j1 and j2. Applying
Lemma 2.5 to j4 and estimating j5 similarly to j2, we get

j4 + j5 = e−2iφ
T

2π

(
log

T

2πe

) ∑
m≤X
mn≤X

d(n)xmxmn
mn

+O
(
X
√
T (log T )2X 2

1 +X(log T )4X 2
0

)
.

Next we evaluate j3. By (3.3) and (3.4) we have

j3 = −
1

2πi

a+iT�

a+ic

ζ(s)2χ(1− s)X1(1− s)X1(s)
χ′

χ
(s) ds

=
∞∑
n=1

d(n)

na

∑
m≤X

xm
m1−a

∑
k≤X

xk
ka

1

2π

T�

c

χ(1− a− it)χ
′

χ
(a+ it)

(
m

kn

)it
dt

=
∞∑
n=1

d(n)

na

∑
m≤X

xm
m1−a

∑
k≤X

xk
ka

× eπi/4

2π

T�

c

(
t

2π

)a−1/2
exp

(
it log

tm

2πekn

)(
log

t

2π

)(
m

kn

)it
dt

+O(X0X1XT
1/2(log T )3).
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An application of Gonek’s Lemma (Lemma 2.4) to j3 shows that

j3 =
∑
m≤X

xm
m

∑
k≤X

xk
∑

c<n≤ Tm
2πk

d(n)e−2πi
nk
m log

nk

m
+O(X0X1XT

1/2(log T )3)

=
∑
m≤X

xm
m

∑
k≤X

xk
∑
n≤ Tm

2πk

d(n)e−2πi
nk
m log

nk

m

+O
(
X0X1XT

1/2(log T )3 +XX0X1 logX
)
.

We notice that the sum of j3 is the same as the sum in Lemma 2.3.
In order to estimate I2 we first note that the following inequalities hold

along the line segment of integration:

|ζ(s)ζ(1− s)| �
√
T log T,

|X(s)| ≤
∑
n≤X

|xn|
n
n1−σ � X1−σX1,

|X(1− s)| ≤
∑
n≤X

|xn|
n
nσ � XσX1,

|ζ(s)ζ(1− s)X(s)X(1− s)| � X 2
1X
√
T log T.

Next, by (3.4) we get

χ′(s)

χ(s)− e2iφ
=
χ′(s)

χ(s)

(
1 +

e2iφ

χ(s)− e2iφ

)
� log T,

hence
I2 � X

√
T (log T )2X 2

1 .

The integral I4 can be estimated in a similar way. We refer the reader to
[KKS, proof of Proposition 10] for more details.

4. Small values at Gram’s points. In order to prove Theorem 1.1 we
have to minimize the right-hand side of the inequality

min
tn(φ)≤T

|ζ(1/2 + itn(φ))|2 ≤ S2/S0.

Let L =
√
(1− δ) logX log logX, where X is a sufficiently large parameter

and δ = δ(X) is a function sufficiently slowly converging to 0 (asX →∞), to
be chosen later. Following Soundararajan [So], we define xn = n1/2µ(n)f(n),
where f is the multiplicative function such that f(pk) = 0 for all primes p
and positive integers k ≥ 2,

f(p) =
L

√
p log p
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for all primes p satisfying L2 ≤ p ≤ exp((logL)2), and f(p) = 0 for all other
primes. We observe that for the quantities defined by

X0 = max
n≤X
|xn|, X1 =

∑
n≤X

|xn|
n

we have

X0 = max
n≤X

√
n f(n) ≤ Lm

m∏
j=1

1

log pj
,

where p1, . . . , pm are the least distinctm prime numbers in [L2, exp((logL)2)]
for which n = p1 . . . pm ≤ X. Since X ≥ n ≥ L2m, we have Lm ≤ X1/2 and
X0 < Lm ≤ X1/2. Moreover, since f(n) ≤ 1 for any n, we find

X1 =
∑
n≤X

f(n)√
n
≤
∑
n≤X

1√
n
� X1/2

as well as

X2 =
∑
n≤X

|xn|2

n
=
∑
n≤X

f(n)2 =
∑

n=p1...pm≤X
L2<p1...pm≤eL

2

L2m

(p1(log p1) . . . pm(log pm))2

≤
∏

L2<p≤eL2

(
1 +

L2

p2(log p)2

)
< exp

(
L2
∑
p>L2

1

p2(log p)2

)
< e.

Inserting these bounds into the asymptotic formulas of Propositions 3.1 and
3.2 we get

S0(T ) =
T

2π

(
log

T

2πe

) ∑
n≤X
|f(n)|2 +O

(
XT 1/2(log T )2 +X2(log T )3

)
and

S2(T ) =

(
T

2π

(
log

T

2π

)2

+ (2C0 − 2)
T

2π
log

T

2πe

)
×
∑
m≤X
k≤X

µ(m)f(m)µ(k)f(k)

m1/2k1/2
(m, k)

+
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

µ(m)f(m)µ(k)f(k)

m1/2k1/2
(m, k) log

m

k
(∗)

− 2
T

2π

(
log

T

2πe

) ∑
m≤X
k≤X

µ(m)f(m)µ(k)f(k)

m1/2k1/2
(m, k) log

m

(m, k)
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+ 2 cos(2φ)
T

2π

(
log

T

2πe

) ∑
m≤X
mk≤X

d(k)µ(m)f(m)µ(mk)f(mk)

k1/2

+O
(
X3T 1/2 log T +X2T 1/2(log T )3

)
.

We choose X = T 1/6−ε and apply the following estimates (note that (∗) is
equal to zero by symmetry):

Lemma 4.1.

(4.1)
∑
m≤X
k≤X

µ(m)f(m)µ(k)f(k)

m1/2k1/2
(m, k) = (1+ o(1))

∏
p

(
1+ f(p)2− 2

f(p)

p1/2

)
,

(4.2)
∣∣∣∣ ∑
m≤X
k≤X

µ(m)f(m)µ(k)f(k)

m1/2k1/2
(m, k) log

m

(m, k)

∣∣∣∣
�
∏
p

(
1 + f(p)2 − 2

f(p)

p1/2

)
(logX)1/2+ε,

(4.3)
∑
m≤X
mk≤X

d(k)µ(m)f(m)µ(mk)f(mk)

k1/2

= (1 + o(1))
∏
p

(
1 + f(p)2 − 2

f(p)

p1/2

)
,

(4.4)
∑
m≤X

f(m)2 = (1 + o(1))
∏
p

(1 + f(p)2).

Substituting these estimates we get

S2(T )� T (log T )2
∏
p

(
1 + f(p)2 − 2

f(p)

p1/2

)
,

S0(T )� T (log T )
∏
p

(1 + f(p)2),

and so
S2
S0
� exp

(
log log T − 2

∑
p

f(p)

p1/2

)

= exp

(
−(2 + o(1))

√
logX

log logX

)
,

proving Theorem 1.1.
We now prove each inequality of Lemma 4.1 separately.
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Proof of (4.1). Summing over b = (m, k) we get∑
k,m≤X

µ(m)f(m)µ(k)f(k)

m1/2k1/2
(m, k) =

∑
b≤X

∑
m,k≤X/b
(m,k)=1
(b,mk)=1

f(b)2µ(m)f(m)µ(k)f(k)

m1/2k1/2

=
∑
b≤X

f(b)2
∑

(l,b)=1

µ(l)f(l)d(l)

l1/2
+ E1

=
∑
b

f(b)2
∑

(l,b)=1

µ(l)f(l)d(l)

l1/2
+ E2 + E1

=
∏
p

(
1 + f(p)2 − 2

f(p)

p1/2

)
+ E2 + E1.

The error terms E1 and E2 can be bounded in absolute value using Ranking’s
trick (see [So, p. 5]):

|E1| �
∑
b

f(b)2
∑

(l,b)=1
l>X/b

f(l)d(l)

l1/2

≤
∑
b

f(b)2
(
b

X

)α ∑
(l,b)=1

lαf(l)d(l)

l1/2

=
1

Xα

∏
p

(1 + pαf(p)2 + 2f(p)pα−1/2),

|E2| =
∣∣∣∣∑
b>X

f(b)2
∑

(l,b)=1

µ(l)f(l)d(l)

l1/2

∣∣∣∣
≤ 1

Xα

∏
p

(1 + pαf2(p) + 2f(p)pα−1/2).

It remains to show that the error terms are smaller than the main term. For
that we take α = 1/(logL)3 as in [So, proof of Lemma 6] and estimate the
logarithm of the error term divided by the main term:

(4.5) log

(
1

Xα

∏
p

(1 + pαf(p)2 + 2f(p)pα−1/2)

)
− log

(∏
p

(
1 + f(p)2 − 2

f(p)

p1/2

))
≤ −α logX +

∑
p

(pα − 1)f(p)2 +
∑
p

4f(p)pα−1/2 +O
(∑

p

p2αf(p)4
)
.
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Using the Prime Number Theorem and Abel’s summation we get∑
p

(pα − 1)f(p)2 = (1 + o(1))
L2

2(logL)4
,

∑
p

f(p)pα−1/2 � L

logL
,

∑
p

p2αf(p)4 � L2

(logL)5
.

The largest of the sums
∑

p(p
α − 1)f(p)2 is equal to (1 − δ + o(1))α logX,

so we can make (4.5) diverge to −∞ by taking δ to be sufficiently slowly
convergent to 0.

Proof of (4.2). We rewrite the sum similarly to the proof above:∑
m,k≤X

µ(m)f(m)µ(k)f(k)

m1/2k1/2
(m, k) log

m

(m, k)

=
∑
b≤X

f(b)2
∑

m,k≤X/b
(m,k)=1
(b,mk)=1

µ(m)f(m)µ(k)f(k)

m1/2k1/2

∑
p|m

log p

=
∑
p≤X

(log p)
∑
b≤X
p-b

f(b)2
∑

(m,k)=1
(b,mk)=1
p|m

µ(m)f(m)µ(k)f(k)

m1/2k1/2
+ E1

=
∑
p≤X

f(p) log p

p1/2

∑
b≤X
p-b

f(b)2
∏
q-pb

(
1− 2

f(q)

q1/2

)
+ E1.

Since for q > L2 we have 1 > 2f(q)/q1/2, the above summands are positive
and the sum increases if we extend the summation range over all b:

≤
∑
p≤X

f(p) log p

p1/2

∏
q

(
1 + f(q)2 − 2f(q)

q1/2

)
+ E1.

Note that ∑
p≤X

f(p) log p

p1/2
≤ L

∑
p≤X

1

p
� (logX)1/2+ε,

so it remains to estimate the error term:

|E1| =
∣∣∣∣∑
p≤X

f(p) log p

p1/2

∑
b≤X
p-b

f(b)2
∑

k>X/b or m>X/bp
(m,k)=1
(mk,pb)=1

µ(m)f(m)µ(k)f(k)

m1/2k1/2

∣∣∣∣
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�
∑
p≤X

f(p) log p

p1/2

∑
b

f(b)2
∑

l>X/bp

f(l)d(l)

l1/2

�
∑
p≤X

pαf(p) log p

p1/2
1

Xα

∏
q

(1 + qαf(q)2 + 2f(q)qα−1/2).

Note that for p ≤ exp((logL)2) we have pα � 1, so the ratio between the
error term and the main term is essentially the same as in the proof of (4.1)
and tends to 0.

Proof of (4.3). Note that f(mk) 6= 0 ⇒ µ(mk) = µ(m)µ(k), so the
sum in question is equal to∑

mk≤X

d(k)f(m)µ(k)f(mk)

k1/2
=
∑
m≤X

f(m)2
∑

(k,m)=1

d(k)µ(k)f(k)

k1/2
+ E1

=
∏
p

(
1 + f(p)2 − 2

f(p)

p1/2

)
+ E2 + E1,

and the error terms can be bounded in the same way as in the proof of
(4.1).

Proof of (4.4). Using Rankin’s trick we write∑
n≤X

f(n)2 =
∏
p

(1 + f(p)2) +O

(
1

Xα

∏
p

(1 + f(p)2pα)

)
.

The logarithm of the ratio of the error term to the main term is equal to

−α logX +
∑
p

(pα − 1)f(p)2 +O

(∑
p

p2αf(p)4
)
,

which again tends to −∞ as in the proof of (4.1).

5. Large values at Gram’s points. The proof of Theorem 1.2 follows
the lines of the proof of Theorem 1.1, so we only give a short outline here.
We use the following inequality to get a lower bound for large values of the
zeta function:

max
tn(φ)≥T

|ζ(1/2 + itn(φ))|2 ≥ S2/S0.

The expressions of S2 and S0 are the same, but instead of xn = n1/2µ(n)f(n)
we take xn = n1/2f(n) and get the following equivalent to Lemma 4.1:

Lemma 5.1.∑
m≤X
k≤X

f(m)f(k)

m1/2k1/2
(m, k) = (1 + o(1))

∏
p

(
1 + f(p)2 + 2

f(p)

p1/2

)
,
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∑
m≤X
k≤X

f(m)f(k)

m1/2k1/2
(m, k) log

(
(m, k)

k

)
�
∏
p

(
1 + f(p)2 + 2

f(p)

p1/2

)
(logX)1/2+ε,

∑
m≤X
mk≤X

d(k)f(m)f(mk)

k1/2
= (1 + o(1))

∏
p

(
1 + f(p)2 + 2

f(p)

p1/2

)
.

Substituting these estimates we get

S2(T )� T (log T )2
∏
p

(
1 + f(p)2 + 2

f(p)

p1/2

)
,

S0(T )�
∏
p

(1 + f(p)2),

and so

S2
S0
� exp

(
log log T + 2

∑
p

f(p)

p1/2

)
= exp

(
(2 + o(1))

√
logX

log logX

)
.

6. Proof of Theorem 1.3. We prove Theorem 1.3 by estimating the
third and sixth discrete moments of the Riemann zeta function and using
the Cauchy–Schwarz inequality:∑

t±n (φ)≤T

1 ≥
(
∑

t±n (φ)≤T |ζ(1/2 + it±n (φ))|3)2∑
tn(φ)≤T |ζ(1/2 + itn(φ))|6

.

From [KS] we have∑
t±n (φ)≤T

|ζ(1/2 + it±n (φ))|3 � T (log T )13/4,

and from [CK] under the Riemann Hypothesis we have∑
tn(φ)≤T

|ζ(1/2 + itn(φ))|6 � T (log T )10+ε,

hence
#{t±n (φ) : t±n (φ) ∈ [0, T ]} � T (log T )−7/2−ε,

as required.
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