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1. Introduction. Let K be a complete, algebraically closed nonar-
chimedean valued field with absolute value | · | and associated valuation
ord(·). Write O for the ring of integers of K, M for its maximal ideal, and

k̃ = O/M for its residue field.

Let ϕ(z) ∈ K(z) be a rational function with deg(ϕ) = d ≥ 2. There are
homogeneous polynomials F (X,Y ), G(X,Y ) ∈ K[X,Y ] of degree d, having
no common factor, such that the map [X : Y ] 7→ [F (X,Y ) : G(X,Y )] gives
the action of ϕ on P1. After scaling F and G, one can arrange that F and G
belong to O[X,Y ] and that at least one of their coefficients is a unit in O.
Such a pair (F,G) is called a normalized representation of ϕ; it is unique up
to scaling by a unit in O. Write F (X,Y ) = fdX

d+ fd−1X
d−1Y + · · ·+ f0Y

d

and G(X,Y ) = gdX
d + gd−1X

d−1Y + · · · + g0Y
d. Then the resultant of F

and G is

(1.1) Res(F,G) = det





fd fd−1 · · · f1 f0

fd fd−1 · · · f1 f0
...

fd fd−1 · · · f1 f0

gd gd−1 · · · g1 g0

gd gd−1 · · · g1 g0
...

gd gd−1 · · · g1 g0




.

Its ord value

(1.2) ordRes(ϕ) := ord(Res(F,G))
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is independent of the choice of normalized representation. By construction,
it is nonnegative.

If γ ∈ GL2(K), the conjugate ϕγ = γ−1 ◦ ϕ ◦ γ has its own normal-
ized representation (Fγ , Gγ), and ordRes(ϕγ) := ord(Res(Fγ , Gγ)) is in gen-
eral different from ordRes(ϕ). In this paper we investigate how ordRes(ϕγ)
changes as γ varies over GL2(K). We show that the map γ 7→ ordRes(ϕγ)
factors through a function ordResϕ(·) on the Berkovich projective line P1

K ,

ordResϕ : P1
K → [0,∞],

which takes on a minimum value and is continuous, piecewise affine, and
convex up on each path in P1

K . Let the minimal resultant locus be the
set MinResLoc(ϕ) where ordResϕ(·) achieves its minimum. We show that
MinResLoc(ϕ) is either a point or a segment, and that it can be a segment
only when d = deg(ϕ) is odd and ϕ does not have potential good reduction
(see below).

If H ⊂ K is the minimal field of definition for ϕ, we obtain an a priori
bound of (d + 1)2 for the degree of an extension L/H such that there is a
γ ∈ GL2(L) for which ordRes(ϕγ) is minimal. We give an algorithm for com-
puting MinResLoc(ϕ) which determines the minimal value of ordResϕ(·),
finds a γ for which ϕγ has minimal resultant, and decides whether ϕ has
potential good reduction.

In particular, there always exists a γ ∈ GL2(K) for which ϕγ has minimal
resultant. This was previously shown by Szpiro, Tepper, and Williams [16],
using a moduli-theoretic argument building on work by Levy [10], [11].

Recall that the reduction ϕ̃ is the map [X̃ : Ỹ ] 7→ [F̃ (X̃, Ỹ ) : G̃(X̃, Ỹ )]

on P1(k̃) obtained by reducing F and G modulo M and eliminating common
factors. If ϕ̃ has degree d, then ϕ is said to have good reduction. Likewise,
ϕ is said to have potential good reduction if after a change of coordinates by
some γ ∈ GL2(K), the map ϕγ has good reduction. It is well known that
ϕγ has good reduction if and only if ordRes(ϕγ) = 0.

Our algorithm (Algorithm A in §5) decides when ϕ has potential good
reduction over the algebraically closed field K. Recently, Benedetto [2] found
a faster algorithm which uses different ideas. In [3], he improved the degree
bound (d + 1)2 given here. When ϕ is defined over a local field Hv, Bruin
and Molnar [6] earlier gave an algorithm which determines whether ϕ has
potential good reduction after conjugation by some γ ∈ GL2(Hv).

Recall P1
K is a path-connected Hausdorff space containing P1(K). By

Berkovich’s classification theorem (see for example [1, p. 5], points in P1
K can

be viewed as corresponding to discs inK. There are four kinds of points: type
I points are the points of P1(K), which we regard as discs of radius 0. Type
II and III points correspond to discs D(a, r) = {z ∈ K : |z − a| ≤ r}, with
type II points corresponding to discs D(a, r) with r in the value group |K×|,
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and type III points corresponding to those with r /∈ |K×|. We write ζa,r for
the point corresponding to D(a, r). The point ζG := ζ0,1 corresponding to
D(0, 1) is called the Gauss point. Type IV points serve to complete P1

K ;
they correspond to (cofinal equivalence classes of) sequences of nested discs
with empty intersection. Paths in P1

K correspond to ascending or descending
chains of discs, or unions of chains sharing an endpoint. For example the
path from 0 to 1 in P1

K corresponds to the chains {D(0, r) : 0 ≤ r ≤ 1} and
{D(1, r) : 1 ≥ r ≥ 0}; here D(0, 1) = D(1, 1). Topologically, P1

K is a tree:
there is a unique path [x, y] between any two points x, y ∈ P1

K .
The set H1

K = P1
K\P1(K) is called the Berkovich upper halfspace; it

carries a metric ρ(x, y) called the logarithmic path distance, for which the
length of the path corresponding to {D(a, r) : R1 ≤ r ≤ R2} is log(R2/R1).
There are two natural topologies on P1

K , called the weak and strong topolo-
gies. The weak topology on P1

K is the coarsest one which makes the eval-
uation functionals z 7→ |f(z)| continuous for all f(z) ∈ K(z); under the
weak topology, P1

K is compact and P1(K) is dense in it. The basic open
sets for the weak topology are the path-components of P1

K\{P1, . . . , Pn} as
{P1, . . . , Pn} ranges over finite subsets of H1

K . The strong topology on P1
K

(which is finer than the weak topology) restricts to the topology on H1
K

induced by ρ(x, y). The basic open sets for the strong topology are the
ρ(x, y)-balls in H1

K , together with the basic open sets from the weak topol-
ogy. Type II points are dense in P1

K for both topologies. The action of ϕ
on P1(K) extends functorially to an action on P1

K which is continuous for
both topologies, and takes points of a given type to points of the same type.
Similarly, the action of GL2(K) on P1(K) extends to an action on P1

K which
is continuous on GL2(K)×P1

K for both topologies, and preserves the type of
each point. The action of GL2(K) preserves the logarithmic path distance:
ρ(γ(x), γ(y)) = ρ(x, y) for all x, y ∈ H1

K and γ ∈ GL2(K). For these facts,
see [1]; for additional results about dynamics on P1

K , see [4], [5], [7], [8], [9],
and [12].

Our starting point is the following observation: by standard formulas
for the resultant (see for example Silverman [15, Ex. 2.7, p. 75]), for each
γ ∈ GL2(K) and each τ ∈ K× ·GL2(O) we have

ordRes(ϕγ) = ordRes(ϕγτ ).

On the other hand, GL2(K) acts transitively on type II points, and K× ·
GL2(O) is the stabilizer of the Gauss point. Thus the function ordResϕ(·)
on type II points in P1

K , given by

(1.3) ordResϕ(γ(ζG)) := ordRes(ϕγ),

is well-defined.
Our first main result is
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Theorem 1.1. Let K be a complete, algebraically closed, nonarchimedean
valued field. Suppose ϕ(z) ∈ K(z) has degree d = deg(ϕ) ≥ 2. Then the
function ordResϕ(·) on type II points in P1

K extends uniquely to a function
ordResϕ : P1

K → [0,∞] which is finite on H1
K , takes the value ∞ on P1(K),

and is continuous with respect to the strong topology. On each path in P1
K ,

it is piecewise affine and convex upwards with respect to the logarithmic path
distance. It achieves a minimum on P1

K .
The set MinResLoc(ϕ) where ordResϕ(·) takes on its minimum lies in

the ball {
z ∈ H1

K : ρ(ζG, z) ≤
2

d− 1
ordRes(ϕ)

}
.

For each a ∈ P1(K), MinResLoc(ϕ) is contained in the tree ΓFix,ϕ−1(a) ⊂ P1
K

spanned by the classical fixed points of ϕ and the preimages of a under ϕ.
It consists of a single type II point if d is even, and is a single type II
point or a segment with type II endpoints if d is odd. If the minimum
value of ordResϕ(·) is 0 (that is, if ϕ has potential good reduction), then
MinResLoc(ϕ) consists of a single point.

The proof of Theorem 1.1 shows that each affine segment of ordResϕ(·)
has an integer slope m ≡ d2 + d (mod 2d) with −d2 − d ≤ m ≤ d2 + d, and
that breaks between affine segments occur at type II points. The theory has
the following applications:

(1) The function ordResϕ(·) satisfies the principle of steepest descent.
This means that the Bruin–Molnar algorithm [6], which is implemented as
a recursive search, runs without back-tracking.

(2) If ϕ is defined over a subfield H ⊂ K, there is an extension L/H
with degree [L : H] ≤ (d + 1)2 such that ordRes(ϕγ) is minimal for some
γ ∈ GL2(L) (Theorem 3.2). In particular, if ϕ has potential good reduction,
it achieves good reduction over an extension of degree at most (d + 1)2.
It follows that if H is Henselian (especially, if H is complete), then the
statement “ϕ has potential good reduction” is first-order in the theory of H,
in the sense of mathematical logic.

(3) Suppose H is a number field. An elliptic curve E/H has a global
minimal model over H if and only if a certain class [aE ] in the ideal class
group of OH , the Weierstrass class, is principal. In dynamics, when ϕ(z) is
in H(z) and deg(ϕ) ≥ 2, Silverman has constructed an analogous ideal class
[aϕ] such that if ϕ has global minimal model over H, then [aϕ] is trivial (see
[15, Proposition 4.99]). He asks if the converse holds. We show that it can
fail by providing examples of number fields H and polynomials ϕ(z) ∈ H[z]
for which [aϕ] is trivial but ϕ has no global minimal model over H.

(4) If ϕ is defined over a subfield H ⊂ K, and ϕ has potential good
reduction, let Hϕ be the intersection of all fields L with H ⊂ L ⊂ K such
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that ϕγ has good reduction for some γ ∈ GL2(L) (the “field of moduli for the
good reduction problem”). We give examples where Hϕ = H but ϕγ does
not have good reduction for any γ ∈ GL2(H). Thus there need not be a
unique minimal extension L/H where ϕ achieves good reduction.

(5) When d is odd and ϕ does not have potential good reduction, we give
examples where the minimal resultant locus is a segment of positive length
(Examples 6.5 and 6.7). This means there can be fundamentally different
coordinate changes (that is, coordinate changes by γ’s belonging to different
cosets of K× ·GL2(O)) for which ϕγ has minimal resultant. This corresponds
to the fact that in moduli theory, when d is odd, ϕ can be semistable in the
sense of geometric invariant theory, without being stable.

Our second main result concerns the stability, under perturbations of ϕ,
of ordResϕ(·) and MinResLoc(ϕ):

Theorem 1.2. Let K be a complete, algebraically closed, nonarchimedean
valued field. Suppose ϕ(z), ϕ̂(z) ∈ K(z) have degree d ≥ 2, with normalized

representations (F,G), (F̂ , Ĝ) respectively. Write R = ordRes(ϕ), and let
M > 0 be arbitrary. If

(1.4) min(ord(F̂ − F ), ord(Ĝ−G)) > max

(
R,

1

2d
(R+ (d2 + d)M)

)
,

then ordResϕ̂(ξ) = ordResϕ(ξ) for all ξ with ρ(ζG, ξ) ≤M . Let

f(d) =
2d2 + 3d− 1

2d2 − 2d
,

so f(2) = 3.25, f(3) = 2.166 . . . , and 1 < f(d) < 2 for d ≥ 4. If

(1.5) min(ord(F̂ − F ), ord(Ĝ−G)) > f(d) · ordRes(ϕ),

then MinResLoc(ϕ̂) = MinResLoc(ϕ), and ordResϕ̂(ξ) = ordResϕ(ξ) for all
ξ with ρ(ζG, ξ) ≤ 2

d−1 ordRes(ϕ).

The structure of the paper is as follows. In Section 2 we prove Theorems
1.1 and 1.2. In Section 3 we study MinResLoc(ϕ) from a Galois-theoretic
viewpoint. In Section 4 we give applications of the theory. In Section 5 we
present Algorithm A. In Section 6 we provide examples illustrating some of
the possible geometric and dynamical behaviors of MinResLoc(ϕ). Finally,
in Section 7 we prove an analogue of Theorem 1.1 when d = 1.

2. Proof of the main theorems. In this section we establish Theorems
1.1 and 1.2. Suppose ϕ(z) ∈ K(z) has degree d. Then

ϕ(z) =
F (z, 1)

G(z, 1)
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where F (X,Y ) = fdX
d + fd−1X

d−1Y + · · ·+ f0Y
d and G(X,Y ) = gdX

d +
gd−1X

d−1Y +· · ·+g0Y d are homogeneous polynomials in K[X,Y ] of degree d
with no common factor. The pair (F,G) is called a representation of ϕ; it is
unique up to scaling by a nonzero constant. Set ord(F ) = min0≤i≤d(ord(fi))
and ord(G) = min0≤i≤d(ord(gi)).

The resultant of F and G is defined by the 2d×2d determinant in formula
(1.1). For any c ∈ K×, we have Res(cF, cG) = c2dRes(F,G). By choosing c
so that ord(c) = min(ord(F ), ord(G)) and replacing (F,G) by (c−1F, c−1G)
we can assume that

min(ord(F ), ord(G)) = 0;

in this case (F,G) is called a normalized representation of ϕ, and ordRes(ϕ)
is defined to be ord(Res(F,G)) as in (1.2). Clearly ordRes(ϕ) is independent
of the choice of normalized representation, and ordRes(ϕ) ≥ 0.

Whether or not (F,G) is normalized, we have the formula

(2.1) ordRes(ϕ) = ord(Res(F,G))− 2dmin(ord(F ), ord(G)).

Given γ =
[
A B
C D

]
∈ GL2(K), let Adj(γ) =

[
D −B
−C A

]
and define (F γ , Gγ) by

(2.2)

[
F γ(X,Y )

Gγ(X,Y )

]
= Adj(γ)◦

[
F

G

]
◦γ
[
X

Y

]
=

[
DF (AX +BY,CX +DY )−BG(AX +BY,CX +DY )

−CF (AX +BY,CX +DY ) +AG(AX +BY,CX +DY )

]
.

Then (F γ , Gγ) is a homogeneous representation of ϕγ . It is known (see [15,

Ex. 2.7(c), p. 76]) that Res(F γ , Gγ) = Res(F,G) · det(γ)d
2+d, so

(2.3) ordRes(ϕγ)

= ordRes(F,G) + (d2 + d) ord(det(γ))− 2dmin(ord(F γ), ord(Gγ)).

We will prove Theorems 1.1 and 1.2 after a series of preliminary results.
In Theorem 1.1 it is assumed that d ≥ 2; however, for use in §7, we will
develop the theory for d ≥ 1, and make explicit where d ≥ 2 is used.

We begin by recalling some facts about the action of GL2(K) on P1
K :

Proposition 2.1. The natural action of GL2(K) on P1(K) extends to
an action on P1

K such that:

(A) The stabilizer of ζG in GL2(K) is K× ·GL2(O).
(B) For each γ ∈ GL2(K), ρ(γ(x), γ(y)) = ρ(x, y) for all x, y ∈ H1

K .
(C) For each γ ∈ GL2(K) and each path [x, y], γ([x, y]) = [γ(x), γ(y)].
(D) For any triple (a0, A, a1) where a0, a1 ∈ P1(K), a0 6= a1, and A is

a type II point in [a0, a1], if (b0, B, b1) is another triple of the same
kind, there is a γ ∈ GL2(K) such that γ(a0) = b0, γ(A) = B, and
γ(a1) = b1. In particular, GL2(K) acts transitively on the type II
points in P1

K .
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Proof. As discussed in [1, §2.3], the natural action of any rational func-
tion f(z) ∈ K(z) on P1(K) extends uniquely to a continuous action on P1

K .
For part (A), suppose γ ∈ GL2(K) stabilizes ζG, and let γ(0) = a, γ(1) = b,
γ(∞) = c. By [1, Lemma 2.17], γ has nonconstant reduction, so the reduc-

tions ã, b̃, and c̃ are distinct in P1(k̃). If none of ã, b̃, c̃ is ∞̃, then

(2.4) γ0(z) =
cz − a(b− c)/(b− a)

z − (b− c)/(b− a)

belongs to GL2(O) and satisfies γ0(0) = a, γ0(1) = b, γ0(∞) = c. If one of
the reductions is ∞̃, by making simple modifications to (2.4) one still finds a
γ0 ∈ GL2(O) with γ0(0) = a, γ0(1) = b, γ0(∞) = c. Since γ−10 ◦ γ ∈ GL2(K)
fixes three points in P1(K), it must be a multiple of the identity matrix.
Part (B) is [1, Proposition 2.30]. Part (C) follows from the fact that if
γ ∈ GL2(K), the action of γ on P1

K must be bijective and bicontinuous,
since γ−1 ◦ γ = γ ◦ γ−1 = id. Part (D) is [1, Corollary 2.13(B)].

Lemma 2.2. For any distinct points x, y ∈ P1(K), the function ordResϕ(·)
on type II points extends to a continuous function on the path [x, y], which
is piecewise affine with respect to the logarithmic path distance, and convex
up. The extension is finite on [x, y] ∩H1

K , and when d ≥ 2, it is ∞ at x, y.
If H is a field of definition for ϕ (so H(x, y) is a field of definition for

ϕ, x, and y), then each affine piece of ordResϕ(·) has the form mt + c for
some integer m in the range −d2 − d ≤ m ≤ d2 + d satisfying m ≡ d2 + d
(mod 2d), and some number c in the value group ord(H(x, y)×), where t is a
parameter measuring the logarithmic path distance along [x, y] (from a given
H(x, y)-rational type II point). There are at most d+1 distinct affine pieces,
and the breaks between affine pieces occur at type II points.

Proof. Fix γ ∈ GL2(K) with γ(0) = x and γ(∞) = y. The action of
GL2(K) on P1

K takes paths to paths, so γ([0,∞]) = [x, y]. The type II
points on [0,∞] are the points ζ0,|A| corresponding to discs D(0, |A|), as

A runs over elements of K×, and if we put µA =
[
A 0
0 1

]
∈ GL2(K), then

ζ0,|A| = µA(ζG). Now let γA = γ ◦ µA. As A varies, the type II points on
[x, y] are the points γ(ζ0,|A|) = γA(ζG), and for all A,B ∈ K× we have

ρ(γ(ζ0,|A|), γ(ζ0,|B|)) = |ord(A)− ord(B)|.
Write

(2.5)
F γ(X,Y ) = adX

d + ad−1X
d−1Y + · · ·+ a0Y

d,

Gγ(X,Y ) = bdX
d + bd−1X

d−1Y + · · ·+ b0Y
d.

Since ϕγA = (ϕγ)µA we have
[ F γA (X,Y )
GγA (X,Y )

]
=
[ F γ(AX,Y )
AGγ(AX,Y )

]
; thus

(2.6)
F γA(X,Y ) = AdadX

d +Ad−1ad−1X
d−1Y + · · ·+ a0Y

d,

GγA(X,Y ) = Ad+1bdX
d +Adbd−1X

d−1Y + · · ·+Ab0Y
d.
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Write QA = γA(ζG) and t = ord(A). Since det(γA) = Adet(γ), it follows
from (2.3) that

ordResϕ(QA) = ordRes(ϕγA)

(2.7) = ordRes(F γ , Gγ) + (d2 + d) ord(A)

− 2dmin
(
ord(a0), . . . , ord(Adad), ord(Ab0), . . . , ord(Ad+1bd)

)
(2.8) = max

(
max
0≤`≤d

(
(d2 + d− 2d`)t+ C`

)
,

max
0≤`≤d

(
(d2 + d− 2d(`+ 1))t+D`)

))
,

where C` = ordRes(F γ , Gγ)−2d ord(a`), D` = ordRes(F γ , Gγ)−2d ord(b`).

Now let t vary over R. Since the type II points QA (which correspond to
values of t in the divisible group ord(K×)) are dense in [x, y] for the path
distance topology, we can use the right side of (2.8) to extend ordResϕ(·)
continuously to [x, y], omitting any terms in (2.8) for which C` or D` is
−∞ (such terms correspond to coefficients a` or b` which are 0). Clearly
the extension, being the maximum of finitely many affine functions of t, is
piecewise affine and convex upwards. Now suppose d ≥ 2. Since F (X,Y )
and G(X,Y ) have no common factors, the same is true for F γ(X,Y ) and
Gγ(X,Y ); it follows that at least one of a0, b0 is nonzero, and at least one of
ad, bd is nonzero. The slopes of the corresponding affine functions are d2 +d,
d2− d, −(d2− d), and −(d2 + d); since d ≥ 2, these are all nonzero. Thus at
least one of the affine functions in (2.8) has positive slope, and at least one
has negative slope; this means the extended function ordResϕ(·) is finite on
[x, y] ∩H1

K , and is ∞ at x and y.

Let H be a field of definition for ϕ. Then F (X,Y ), G(X,Y ) can be taken
to be rational over H, and γ can be taken to be rational over H(x, y); if
this is the case, then a0, . . . , ad, b0, . . . , bd and det(γ) will also be rational
over H(x, y). Comparing (2.7) and (2.8), we see that each affine piece of
ordResϕ(·) has the form mt+c, where m is an integer in the range −d2−d ≤
m ≤ d2+d satisfying m ≡ d2+d (mod 2d), and c belongs to the value group
ord(H(x, y)×). If two of the affine functions in (2.8) have the same slope,
only one will contribute to ordResϕ(·). There are d + 1 possible slopes, so
ordResϕ(·) has at most d+ 1 affine pieces on [x, y].

Finally, suppose mit+ci and mjt+cj are consecutive affine pieces. Their
intersection occurs at

(2.9) t = tij = − cj − ci
mj −mi

,

which belongs to ord(K×); thus the breaks between affine pieces occur
at type II points. Indeed, m = mj − mi is a nonzero integer satisfying
m ≡ 0 (mod 2d) and |m| ≤ 2d(d + 1), and by (2.7) and (2.8) we find that
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cj − ci ∈ 2d · ord(H(x, y)×). Thus tij actually belongs to the divisible hull
of ord(H(x, y)×), with denominator taken from {1, 2, . . . , d+ 1}.

Proposition 2.3. There is a unique extension of ordResϕ(·) on type II
points to a function ordResϕ : P1

K → [0,∞] which agrees with the one
given in Lemma 2.2 on paths with endpoints in P1(K), and is continuous on
H1
K for the strong topology. When d = 1, the extension is continuous with

respect to the strong topology at each x ∈ H1
K , and at each x ∈ P1(K) where

ordResϕ(x) = ∞. When d ≥ 2, it is continuous with respect to the strong
topology at each x ∈ P1

K . The extension is finite on H1
K , and when d ≥ 2,

it takes the value ∞ at each x ∈ P1(K).
On each path in P1

K , the extension is convex upwards and piecewise affine
with respect to ρ(x, y); moreover, the slope of each affine piece is an integer
m ≡ d2 + d (mod 2d) with −d2 − d ≤ m ≤ d2 + d, the breaks between
affine pieces occur at type II points, and there are at most d + 1 distinct
affine pieces. In particular, on H1

K , the extension is Lipschitz continuous
with respect to ρ(x, y) with Lipschitz constant d2 + d.

Proof. Given two paths [x1, y1], [x2, y2] with endpoints in P1(K), the
extensions of ordResϕ(·) to [x1, y1] and [x2, y2] given by Lemma 2.2 are con-
sistent on [x1, y1]∩ [x2, y2], since type II points are dense in the intersection
if it is nonempty, and the extension to each path is continuous. If P ∈ P1

K is
of type I, II, or III, define ordResϕ(P ) to be the value of the extension given
by Lemma 2.2, on any path [x, y] containing P with endpoints in P1(K). In
this way, we obtain a well-defined function ordResϕ(·) on the points of type
I, II, and III. When d ≥ 2, Lemma 2.2 shows that ordResϕ(x) =∞ for each
x ∈ P1(K).

We next show that there is a unique continuous extension of ordResϕ(·)
to type IV points. Since any pair of type II points belongs to a path with
endpoints in P1(K), Lemma 2.2 shows that for all type II points x, y we
have

|ordResϕ(x)− ordResϕ(y)| ≤ (d2 + d) · ρ(x, y).

Since each point of type IV is at finite logarithmic path distance from ζG,
and type II points are dense in H1

K with respect to ρ(x, y), there is a unique
extension of ordResϕ(·) to H1

K which is Lipschitz continuous with respect
to ρ(x, y), with Lipschitz constant d2 + d. Since ordResϕ(x) ≥ 0 on type II
points, ordResϕ(z) ≥ 0 for all z ∈ P1

K .
Since each segment [u, v] with type II endpoints is contained in a path

[x, y] with type I endpoints, the restriction of ordResϕ(·) to [u, v] is piecewise
affine and convex upwards with respect to the logarithmic path distance,
with at most d + 1 affine pieces, and slopes m ≡ d2 + d (mod 2d) where
−d2 − d ≤ m ≤ d2 + d; the breaks between affine pieces occur at type II
points. These same properties must hold for ordResϕ(·) on an arbitrary path
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[z, w] in P1
K , since the interior of the path can be exhausted by an increasing

sequence of segments with type II endpoints, and the number of affine pieces
on each such segment is uniformly bounded.

To complete the proof, it suffices to show that ordResϕ(·) is contin-
uous with respect to the strong topology at each type I point x where
ordResϕ(x) = ∞. Fix y ∈ P1(K) with y 6= x, and consider the path [x, y].
For each P ∈ [x, y] ∩ H1

K , let Ux(P ) be the component of P1
K\{P} con-

taining x. As P → x, the sets Ux(P ) form a basis for the neighborhoods
of x in the strong topology. We claim that for each M ∈ R, there is a PM
such that ordResϕ(z) > M for all z ∈ Ux(PM ). To see this, note that since
ordResϕ(P ) increases to ∞ as P → x along [x, y], there is a PM such that
ordResϕ(PM ) > M and ordResϕ(·) is increasing on [PM , x]. Let z ∈ Ux(PM )
be arbitrary. The path [PM , z] shares an initial segment with [PM , x], and
ordResϕ(·) is increasing along that initial segment. Since ordResϕ(·) is con-
vex up on [PM , z], we have ordResϕ(z) > ordResϕ(PM ) > M .

For each Q ∈ P1
K , we call paths [Q, x] and [Q, y] emanating from Q

equivalent if they share an initial segment. The tangent space TQ is the set
of equivalence classes of paths emanating from Q; these classes are called
directions. The directions at Q are in 1-1 correspondence with the compo-
nents of P1

K\{Q}. If Q is of type I or IV, TQ has one element; if Q is of
type III, TQ has two elements; and if Q is of type II, TQ is infinite. Given
β 6= Q, we will write ~vβ ∈ TQ for the direction containing [Q, β], or ~vQ,β if
it is necessary to specify Q.

Recall that k̃ = O/M is the residue field of K. When Q = ζG, the
components of P1

K\{ζQ} correspond to elements of P1(k̃); thus the directions
in TζG are ~v∞ and the ~vβ for β ∈ O, where ~vβ1 = ~vβ2 iff β1 ≡ β2 (mod M). For
an arbitrary type II point Q, we can write Q = γ(ζG) for some γ ∈ GL2(K);
since γ takes paths to paths, it induces a 1-1 correspondence γ∗ : TζG → TQ
with γ∗(~vβ) = ~vγ(β) ∈ TQ. Hence the directions in TQ are ~vγ(∞) and the ~vγ(β)
for β ∈ O, where again ~vγ(β1) = ~vγ(β2) iff β1 ≡ β2 (mod M).

We will say ordResϕ(·) is locally decreasing (resp. locally constant, resp.
increasing) in a direction ~v ∈ TQ if it is initially decreasing (resp. constant,
resp. increasing) along [Q, β] for some (hence every) path with ~v = ~vβ.
A crucial observation is that since ordResϕ(·) is convex upward, at each
point Q there can be at most one direction in which ordResϕ(·) is locally
decreasing: thus, ordResϕ(·) satisfies the principle of steepest descent. Like-
wise, if it is locally constant in some direction at Q, it must be locally
constant or increasing in every other direction. If it is locally increasing in
some direction at Q, by convexity it must be increasing along every path
[Q, β] in that direction, so we need not distinguish between locally increasing
and increasing.
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When Q is of type II, we will now give necessary and sufficient conditions
for ordResϕ(·) to be locally decreasing, locally constant, or increasing in a
given direction. Suppose Q = γ(ζG) where γ ∈ GL2(K); let (F γ , Gγ) be the
representation of ϕγ from (2.2). By replacing γ with cγ for an appropriate
c ∈ K× (which does not change the action of γ), we can assume (F γ , Gγ) is
normalized. As in (2.5), write

(2.10)
F γ(X,Y ) = adX

d + ad−1X
d−1Y + · · ·+ a0Y

d,

Gγ(X,Y ) = bdX
d + bd−1X

d−1Y + · · ·+ b0Y
d.

For each β ∈ O, the map νβ :=
[
1 β
0 1

]
∈ GL2(O) stabilizes ζG and takes

the path [0,∞] to [β,∞]. Write γβ = γ ◦ νβ; then γβ(ζG) = Q, and since

ϕγ
β

= (ϕγ)ν
β
, it follows that the pair (F γ

β
, Gγ

β
) given by[

F γ
β
(X,Y )

Gγ
β
(X,Y )

]
= Adj(νβ)◦

[
F γ

Gγ

]
◦νβ◦

[
X

Y

]

=

[
F γ(X + βY, Y )− βGγ(X + βY, Y )

Gγ(X + βY, Y )

]
is another representation of ϕ at Q. It is normalized since νβ ∈ GL2(O).
Write

(2.11)
F γ

β
(X,Y ) = ad(β)Xd + ad−1(β)Xd−1Y + · · ·+ a0(β)Y d,

Gγ
β
(X,Y ) = bd(β)Xd + bd−1(β)Xd−1Y + · · ·+ b0(β)Y d.

Lemma 2.4. Let Q be of type II; suppose Q = γ(ζG) where γ ∈ GL2(K)
is such that (F γ , Gγ) is normalized. Let ~v ∈ TQ.

(A) If ~v = ~vQ,γ(0), then

• ordResϕ(·) is locally decreasing in the direction ~v iff{
ord(a`) > 0 when 0 ≤ ` ≤ (d+ 1)/2,

ord(b`) > 0 when 0 ≤ ` ≤ (d− 1)/2;

• ordResϕ(·) is locally constant in the direction ~v iff d is odd and
ord(a(d+1)/2) = 0 or ord(b(d−1)/2) = 0,

ord(a`) > 0 when 0 ≤ ` < (d+ 1)/2,

ord(b`) > 0 when 0 ≤ ` < (d− 1)/2;

• ordResϕ(·) is increasing in the direction ~v otherwise.

(B) If ~v = ~vQ,γ(β) for some β ∈ O, the same criteria as in case (A)
hold, provided the a` and b` are replaced with the a`(β) and b`(β).

(C) If ~v = ~vQ,γ(∞), then
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• ordResϕ(·) is locally decreasing in the direction ~v iff{
ord(a`) > 0 when (d+ 1)/2 ≤ ` ≤ d,
ord(b`) > 0 when (d− 1)/2 ≤ ` ≤ d;

• ordResϕ(·) is locally constant in the direction ~v iff d is odd and
ord(a(d+1)/2) = 0 or ord(b(d−1)/2) = 0,

ord(a`) > 0 when (d+ 1)/2 < ` ≤ d,

ord(b`) > 0 when (d− 1)/2 < ` ≤ d;

• ordResϕ(·) is increasing in the direction ~v otherwise.

Proof. Note that γ([0, ζG]) = [γ(0), Q] and γ([ζG,∞]) = [Q, γ(∞)]. We
will establish the criteria when ~v = ~vQ,γ(0) and ~v = ~vQ,γ(∞) using for-

mula (2.8) and the normalized representation (F γ , Gγ). Since γβ([0, ζG]) =
[γ(β), Q], the criteria for the directions ~vQ,γ(β) with β ∈ O follow by applying

the same arguments to (F γ
β
, Gγ

β
).

Using the same notation as in (2.7) and (2.8), for each A ∈ K× put
QA = γ(ζ0,|A|) = γA(ζG). Making the constants C`, D` in (2.8) explicit, we
have

(2.12) ordResϕ(QA)− ordResϕ(Q)

= max
(

max
0≤`≤d

(
(d2 + d− 2d`)t− 2d ord(a`)

)
,

max
0≤`≤d

(
(d2 + d− 2d(`+ 1))t− 2d ord(b`)

))
,

where t = ord(A). By assumption ord(a`), ord(b`) ≥ 0 for each `, and some
ord(a`) or ord(b`) is 0. If t = 0, then QA = Q and both sides of (2.12) are 0.

Values of t > 0 correspond to points in the direction ~vQ,γ(0). For small
positive t, the right side of (2.12) will be negative if and only if each of the
affine functions in (2.12) with a nonnegative slope has a negative constant
term. Hence ordResϕ(·) is locally decreasing in the direction ~vγ(0) ∈ TQ if

and only if ord(a`) > 0 for each ` such that d2+d−2d` ≥ 0, and ord(b`) > 0
for each ` such that d2 + d − 2d(` + 1) ≥ 0. Similarly ordResϕ(·) is locally
constant in the direction ~vQ,γ(0) if and only if at least one of the affine
functions with slope 0 has constant term 0, and each of the affine functions
with positive slope has a negative constant term. This happens if and only
if d is odd, either ord(a(d+1)/2) = 0 or ord(b(d−1)/2) = 0, ord(a`) > 0 for

each ` such that d2 + d − 2d` > 0, and ord(b`) > 0 for each ` such that
d2 + d− 2d(`+ 1) > 0.

Values of t < 0 correspond to points in the direction ~vγ(∞) at Q. For small
negative t, the right side of (2.12) will be negative if and only if each of the
affine functions in (2.12) with a nonpositive slope has a negative constant
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term. Hence ordResϕ(·) is locally decreasing in the direction ~vQ,γ(∞) if and

only if ord(a`) > 0 for each ` such that d2 +d− 2d` ≤ 0, and ord(b`) > 0 for
each ` such that d2+d−2d(`+1) ≤ 0. Similarly ordResϕ(·) is locally constant
in the direction ~vQ,γ(∞) if and only if d is odd, either ord(a(d+1)/2) = 0 or

ord(b(d−1)/2) = 0, ord(a`) > 0 for each ` such that d2 + d − 2d` < 0, and

ord(b`) > 0 for each ` such that d2 + d− 2d(`+ 1) < 0.

Lemma 2.5. If d ≥ 2 is even, then ordResϕ(·) is never locally constant.
If d ≥ 3 is odd, then at each Q ∈ P1

K , there are at most two directions in TQ
where ordResϕ(·) is locally constant.

Proof. If d ≥ 2 is even, then on any path the slope of each affine piece
of ordResϕ(·) is an integer m ≡ d2 + d (mod 2d), hence is nonzero.

Suppose d ≥ 3 is odd. If Q ∈ P1
K is of type I, III, or IV, then there are

at most two directions in TQ, so trivially there are at most two directions
in TQ in which ordResϕ(·) is locally constant. Let Q be a type II point with
at least two distinct directions where ordResϕ(·) is locally constant, say ~vα
and ~vβ. Take any γ ∈ GL2(K) with Q = γ(ζG). After replacing γ with γτ for
a suitable τ ∈ GL2(O), we can assume that ~vα = ~vQ,γ(0) and ~vβ = ~vQ,γ(∞).
Also, after replacing γ with cγ for a suitable c ∈ K×, we can assume that
(F γ , Gγ) is a normalized representation of ϕ. Write F γ(X,Y ) = adX

d +
ad−1X

d−1Y + · · ·+ a0Y
d, Gγ(X,Y ) = bdX

d + bd−1X
d−1Y + · · ·+ b0Y

d. By
Lemma 2.4, if we put D = (d+1)/2 and E = (d−1)/2, then ord(a`) > 0 for
all ` 6= D, ord(b`) > 0 for all ` 6= E, and either ord(aD) = 0 or ord(bE) = 0.
Since d ≥ 3, we have D,E ≥ 1.

First suppose ord(bE) = 0; then Gγ(X,Y ) ≡ bEX
EY d−E (mod M), so

for each β ∈ O,

Gγ
β
(X,Y ) := Gγ(X + βY, Y ) ≡ bE(X + βY )EY d−E (mod M).

Comparing this with (2.11) shows b0(β) ≡ bEβ
E (mod M). If β 6≡ 0

(mod M), this means ord(b0(β)) = 0, so the criterion for local constancy in
Lemma 2.4(B) is not met for the direction ~vQ,γ(β). Thus ~vQ,γ(0) and ~vQ,γ(∞)

are the only directions in which ordResϕ(·) is locally constant.

Next suppose ord(bE) > 0, so necessarily ord(aD) = 0. Then Gγ(X,Y )
≡ 0 (mod M) and F γ(X,Y ) ≡ aDXDY d−D (mod M), so for each β ∈ O,

F γ
β
(X,Y ) := F γ(X + βY, Y )− βGγ(X + βY, Y )

≡ aD(X + βY )DY d−D (mod M).

Comparing this with (2.11) shows a0(β) ≡ aDβ
D (mod M). When β 6≡ 0

(mod M), this means ord(a0(β)) = 0, so the criterion for local constancy
in Lemma 2.4(B) is not met for the direction ~vQ,γ(β), and again ~vQ,γ(0) and
~vQ,γ(∞) are the only directions where ordResϕ(·) can be locally constant.
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Remark. By a similar argument, one can show that at any type II point
there can be at most one direction in which ordResϕ(·) is locally decreasing,
without using convexity.

Our next goal is to show that ordResϕ(·) is strictly increasing as one
moves away from the tree ΓFix,ϕ−1(∞) in P1

K spanned by the fixed points

and the poles of ϕ. This means that ordResϕ(·) achieves a minimum on P1
K ,

and shows that the locus MinResLoc(ϕ) where it takes on its minimum is
contained in that tree.

Two main facts underlie this. The first is that the group of affine trans-
formations Aff2(K) = {az + b : a ∈ K×, b ∈ K}, corresponding to matrices[
a b
0 1

]
∈ GL2(K), acts transitively on type II points. Indeed, if Q corresponds

to a disc D(b, r) with r ∈ |K×|, and |a| = r, then γ(z) = az + b takes ζG
to Q. The second is that the fixed points of ϕ are equivariant under GL2(K),
and the poles are equivariant under Aff2(K): for each γ ∈ GL2(K), ∆ is a
fixed point of ϕ iff γ−1(∆) is a fixed point of ϕγ ; and for each γ ∈ Aff2(K),
δ is a pole of ϕ iff γ−1(δ) is a pole of ϕγ .

Lemma 2.6. If d ≥ 2, the set of poles and fixed points of ϕ in P1(K)
contains at least two distinct elements.

Proof. Using the representation (F (X,Y ), G(X,Y )) for ϕ(z), the fixed
points correspond to nontrivial solutions of Y F (X,Y )−XG(X,Y ) = 0 and
the poles correspond to nontrivial solutions of G(X,Y ) = 0.

Suppose all the poles and fixed points of ϕ occur at a single point
α ∈ P1(K). If α = ∞, there are C,D ∈ K× such that G(X,Y ) = CY d

and Y F (X,Y ) − XG(X,Y ) = DY d+1. Solving, we see that Y F (X,Y ) =
DY d+1 + CXY d. Since d ≥ 2, this contradicts the fact that F (X,Y ) and
G(X,Y ) have no common factors. If α ∈ K, there are C,D ∈ K× such that
G(X,Y ) = C(X − αY )d and Y F (X,Y ) − XG(X,Y ) = D(X − αY )d+1.
In this case Y F (X,Y ) = D(X − αY )d+1 + CX(X − αY )d, which again
contradicts the fact that F (X,Y ) and G(X,Y ) have no common factors.

Proposition 2.7. If d ≥ 2, the function ordResϕ(·) is strictly increasing
as one moves away from the tree ΓFix,ϕ−1(∞) in P1

K spanned by the fixed

points and poles of ϕ in P1(K).

Proof. Write Γ = ΓFix,ϕ−1(∞) for short. Branches off Γ in P1
K can only

occur at type II points. By the convexity of ordResϕ(·), it suffices to show
that at each type II point Q ∈ Γ , ordResϕ(·) is increasing in each direction
~v ∈ TQ which points away from Γ .

Fix a type II point Q ∈ Γ , and let ~v ∈ TQ be a direction away from Γ .
Let γ ∈ Aff2(K) be such that γ(ζG) = Q. If ~v = ~vQ,∞, then γ∗(~vζG,∞) = ~v.
If ~v 6= ~vQ,∞, there is some β ∈ O such that γ∗(~vζG,β) = ~v, and after replacing
γ with γβ = γ ◦ νβ we can assume that γ∗(~vζG,0) = ~v. Finally, by replacing
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γ with cγ for some c ∈ K×, we can assume that the representation (F γ , Gγ)
of ϕγ is normalized.

First suppose ~v = γ∗(~vζG,∞) = ~vγ(∞). By the equivariance of poles and
fixed points under Aff2(K), ϕγ has no poles or fixed points in the direction
~v∞ at ζG. As in (2.5), write F γ(X,Y ) = adX

d + ad−1X
d−1Y + · · ·+ a0Y

d,
Gγ(X,Y ) = bdX

d + bd−1X
d−1Y + · · · + b0Y

d. By hypothesis the poles δi
of ϕγ all belong to O, so we can factor Gγ(X,Y ) = bd ·

∏d
i=1(X − δiY )

where |δi| ≤ 1 for each i. Expanding this and comparing coefficients shows
that max(|bd|, |bd−1|, . . . , |b0|) = |bd|. Likewise, the fixed points ∆i of ϕγ all
belong to O. Since the fixed points are the zeros of

Y F γ(X,Y )−XGγ(X,Y )

= adX
d+1 + (ad−1 − bd)XdY + · · ·+ (a0 − b1)XY d − b0Y d+1,

we can write XF γ(X,Y ) − XGγ(X,Y ) = ad
∏d+1
i=1 (X − ∆iY ). Expand-

ing and comparing coefficients shows max(|ad|, |ad−1− bd|, . . . , |a0− b1|, |b0|)
= |ad|. However, it is an easy consequence of the ultrametric inequality that

(2.13) max(|ad|, |ad−1 − bd|, . . . , |a0 − b1|, |b0|, |bd|, |bd−1|, . . . , |b0|)
= max(|ad|, |ad−1|, . . . , |a0|, |bd|, |bd−1|, . . . , |b0|).

Thus max(|ad|, |ad−1|, . . . , |a0|, |bd|, |bd−1|, . . . , |b0|) = max(|ad|, |bd|). Since
(F γ , Gγ) is normalized, it follows that ord(ad) = 0 or ord(bd) = 0. By
Lemma 2.4, ordResϕ(·) cannot be decreasing or constant in the direction
~v = ~vγ(∞), so it must be increasing.

Next suppose ~v = γ∗(~vζG,0) = ~vγ(0). In this case ϕγ has no poles or

fixed points in the direction ~v0 at ζG. As before, write F γ(X,Y ) = adX
d +

ad−1X
d−1Y + · · · + a0Y

d, Gγ(X,Y ) = bdX
d + bd−1X

d−1Y + · · · + b0Y
d.

By hypothesis the poles of ϕγ belong to (K \M) ∪ {∞}, so we can factor

Gγ(X,Y ) = CY m ·
∏d−m
i=1 (X − δiY ) for some C ∈ K×, where m is the num-

ber of poles of ϕγ at ∞ and |δi| ≥ 1 for i = 1, . . . , d −m. Expanding and
comparing coefficients shows that |b0| = max(|bd|, |bd−1|, . . . , |b0|). Likewise,
the fixed points of ϕγ all belong to (K \M)∪{∞}, so for some D ∈ K× we

can write Y F γ(X,Y ) − XGγ(X,Y ) = D · Y n
∏d−n
i=1 (X −∆iY ) where n is

the number of fixed points of ϕγ at ∞, and |∆i|≥1 for i = 1, . . . , d−n. Ex-
panding and comparing coefficients shows that |b0| = max(|ad|, |ad−1 − bd|,
. . . , |a0 − b1|, |b0|). Using (2.13) we see that |b0| = max(|ad|, |ad−1|, . . . , |a0|,
|bd|, |bd−1|, . . . , |b0|). Since (F γ , Gγ) is normalized, it must be the case that
ord(b0) = 0. By Lemma 2.4, ordResϕ(·) cannot be locally decreasing or
constant in the direction ~v = ~vγ(0), so it must be increasing.

Proposition 2.8. Suppose d ≥ 2. Given a point x ∈ P1(K), let ξ be the
unique point in [ζG, x] such that ρ(ζG, ξ) = 2

d−1 ordRes(ϕ). Then ordResϕ(·)
is increasing along [ξ, x] as one moves away from ζG.
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Proof. There is a γ ∈ GL2(O) such that γ(0) = x. Since γ ∈ GL2(O),
it fixes ζG. Thus ordResϕγ (ζG) = ordRes(ϕγ) = ordRes(ϕ). Let (F γ , Gγ)
be a representation of ϕγ as in (2.5); after scaling (F γ , Gγ), we can as-
sume it is normalized. At least one of the coefficients a0, b0 in F γ , Gγ must
be nonzero. Expanding the determinant (1.1) for Res(F γ , Gγ) using its
last column, one sees that min(ord(a0), ord(b0)) ≤ ordRes(ϕ). Similarly,
min(ord(ad), ord(bd)) ≤ ordRes(ϕ).

Given A ∈ K×, define QA = ζ0,|A| and let (F γA , GγA) be as in (2.6).
By (2.7), (2.8), and the discussion above,

(2.14) ordResϕγ (QA)− ordRes(ϕ) = (d2 + d) ord(A)

−2dmin
(
ord(a0), . . . , ord(Adad), ord(Ab0), . . . , ord(Ad+1bd)

)
≥ max

(
−2d ord(a0) + (d2 + d) ord(A),−2d ord(b0) + (d2 − d) ord(A),

−2d ord(ad) + (d− d2) ord(A),−2d ord(bd) + (−d− d2) ord(A)
)

≥ −2d ordRes(ϕ) + max
(
(d2 − d) ord(A), (d− d2) ord(A)

)
.

The minimum value of ordResϕγ (·)− ordRes(ϕ) is ≤ 0, since ordResϕγ (ζG)
− ordRes(ϕ) = 0. Type II points in [ζG, x] correspond to values A ∈ K×

with ord(A) ≥ 0, and for ord(A) ≥ 0 the right side of (2.14) is nonpositive
precisely when

(2.15) 0 ≤ ord(A) ≤ 2

d− 1
ordRes(ϕ).

By convexity, ordResϕγ (QA) must be increasing with ord(A) for ord(A) >
2
d−1 ordRes(ϕ). Since ordResϕ(γ(QA)) = ordResϕγ (QA), we are done.

Proof of Theorem 1.1. Assume d ≥ 2. By Proposition 2.3, the function
ordResϕ(·) on type II points extends to a function ordResϕ : P1

K → [0,∞]
which is continuous with respect to the strong topology, finite on H1

K , iden-
tically ∞ on P1(K), and piecewise affine and convex upwards with respect
to ρ(x, y) on each path.

By Lemma 2.6, the tree Γ = ΓFix,ϕ−1(∞)(ϕ) spanned by the poles and
fixed points of ϕ is nontrivial, and by Proposition 2.7, ordResϕ(·) is strictly
increasing as one moves away from Γ . It follows that ordResϕ(·) takes on a
minimum value on P1

K , and that the set MinResLoc(ϕ) where the minimum
is achieved is a compact connected subset of Γ ∩H1

K .
On any path the slopes of ordResϕ(·) are integers m ≡ d2 + d (mod 2d).

If d is even, then d2 + d ≡ d (mod 2d), so none of the slopes are 0. Since the
breaks between affine pieces occur at type II points, MinResLoc(ϕ) consists
of a single type II point. If d is odd, then d2 + d ≡ 0 (mod 2d). By Lemma
2.5, at each Q ∈ MinResLoc(ϕ) there are at most two directions where
ordResϕ(·) is constant. Thus MinResLoc(ϕ) is either a single type II point,
or a segment with type II endpoints.
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For each γ ∈ GL2(K), it is easy to see that for all Q ∈ P1
K ,

(2.16) ordResϕγ (Q) = ordResϕ(γ(Q)).

By continuity it suffices to check this for type II points. Suppose Q = τ(ζG)
for some τ ∈ GL2(K). Then

ordResϕγ (Q) = ordResϕγ (τ(ζG)) = ordResϕ(γ(τ(ζG))) = ordResϕ(γ(Q)).

It follows from (2.16) that for each a ∈ P1(K), MinResLoc(ϕ) is contained
in the tree ΓFix,ϕ−1(a) spanned by the fixed points of ϕ and the preimages

{z ∈ P1(K) : ϕ(z) = a}. Indeed, given a ∈ P1(K), choose γ ∈ GL2(K) with
γ(∞) = a. By (2.16) one has

MinResLoc(ϕ) = γ(MinResLoc(ϕγ)).

By Proposition 2.7 applied to ϕγ , MinResLoc(ϕγ) ⊆ ΓFix,(ϕγ)−1(∞). Thus
MinResLoc(ϕ) is contained in γ(ΓFix,(ϕγ)−1(∞)). By equivariance, Q is a fixed
point of ϕγ if and only if γ(Q) is a fixed point of ϕ, and P is a pole of ϕγ if
and only if ϕ(γ(P )) = a. Hence γ(ΓFix,(ϕγ)−1(∞)) = ΓFix,ϕ−1(a).

We next show MinResLoc(ϕ) ⊆
{
z ∈ H1

K : ρ(ζG, z) ≤ 2
d−1 ordRes(ϕ)

}
.

Fix z with ρ(ζG, z) >
2
d−1 ordRes(ϕ). Let ξ be the unique point on [ζG, z]

with ρ(ζG, ξ) = 2
d−1 ordRes(ϕ); then ξ is of type II. Let x ∈ P1(K) be a type I

point in the same direction from ξ as z. By Proposition 2.8, ordResϕ(·) is
increasing along [ξ, x]. Since [ξ, z] and [ξ, x] share an initial segment, by
convexity ordResϕ(·) is increasing along [ξ, z]. Thus z /∈ MinResLoc(ϕ).

The final assertion in Theorem 1.1 reformulates a result of Favre and
Rivera–Letelier [9, Theorem E]. Suppose the minimal value of ordResϕ(·)
is 0. By the results above, there is a type II point ξ ∈ MinResLoc(ϕ)
where ordResϕ(ξ) = 0. Let γ ∈ GL2(K) be such that γ(ζG) = ξ. Then
ordRes(ϕγ) = 0, so ϕγ has good reduction. Since d ≥ 2, by [9, Theorem E],
or [1, Proposition 10.5], ξ is the unique point where ϕ achieves good reduc-
tion. Thus MinResLoc(ϕ) = {ξ}.

Proof of Theorem 1.2. Since ordResϕ(·) and ordResϕ̂(·) are continuous
for the strong topology, to prove the first assertion it suffices to show that
if (1.4) holds, then ordResϕ(ξ) = ordResϕ̂(ξ) for all type II points ξ with
ρ(ζG, ξ) ≤ M . If ξ = ζa,r, then the path from ζG to ξ goes from ζG to ζ0,T
where T = max(1, |a|), and then from ζ0,T = ζa,T to ξ. Hence if A,B ∈ K×
are such that |A| = 1/T and |B| = r/T , then ρ(ζG, ξ) = ord(A · B) and
ξ = γ(ζG), where

γ =

[
1 0

0 A

]
·

[
B aA

0 1

]
=

[
B aA

0 A

]
∈ GL2(K) ∩M2(O).
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By (2.3) we have

ordResϕ(ξ) = ordRes(F,G)(2.17)

+ (d2 + d)(ord(A ·B))− 2dmin(ord(F γ), ord(Gγ))

where F γ and Gγ are given by (2.2). A similar formula holds for ordResϕ̂(ξ).
Since ordResϕ(ξ) ≥ 0, ordRes(F,G) = R, and ord(A ·B) ≤M , we conclude
from (2.17) that

min(ord(F γ), ord(Gγ)) ≤ 1

2d
(R+ (d2 + d)M).

Now (1.4) shows that min(ord(F γ), ord(Gγ)) = min(ord(F̂ γ), ord(Ĝγ)) and

that ordRes(F,G) = ordRes(F̂ , Ĝ) = R. Hence ordResϕ(ξ) = ordResϕ̂(ξ).
The second assertion follows by taking M = 2

d−1R + ε in (1.4), with
ε > 0 small, and using Theorem 1.1.

3. Rationality considerations. Let H be a subfield of K. Throughout
this section, assume ϕ(z) ∈ H(z). We first show that MinResLoc(ϕ) con-
tains a type II point rational over an extension L/K with [L : K] ≤ (d+1)2.
We then consider the action of the group of continuous automorphisms
Autc(K/H) on P1

K , and show that MinResLoc(ϕ) always contains at least
one type II point fixed by Autc(K/H). Finally, when K = Cv and H = Hv

is a local field, we show that if MinResLoc(ϕ) does not contain points ra-
tional over Hv, then any extension L/Hv such that MinResLoc(ϕ) contains
L-rational points must be ramified over Hv.

We begin by distinguishing two notions of H-rationality for points of P1
K ,

the first of which is more restrictive:

Definition 1. A point Q ∈ P1
K is H-rational if it is a type I point in

P1(H) or if it is a type II point such that Q = γ(ζG) for some γ ∈ GL2(H).
A point Q ∈ P1

K is weakly H-rational if it belongs to the tree spanned by
P1(K) in P1

K .

If Q is H-rational, it is weakly H-rational; however it can be weakly
H-rational without being H-rational. Weakly H-rational points are neces-
sarily of type I, II, or III.

Proposition 3.1. A type II point Q is H-rational if and only if it has
the form ζa,r with a ∈ H and r ∈ |H×|. A type II or type III point is weakly
H-rational if and only if it has the form ζa,r for some a ∈ H.

Proof. Let Q be an H-rational type II point, and suppose that γ =[
a b
c d

]
∈ GL2(H) is such that Q = γ(ζG). Write OH for the ring of integers

of H. Multiplying γ on the right by
[
0 1
1 0

]
interchanges its columns, so with-

out loss of generality we can assume |c| ≤ |d|. Then, multiplying γ on the

right by
[ 1 0
−c/d 1

]
∈ GL2(OH) brings it to the form

[
a1 b1
0 d1

]
. Since GL2(OH)
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stabilizes ζG, Q corresponds to the disc D(b1/d1, |a1/d1|). Conversely, if Q
corresponds to a disc D(a, r) with a ∈ H and r ∈ |H×|, take b ∈ H× with

|b| = r and set γ =
[
a b
0 1

]
∈ GL2(H); then Q = γ(ζG).

If Q is a weakly H-rational point of type II or III, there are points
a1, a2 ∈ P1(H) such that Q ∈ [a1, a2]. At least one of a1, a2, say a1, does
not belong to the direction ~v∞ ∈ TQ. Then there is an r ∈ R such that Q
corresponds to D(a1, r).

Define M = minQ∈P1
K

(ordResϕ(Q)) = minγ∈GL2(K)(ordRes(ϕγ)).

Theorem 3.2. Let H be a subfield of K, and let ϕ(z) ∈ H(z) have degree
d ≥ 2. Then there is an extension L/H in K with [L : H] ≤ (d + 1)2 such
that MinResLoc(ϕ) contains a type II point Q rational over L. Equivalently,
ordRes(ϕγ) = M for some γ ∈ GL2(L).

Proof. Write a = ϕ(∞) ∈ P1(H). Let F1, . . . , Fd+1 be the fixed points
of ϕ, and let A1, . . . , Ad be the preimages of a under ϕ, listed with multiplic-
ity. Without loss of generality we can assume that A1 =∞. By Theorem 1.1,
MinResLoc(ϕ) is contained in the tree ΓFix,ϕ−1(a), which is the union of the
paths [Fi,∞] and [Aj ,∞] for i = 1, . . . , d + 1, j = 2, . . . , d. Let Q be an
endpoint of MinResLoc(ϕ), and let P ∈ {F1, . . . , Fd+1, A2, . . . , Ad} be such
that Q ∈ [P,∞]. Put L0 = H(P ). We have [H(Fi) : H] ≤ d + 1 for each i,
and [H(Aj) : H] ≤ d − 1 for each j, so [L0 : H] ≤ d + 1. Fix γ ∈ GL2(L0)
with γ(0) = P and γ(∞) = ∞, and let Q0 = γ−1(Q) ∈ [0,∞]. Since Q
is an endpoint of MinResLoc(ϕ), the restriction of ordResϕγ (·) to [0,∞]
has a break between affine pieces at Q0. Hence the discussion after formula
(2.9) shows there are an α ∈ L×0 and an integer e with 1 ≤ e ≤ d + 1
such that Q0 = ζ0,|α|1/e . Set L = L0(α

1/e). Then Q is rational over L, and

[L : H] ≤ (d+ 1)2.

Let Autc(K/H) be the group of continuous automorphisms of K fix-
ing H. The action of Autc(K/H) on P1(K) extends to an action on P1

K
which preserves the type of each point. The action can be described as fol-
lows: For points of type II or III, if σ ∈ Autc(K/H) and Q corresponds to
a disc D(b, r), then σ(Q) corresponds to D(σ(b), r). The image disc is well-
defined, since for any b′ ∈ K with D(b′, r) = D(b, r) we have |σ(b′)−σ(b)| =
|b′ − b| ≤ r. For points of type IV, if Q corresponds to a sequence of nested
discs {D(ai, ri)}i≥0, then σ(Q) corresponds to the sequence of nested discs
{D(σ(ai), ri)}i≥0. Although this description of the action depends on the
choice of a system of coordinates for P1

K , the action is canonical:

Proposition 3.3. For all ϕ(z) ∈ K(z), σ ∈ Autc(K/H), and Q ∈ P1
K ,

we have σ(ϕ(Q)) = (σ(ϕ))(σ(Q)). In particular, σ(γ(Q)) = γ(σ(Q)) for all
γ ∈ GL2(H) and σ ∈ Autc(K/H). Thus the action of Autc(K/H) on P1

K
is independent of H-rational changes of coordinates.
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Proof. Given ϕ(z) ∈ K(z) and σ ∈ Autc(K/H), if Q is of type I, the
assertion is clear. If Q is of type II and corresponds to a disc D(b, r), the
assertion follows from the case of type I points and the description of the
action of ϕ on generic type I points in D(b, r) given in [1, Proposition 2.18].
Finally, if Q is of type III or IV, the assertion follows from the case of type II
points and continuity.

If a point of P1
K is weakly rational over H, clearly it is fixed by each σ in

Autc(K/H). However, the converse is not true: there can be type II points
in P1

K outside the tree spanned by P1(H), which are fixed by Autc(K/H).
For example, if H = Q2 and K = C2, then ζi,1/2 is fixed by Autc(C2/Q2)
since |σ(i)− i| ≤ 1/2 for each σ ∈ Autc(C2/Q2). However D(i, 1/2) ∩Q2 is
empty: |x− i| ≥ 1/

√
2 for each x ∈ Q2. Thus ζi,1/2 is not in the tree spanned

by P1(Q2). It would be interesting to know how far outside the tree spanned
by P1(H), points fixed by Autc(K/H) can lie.

The action of σ ∈ Autc(K/H) on P1
K is continuous for the strong topol-

ogy: indeed, the description of the action shows that for all x, y ∈ H1
K , one

has ρ(σ(x), σ(y)) = ρ(x, y). It follows that σ takes paths to paths: if [x, y] is
a path with endpoints in H1

K , then for each Q ∈ H1
K we have Q ∈ [x, y] iff

ρ(x, y) = ρ(x,Q) + ρ(Q, y); thus Q ∈ [x, y] iff σ(Q) ∈ [σ(x), σ(y)]. If [x, y]
has one or both endpoints in P1(K), it can be exhausted by paths with
endpoints in H1

K , so we still have σ([x, y]) = [σ(x), σ(y)].

We will say that a subsetX ⊂ P1
K is stable under Autc(K/H) if σ(x) ∈ X

for each x ∈ X and σ ∈ Autc(K/H); and X is pointwise fixed by Autc(K/H)
if σ(x) = x for each x ∈ X and σ ∈ Autc(K/H).

Proposition 3.4. Suppose ϕ(z) ∈ H(z) and d ≥ 2. Then MinResLoc(ϕ)
is stable under Autc(K/H), and it contains at least one point fixed by
Autc(K/H). However, it need not be pointwise fixed by Autc(K/H), and
it need not contain weakly H-rational points.

Proof. If ϕ is rational over H, then ordResϕ(σ(Q)) = ordResϕ(Q) for
all σ ∈ Autc(K/H) and all Q ∈ P1

K . Thus, MinResLoc(ϕ) is stable under
Autc(K/H). To see that MinResLoc(ϕ) always contains at least one point
fixed by Autc(K/H), note that if MinResLoc(ϕ) consists of a single point,
Autc(K/H) fixes that point. On the other hand, if MinResLoc(ϕ) is a seg-
ment, then since Autc(K/H) preserves path distances, each σ ∈ Autc(K/H)
must either leave MinResLoc(ϕ) pointwise fixed, or flip it end-to-end; in ei-
ther case σ fixes the midpoint of MinResLoc(ϕ).

Example 6.2 below, with ϕ(z) = (z2−z)/(2z) and K = C2 and H = Q2,
shows that MinResLoc(ϕ) can be pointwise fixed by Autc(K/H) without
meeting the tree spanned by P1(H): MinResLoc(ϕ) = {ζi,1/2} and, as shown

above, ζi,1/2 does not belong to the tree spanned by P1(H).
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It is also possible for MinResLoc(ϕ) to be a segment “orthogonal to” the
tree spanned by P1(H): take K = Cp and H = Qp with p odd. If a ∈ Z×p
is a non-square unit, and u =

√
a, then the function ϕ1(z) = −z3+(4pn+1)u2z

(4pn−1)z2+u2
from Example 6.5 below is Qp-rational. The segment [ζ−u,1/pn , ζu,1/pn ] is its

minimal resultant locus, and this segment meets the tree spanned by P1(Qp)
only at the Qp-rational type II point ζG.

Likewise, the function ϕ2(z) = −z3+(4pn+1)u2pz
(4pn−1)z2+pu2 from Example 6.5 is

Qp-rational. Its minimal resultant locus meets the tree spanned by P1(Qp)
at ζ0,p−1/2 , but that point is not Qp-rational because its radius does not

belong to |Q×2 |. In both examples, each σ ∈ Autc(K/H) with σ(
√
a) = −

√
a

flips MinResLoc(ϕ) end-to-end; the midpoint of MinResLoc(ϕ) is the only
point fixed by Autc(K/H).

If Q is a type II point rational over H, the action of Autc(K/H) on P1
K

induces an action of Autc(K/H) on the tangent space TQ, which takes the
class of a path [Q, x] to the class of [Q, σ(x)]. This is well-defined, since if x
and x′ belong to the same tangent direction at Q, then the paths [Q, x] and
[Q, x′] share an initial segment; thus [Q, σ(x)] and [Q, σ(x′)] share an initial
segment as well.

Now consider the arithmetic case, where H = Hv is a local field and
K = Cv is the completion of an algebraic closure of Hv. In this case, the
H-rational type II points are discrete in H1

K for the strong topology, and
the subtree of P1

K spanned by P1(H) is branched at precisely the H-rational
type II points.

The following proposition shows that if ϕ is rational over Hv, and if
P /∈ MinResLoc(ϕ) is a type II point rational over Hv, then MinResLoc(ϕ)
lies in a tangent direction at P containing points of P1(Hv).

Proposition 3.5. Suppose Hv is a local field and ϕ is rational over Hv.
Let P be an Hv-rational type II point not contained in MinResLoc(ϕ). Then
MinResLoc(ϕ) lies in a tangent direction at P coming from the tree spanned
by P1(Hv).

Proof. Note that since MinResLoc(ϕ) is stable under Autc(K/Hv) and
is connected, the tangent direction at P that it lies in must be fixed by
Autc(K/Hv). If Hv has residue field Fq, then TP is parametrized by P1(Fq),
and the tangent directions at P fixed by Autc(K/Hv) correspond to the
points of P1(Fq). These are precisely the tangent directions at P coming
from the tree spanned by P1(Hv).

Corollary 3.6. Suppose H = Hv is a local field and K = Cv, and
that ϕ(z) ∈ Hv(z) has degree d ≥ 2. If MinResLoc(ϕ) contains no points of
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P1
K rational over Hv, then each extension L/Hv such that MinResLoc(ϕ)

contains an L-rational point is ramified over Hv.

Proof. Suppose that MinResLoc(ϕ) has no points rational over Hv. Let
Q ∈ MinResLoc(ϕ) be a type II point rational over an extension L/Hv, and
let P be the point of the tree ΓHv spanned by P1(Hv) closest to Q (possibly
Q = P ). Necessarily P is of type II. Furthermore, P cannot be rational
over Hv, since if it were, then Q 6= P , and Proposition 3.5 shows Q would
lie in a direction ~v ∈ TP coming from P1(Hv), contradicting that P is the
point of ΓHv nearest Q.

If Q = P , then under Berkovich’s classification theorem, Q corresponds
to a disc D(a, r) where a ∈ Hv and r ∈ |L×|\|H×v |. Clearly L is ramified
over Hv in this case.

If Q 6= P , then Q corresponds to a disc D(a, r) where a ∈ L and r ∈ |L×|,
and P corresponds to a disc D(b, R) where b ∈ Hv. As shown above, P is not
rational over Hv, so R /∈ |H×v |. We cannot have b ∈ D(a, r) since otherwise Q
would belong to the tree spanned by P1(Hv), contradicting our assumption
that Q 6= P . It follows that P is the point where the paths [a,∞] and [b,∞]
meet, so R = |b−a|. Since both a, b are in L, we have R ∈ |L×|. Thus, again
L/Hv is ramified.

4. Applications. In this section we give some applications of the theory
developed above. We show that the function ordResϕ(·) satisfies the principle
of steepest descent, that over a Henselian ground field the property that ϕ
has potential good reduction is first-order in the sense of mathematical logic,
we give a negative answer to a question of Silverman concerning the existence
of global minimal models for rational functions ϕ defined over number fields,
and we show that ϕ need not achieve its minimal resultant over the field of
moduli for the minimal resultant problem.

The principle of steepest descent. In Theorem 1.1 it was shown
that ordResϕ(·) is convex upwards. This means that ordResϕ(·) satisfies the
principle of steepest descent: at each Q ∈ H1

K there is at most one direction
in which ordResϕ(·) is decreasing, and by following the path of steepest
descent one will eventually reach the global minimum.

When ϕ is defined over a local field Hv, this yields a simple algorithm
for finding the minimum value of ordRes(ϕγ) under Hv-rational changes
of coordinates: starting at ζG, move in the direction of steepest descent,
stepping from one Hv-rational type II point Q to the next, until there are
no adjacent Hv-rational points where the value of ordResϕ(·) is smaller;
at such a point the Hv-minimum has been reached, and Proposition 3.1
provides a γ ∈ GL2(Hv) for which ordRes(ϕγ) is minimal.
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Theorem 1.1 gives a bound for the number of steps needed by this al-
gorithm. If ordResϕ(·) is not minimal at a given Q, Proposition 3.5 shows
that the direction of steepest descent is rational over Hv, and Lemma 2.4
gives a criterion identifying that direction. Proposition 3.5 and Lemma 2.4
also provide a criterion telling whether the minimum value of ordResϕ(·) on
Hv-rational points is the global minimum on P1

K : at a point Q where the
Hv-minimum occurs, if there is no Hv-rational direction where ordResϕ(·)
is decreasing, the Hv-minimum is the global minimum; otherwise it is not.

The algorithm described above is essentially a geometric version of the
Bruin–Molnar algorithm [6]: Bruin and Molnar construct a bounded subset
S of GL2(H) such that the Hv-minimum of ordRes(ϕγ) is achieved by some
γ ∈ S, and they find the minimum value by means of a recursive search. The
convexity of ordResϕ(·) means the Bruin–Molnar algorithm runs without
any back-tracking.

Over a Henselian field, potential good reduction is first-order.
Let H be a subfield of K such that ϕ(z) ∈ H(z). It follows from Theorem 3.2
that if H is Henselian (in particular, if H is a local field), the property that
ϕ has potential good reduction is first-order in the theory of H, in the sense
of mathematical logic:

Proposition 4.1. For each d ≥ 2, there is a first order formula

Fd(f0, . . . , fd, g0, . . . , gd)

in the language of valued fields such that if H is a Henselian nonarchimedean
valued field, and if ϕ(z) = (fda

d + · · · + f0)/(gdz
d + · · · + g0) ∈ H(z), then

ϕ has potential good reduction if and only if H |= Fd(f0, . . . , fd, g0, . . . , gd).

Proof. Note that ϕ has potential good reduction if and only if there is
a γ ∈ GL2(K) such that ordRes(ϕγ) = 0. By Theorem 3.2, there is an
extension L/H with [L : H] ≤ (d+ 1)2 for which there is a γ ∈ GL2(L) with
Q = γ(ζG) ∈ MinResLoc(ϕ). Hence ϕ has potential good reduction if and
only if ordRes(ϕγ) = 0 for this γ.

Since H is Henselian, for each finite extension H(β)/H there is a unique
extension of the valuation ord(·) on H to a valuation on H(β), given by
ordH(β)(z) = (1/m) ord(NH(β)/H(z)) for z ∈ H(β), where [H(β) : H] = m.

If z = a0+a1β+· · ·+am−1βm−1 with a0, . . . , am−1 ∈ H, then NH(β)/H(z) is a
universal polynomial in the ai and the coefficients of the minimal polynomial
of β over H. Write (F,G) for the natural representation of ϕ.

Let Fd,0(f0, . . . , fd, g0, . . . , gd) be the formula “Res(F,G) 6= 0”, and for
each m = 1, . . . , (d+ 1)2, let Fd,m(f0, . . . , fd, g0, . . . , gd) be the formula
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“There exist a1, . . . , am ∈ H with hm(x) = xm + a1x
m−1 + · · ·+ am

irreducible over H, and there exist a root β of hm(x) and numbers

a, b, c, d ∈ H(β) with ad− bc 6= 0, such that for γ =
[
a b
c d

]
, we have

ordH(β)(Res(F γ , Gγ))− 2dmin(ordH(β)(F
γ), ordH(β)(G

γ)) = 0”.

Then we can take Fd to be Fd,0 ∧ (Fd,1 ∨ · · · ∨ Fd,(d+1)2).

An answer to a question of Silverman. Let H be a number field,
and suppose ϕ(z) ∈ H(z) has degree d ≥ 2. In [15, §4.11] Silverman asks
when it is possible to choose an “optimal” integral representation for ϕ
over H, analogous to a global minimal Weierstrass model for an elliptic
curve, and he provides a necessary condition for such a representation to
exist.

Here we show that Silverman’s necessary condition is not sufficient: there
is an obstruction coming from the ideal class group of H. Let OH be the
ring of integers of H. Given a nonarchimedean place v of H, let Hv be the
completion of H at v, Ov the valuation ring of Hv, and πv a generator for the
maximal ideal of Ov. Let Cv be the completion of the algebraic closure of Hv.
Write ordv(·) for the valuation on Cv normalized so that ordv(πv) = 1, and
ordResv(ϕ) and ordResϕ,v(·) for the functions previously denoted ordRes(ϕ)
and ordResϕ(·). In this way the theory developed in §2 and §3 is applicable
for each nonarchimedean place v of H.

A representation (F,G) of ϕ with F (X,Y ), G(X,Y ) ∈ H[X,Y ] will be
called a representation of ϕ over H; such a pair is unique up to scaling
by H×. One can always arrange that F,G ∈ OH [X,Y ]; in that case, the
representation is called integral. Silverman defines the “global minimal re-
sultant” of ϕ to be the ideal

(4.1) Rϕ =
∏
p

pεp(ϕ),

where for each prime p = pv of OH ,

εp(ϕ) = min
γ∈GL2(Hv)

ordp(F γ ,Gγ)≥0

Res(F γ , Gγ) ≥ 0.

Here the product in (4.1) is finite, since for a given representation (F,G) of
ϕ over H,

ordp(F
γ , Gγ) ≥ 0 and ordp(Res(F,G)) = 0

for all but finitely many p. We will say that ϕ has a global minimal model over
H if for some γ ∈ GL2(H) the function ϕγ has an integral representation
(F γ , Gγ) over H such that

ordp(Res(F γ , Gγ)) = εp(ϕ) for each prime p of OH .
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Given a representation (F,G) for ϕ over H, in [15, Proposition 4.99]
Silverman shows there is a fractional ideal aF,G of H such that

Rϕ =

{
a2dF,G · (Res(F,G)) if d is odd,

adF,G · (Res(F,G)) if d is even.

Let I(H) be the group of fractional ideals of H, and P (H) the group of
principal fractional ideals. Silverman shows that if d is odd, the ideal class
[aϕ] := [aF,G] ∈ I(H)/P (H) is independent of the choice of (F,G), while if
d is even, the refined ideal class [aϕ] := [aF,G] ∈ I(H)/{(α)2 : (α) ∈ P (H)}
is independent of the choice of (F,G). He calls [aϕ] the Weierstrass class of
ϕ over H.

In [15, Proposition 4.100] Silverman shows that if ϕ has a global minimal
model over H, then the Weierstrass class [aϕ] is trivial. In [15, Exercise 4.46]
he asks:

(a) When H = Q, does every ϕ(z) ∈ Q(z) of degree d ≥ 2 have a global
minimal model over Q?

(b) When H is an arbitrary number field and ϕ(z) ∈ H(z) has degree
d ≥ 2, if S is a finite set of primes of OH such that the localization
OH,S is a principal ideal domain, does ϕ have a global S-minimal
model? In other words, is there a γ ∈ GL2(H) such that ϕγ has
a representation (F γ , Gγ) with F γ(X,Y ), Gγ(X,Y ) ∈ OH,S [X,Y ],
satisfying

ordp(Res(F γ , Gγ)) = εp(ϕ) for each prime p /∈ S?

(c) When H is an arbitrary number field and ϕ(z) ∈ H(z) has degree
d ≥ 2, if the Weierstrass class [aϕ] is trivial, does ϕ have a global
minimal model over H?

As has already been noted by Bruin and Molnar [6], the answer to the
first two questions is “Yes”. This follows from the Strong Approximation
Theorem and the fact that the subgroup Aff2(K) ⊂ GL2(K) acts transitively

on the type II points in P1
K . Indeed, in (b), let S̃ ⊇ S be a finite set of primes

such that ϕ has good reduction outside S̃. For each prime p = pv ∈ S̃,
choose a γp ∈ GL2(H) such that ordResv(ϕ

γp) = εp and put ξp = γp(ζG).
By Proposition 3.1, ξp ∈ P1

K is rational over H; thus there exist ap, bp ∈ H
with ap 6= 0 such that ξp = ζbp,|ap|v . Since OH,S is a PID, there is an a ∈ H
such that ordp((a)) = ordp((ap)) for each p ∈ S̃ and ordp((a)) = 0 for each

p /∈ S̃. By the Strong Approximation Theorem there is a b ∈ H such that
ordp(b − bp) > ord(ap) for each p ∈ S̃ and ordp(b) = 0 for each p /∈ S̃. Set

γ =
[
a b
0 1

]
; then γ(ζG) = ξp for each p ∈ S̃, and γ(ζG) = ζG for each p /∈ S̃,

so ordResv(ϕ
γ) = εpv for each prime pv. Let (F γ , Gγ) be a representation of
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ϕγ over H; since OH,S is a PID, we can assume (F γ , Gγ) has been scaled so
that min(ordp(F

γ), ordp(G
γ)) = 0 for each p /∈ S. Then F γ , Gγ are defined

over OH,S , and ordp(Res(F γ , Gγ)) = εp for each p /∈ S, so (F γ , Gγ) is a
global S-minimal model.

The answer to question (c) is “No” in general. The underlying reason
for this is a disconnect between the values of ordResv(·) and the points at
which they are taken. To obtain counterexamples, consider polynomials of
the form ϕ(z) = zd + c with d ≥ 2, c ∈ H. For a given prime p = pv
of OH , if ordv(c) ≥ 0, then ϕ(z) has good reduction at p. Suppose that
ordv(c) < 0. Then ordResv(ϕ) = −2d ordv(c). Computing ordResϕ,v(·) on
the path [0,∞] ⊂ P1

K,v, we find that for each A ∈ C×v ,

ordResϕ,v(ζ0,|A|v) = max
(
(d− d2) ordv(A),−2d ordv(c) + (d+ d2) ordv(A)

)
.

This is minimal when ordv(A) = (1/d) ordv(c). If (1/d) ordv(c) is not an inte-
ger, by convexity the least value of ordResϕ,v(·) on H-rational points in P1

K,w
occurs when ordv(A) is one of the two integers adjacent to (1/d) ordv(c).

For a counterexample when d is odd, take ϕ(z) = z5 + 1/(1 + 4
√
−5),

so d = 5 and c = 1/(1 + 4
√
−5), with H = Q(

√
−5). The field H has class

number 2. The ideal p = pv = (3, 1 +
√
−5) in OH is one of the primes

containing (3); it is not principal, but p4 = (1 + 4
√
−5), so ordv(c) = −4.

Clearly ϕ(z) has good reduction at all primes other than p. The least
value of ordResϕ,v(·) on H-rational points occurs only when ordv(A) = −1,
and one has

20 = ordResϕ,v(ζ0,|A|v) < ordResv(ϕ) = 40.

The integral representation (F,G) with F (X,Y ) = X5/c+Y 5 and G(X,Y )
= Y 5/c satisfies (Res(F,G)) = p40, while Rϕ = p20. Since Rϕ =
a10F,G ·(Res(F,G)), it follows that aF,G = p−2 = (1/(2−

√
−5)). Thus the class

[aϕ] is trivial. However, there is no γ ∈ GL2(H) for which ordResv(ϕ
γ) = Rϕ.

If there were, in P1
K,w we would have γ(ζG) = ζ0,3, while for each finite place

w 6= v, in H1
K,w we would have γ(ζG) = ζG. By the proof of Proposition

3.1, this would mean that ordv(det(γ)) = −1 and ordw(det(γ)) = 0 for all
w 6= v, so (det(γ)) = p−1. This is a contradiction since p−1 is not principal.

For a counterexample when d is even, take ϕ(z) = z4 + 1/(19 + 4
√
−23),

so d = 4 and c = 1/(19 + 4
√
−23), with H = Q(

√
−23). The field H has

class number 3. The ideal p = pv = (3, (1 +
√
−23)/2) in OH is one of

the primes containing (3); it is not principal, but p3 = (2 −
√
−23) and

p6 = (19 + 4
√
−23), so ordv(c) = −6.

Clearly ϕ(z) has good reduction at all primes other than p. The least
value of ordResϕ,v(·) on H-rational points occurs only when ordv(A) = −2,
and one has

24 = ordResϕ,v(ζ0,|A|v) < ordResv(ϕ) = 48.
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The normalized representation (F,G) with F (X,Y ) = X4/c + Y 4 and
G(X,Y ) = Y 4/c satisfies (Res(F,G)) = p48, while Rϕ = p24. Since Rϕ =
a4F,G·(Res(F,G)), it follows thataF,G = p−6 = (1/(2−

√
−23))2. Thus the class

[aϕ] is trivial. However, there is no γ∈GL2(H) for which ordResv(ϕ
γ) =Rϕ.

If there were, we would have ordv(det(γ)) = −2 and ordw(det(γ)) = 0 for
all w 6= v, so (det(γ)) = p−2. This is impossible since p−2 is not principal.

Failure to achieve the minimal resultant over the field of mod-
uli. Suppose ϕ(z) ∈ H(z), where H ⊂ K. Let M be the value of ordResϕ(·)
on MinResLoc(ϕ), and let FH(ϕ) be the set of fields L with H ⊆ L ⊆ K
for which there is some γ ∈ GL2(L) such that ordRes(ϕγ) = M . When
MinResLoc(ϕ) = {Q} consists of a single point, FH(ϕ) is the set of fields
H ⊆ L ⊆ K such that there is some γ ∈ GL2(L) with γ(ζG) = Q. The field
of moduli for the minimal resultant problem is

Hϕ :=
⋂

L∈FH(ϕ)

L.

One can ask if there is a γ ∈ GL2(Hϕ) for which ordRes(ϕγ) is minimal.
The answer is clearly “Yes” if MinResLoc(ϕ) contains an H-rational point,
but in general it is “No”:

Proposition 4.2. Suppose ϕ(z) ∈ H(z), and that Hϕ ⊇ H is the field
of moduli for the minimal resultant problem. There may be no γ ∈ GL2(Hϕ)
for which ordRes(ϕγ) = M , even when ϕ has potential good reduction and
has a trivial automorphism group.

Proof. In Example 6.1 below, take d = p where p is an odd prime, with
ϕ(z) = (zp − p)/zp−1, K = Cp, and H = Qp. Then ord(Res(ϕ)) = p− 1 and
MinResLoc(ϕ) = {Q} where Q = ζ0,p1/p , and ϕ achieves good reduction
at Q. Note that Q is rational over an extension L/K if and only if the value
group of L contains p1/p. In particular, Q is rational over L1 = Qp( p

√
p) and

over L2 = Qp(ζp p
√
p) where ζp is any primitive pth root of unity. One easily

sees that L1 ∩ L2 = Qp (otherwise L1 = L2, since both extensions have de-
gree p; but then ζp ∈ L1, so p−1 = [Qp(ζp) : Qp] divides [L1 : Qp] = p). Thus
Hϕ = Qp. However, p1/p is not in the value group of Q×p , so by Proposition
3.1 there can be no γ ∈ GL2(Qp) with γ(ζG) = Q.

The function ϕ(z) = (zp − p)/zp−1 has automorphisms; indeed, for each
(p− 1)st root of unity ξ, the map γ(z) = ξ · x satisfies ϕγ = ϕ. However, we
can easily modify ϕ to destroy these automorphisms. Define

ϕ̂(z) =
zp + p3(p−1)z − p

zp−1
.

Clearly ϕ̂(z) is rational over Qp. In Theorem 1.2 we have f(d) < 3, so
MinResLoc(ϕ̂) = MinResLoc(ϕ) = {ζ0,p1/p} and ϕ̂ has potential good re-
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duction at ζ0,p1/p . By the same argument as above, Hϕ̂ = Qp and there is no
γ ∈ GL2(Qp) with γ(ζG) = Q. However, ϕ̂ has no nontrivial automorphisms:
If ϕ̂γ = ϕ̂ for some γ ∈ GL2(Cp), then γ permutes the poles of ϕ̂, preserving
their multiplicities. In this case ϕ̂ has a simple pole at∞ and a pole of order
p − 1 at 0, so γ fixes 0 and ∞. Likewise, γ permutes the fixed points of ϕ̂,
preserving their multiplicities. In this case, ϕ̂ has a fixed point of order p
at∞, and a simple fixed point at 1/p2, so γ fixes 1/p2 as well. Hence γ must
be the identity map.

When p = 2, in Example 6.2 for ϕ(z) = (z2 − 1)/(2z), K = Cp, and
H = Q2, we have MinResLoc(ϕ) = {Q} where Q = ζi,1/2. Here D(i, 1/2) =

D(
√

3, 1/2) since |i −
√

3| = 1/2, so Q = γ1(ζG) = γ2(ζG) where γ1 =[
2 i
0 1

]
and γ2 =

[
2
√
3

0 1

]
. Since Q2(i) ∩ Q2(

√
3) = Q2, we have Hϕ = Q2.

However, D(i, 1/2)∩Q2 is empty. Hence there can be no γ ∈ GL2(Q2) with
γ(ζG) = Q.

5. An algorithm. In this section we give an algorithm which deter-
mines MinResLoc(ϕ), using the fact that MinResLoc(ϕ) is contained in an
explicit, computable tree.

Given ϕ(z) ∈ K(z) with d = deg(ϕ) ≥ 2, put a = ϕ(∞) ∈ K∪{∞}. The
following algorithm finds the minimal value of ordResϕ(·) and determines
MinResLoc(ϕ), by working in the tree ΓFix,ϕ−1(a). This tree is spanned by∞,
the finite fixed points, and the finite solutions to ϕ(z) = a, so it is convenient
for computational purposes.

Algorithm A: Minimize ordResϕ(·), find MinResLoc(ϕ), and find a
γ ∈ GL2(K) for which ordRes(ϕγ) is minimal.

Given a complete nonarchimedean valued field K with absolute value
|x| = q− ord(x), and a function ϕ(z) ∈ K(z) with d = deg(ϕ) ≥ 2:

(1) (Find the endpoints of ΓFix,ϕ−1(a).)

(a) Write ϕ(z) = f(z)/g(z) with f(z), g(z) ∈ K[z]; set a = ϕ(∞).
(b) Find the roots of f(z)− zg(z) = 0 (the finite fixed points).
(c) If a =∞, find the roots of g(z) = 0 (the finite poles). If a 6=∞,

find the roots of f(z) − a · g(z) = 0 (the finite solutions to
ϕ(z) = a).

(d) List the distinct roots from (b) and (c) as {α1, . . . , αk}.
(2) (Minimize ordResϕ(·) on each path [αi,∞].) For i = 1, . . . , k, do the

following:

(a) Set γi(z) = z + αi, and compute ϕγi(z) = ϕ(z + αi)− αi.
(b) Find a normalized representation (Fi, Gi) for ϕγi(z).
(c) Compute Ri = ord(Res(Fi, Gi)).



Minimal resultant locus 279

(d) If Fi(X,Y ) = adX
d+ · · ·+a0Y

d, Gi(X,Y ) = bdX
d+ · · ·+ b0Y

d,
set C` = Ri − 2d ord(a`), D` = Ri − 2d ord(b`) for ` = 0, . . . , d.

(e) Minimize the piecewise affine function

χi(t) = max
(

max
0≤`≤d

(C` + (d2 + d− 2d`)t),

max
0≤`≤d

(D` + (d2 + d− 2d(`+ 1)t)
)
.

(f) Record the minimum value of χi(t) as Mi, and record the set of
points where it is achieved as a singleton {ζαi,ri} or a segment
[ζαi,ri,1 , ζαi,ri,2 ], where r = q−t for a given t.

(3) (Find the minimum.) Let M = min1≤i≤kMi, and output

“min(ordResϕ(·)) = M”.

(4) (Find the minimal resultant locus.) Consider the indices i for which
M = Mi:

(a) If for each such i, χi(t) achieved M at a single point, output

“MinResLoc(ϕ) = {ζαi,ri}”
for any such i, and go to (5).

(b) If for some such i, χi(t) achieved M on a segment, then:

(i) Find the relevant nodes of the tree ΓFix,ϕ−1(a): for all (i, j)
with 1 ≤ i < j ≤ k such that M = Mi = Mj , find rij =
|αi − αj |, then record ζαi,rij = ζαj ,rij as a node.

(ii) Using the nodes, collate the segments [ζαi,ri,1 , ζαi,ri,2 ] into a
single segment [ζa,ra , ζb,rb ], and output

“MinResLoc(ϕ) = [ζa,ra , ζb,rb ]”.

(5) (Find γ ∈ GL2(K) for which ordRes(ϕγ) = M .)

(a) Choose an endpoint of MinResLoc(ϕ), and write it as ζB,|A| with
A ∈ K×, B ∈ K.

(b) Output “γ =
[
A B
0 1

]
”, then halt.

The correctness of Algorithm A follows from Theorem 1.1. Since ϕ has
potential good reduction if and only if M = 0, Algorithm A determines
whether or not ϕ has potential good reduction, and if so, it finds a γ ∈
GL2(K) such that ϕγ has good reduction.

6. Examples. The minimal resultant locus is an equivariant canoni-
cally attached to ϕ. In this section we compute MinResLoc(ϕ) for several
examples and begin a study of its geometrical, dynamical, and arithmeti-
cal properties. The examples justify some of the assertions made in §2, §3,
and §4. In subsequent work ([13], [14]), the author considers the geometric
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and dynamical significance of MinResLoc(ϕ) from a theoretical standpoint,
placing the examples below in a coherent framework.

Examples 6.1, 6.2, and 6.6 show that MinResLoc(ϕ) need not be con-
tained in the tree spanned by the fixed points alone, or the poles alone.
Examples 6.3, 6.5, and 6.7 show that when d is odd, MinResLoc(ϕ) can be
either a point or a segment.

When ϕ has potential good reduction, MinResLoc(ϕ) consists of a single
point, which is necessarily fixed by ϕ. When ϕ does not have potential good
reduction, MinResLoc(ϕ) may or may not contain fixed points: Example 6.6
shows it can be a single point, which is fixed. Example 6.5 shows it can be
a segment, which is pointwise fixed. Examples 6.3 and 6.4 show it can be
single point which is not fixed; Example 6.7 shows it can be a segment of
which no point is fixed.

If Hv is a local field and MinResLoc(ϕ) contains no Hv-rational type II
points, there are exactly two Hv-rational type II points adjacent to it in
the tree spanned by P1(Hv). (This follows from Proposition 3.5: the path
connecting the tree spanned by P1(Hv) to MinResLoc(ϕ) cannot branch
off the tree at an Hv-rational type II point, because at each such point
MinResLoc(ϕ) lies in a tangent direction containing points of P1(Hv), which
is thus a direction corresponding to an edge of the tree.) The function
ordResϕ(·) may take the same or different values at those points; its value
is strictly larger at all other Hv-rational type II points. Example 6.2 gives a
case where the minimum is taken on at one of the two adjacent H-rational
type II points, and Example 6.4 gives a case where it is taken on at both
points.

If deg(ϕ) is odd and ϕ(z) ∈ H(z), MinResLoc(ϕ) can contain arbitrarily

many H-rational type II points. Example 6.5, with ϕ(z) = pnz3+z2−pnz
−pnz2+z+pn

and H = Qp, shows this: for that function MinResLoc(ϕ) is a segment of
length 2n, with Qp-rational endpoints, contained in the path [0,∞].

In all the examples, MinResLoc(ϕ) lies well inside the ball{
z ∈ H1

K : ρ(ζG, z) ≤
2

d− 1
ordRes(ϕ)

}
given by Theorem 1.1. Probably the radius 2

d−1 ordRes(ϕ) is not sharp. One
can also ask where MinResLoc(ϕ) lies relative to the Berkovich Julia set of ϕ.
Example 6.6 shows it can lie inside; Example 6.3 shows it can lie outside.

For the remainder of this section, we take K = Cp, the completion of the
algebraic closure of Qp. The valuation ord(·) on Cp will be normalized so
that ord(p) = 1, and | · |p = p− ord(·) will be the usual absolute value on Cp.
We write Res(ϕ) for Res(F,G), where (F,G) is the homogenization of the
pair of polynomials defining ϕ.

We first consider two examples where ϕ(z) has potential good reduction.
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Example 6.1: The function

ϕ(z) =
zd − p
zd−1

,

with p arbitrary and K = Cp. Here Res(ϕ) = (−1)d(d−1)/2pd−1, so ordRes(ϕ)
= d− 1. The poles of ϕ are 0 and ∞, and there is a (d+ 1)-fold fixed point
at ∞. The tree Γ spanned by the fixed points and poles is just the path
[0,∞].

Consider ordResϕ(·) on [0,∞]. Let QA ∈ P1
K correspond to D(0, |A|);

by (2.8),

ordResϕ(QA) = (d− 1) + (d2 + d) ord(A)

−2dmin
(
ord(Ad), ord(p), ord(A ·Ad−1)

)
= max

(
(d−1) + (d− d2) ord(A), (−d−1) + (d2 + d) ord(A)

)
.

This achieves its minimum when ord(A) = 1/d, and ordResϕ(ζ0,p1/d) = 0.

Thus ϕ(z) has potential good reduction at the point ζ0,p1/d , and conju-

gation by γ =
[
p1/d 0
0 1

]
achieves the necessary change of coordinates: indeed,

ϕγ(z) = (zd−1)/zd−1. Here ρ(ζG, ζ0,p1/d) = 1/d < 2
d−1 ordRes(ϕ) = 2. Note

also that ordResϕ(ζG) = d− 1 and ordResϕ(ζ0,p) = d2 − 1.

Example 6.2: The function

ϕ(z) =
z2 − 1

2z
,

with K = C2. Here Res(ϕ) = −4, so ordRes(ϕ) = 2. The poles of ϕ are 0
and ∞, and the fixed points are ∞ and ±i, where i =

√
−1. The tree Γ

spanned by {0,∞, i,−i} has branch points at ζG = ζ0,1 and ζi,1/2.

First consider ordResϕ(·) on the path [0,∞]. Let QA = ζ0,|A| ∈ P1
K ; then

ordResϕ(QA) = max
(
2− 2 ord(A), 2 + 6 ord(A)

)
.

This takes on its minimum when ord(A) = 0, where ordResϕ(QA) = 2 and
QA = ζG. Next consider ordResϕ(·) on the path [i,∞]. Let γ =

[
1 i
0 1

]
, so

γ(0) = i and γ(∞) =∞. Then

ϕγ(z) =
(z + i)2 − 1

2(z + i)
− i =

z2 − 4iz

2z + 2i
.

Let QA be the point corresponding to the disc D(i, |A|); then

ordResϕ(QA) = max
(
2− 2 ord(A),−2 + 2 ord(A)

)
.

This achieves its minimum when ord(A) = 1, and ordResϕ(QA) = 0. The
corresponding point QA is ζi,1/2; note that

ρ(ζG, ζi,1/2) = 1 <
2

d− 1
ordRes(ϕ) = 4.
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Thus ϕ(z) has potential good reduction at ζi,1/2, and η =
[
2 i
0 1

]
achieves the

necessary change of coordinates. One sees that

ϕη(z) =
z2 − 2iz

2z + i

indeed has good reduction. The nearest point to ζi,1/2 in the tree spanned

by P1(Q2) is ζ1,1/
√
2; it is weakly Q2-rational but not Q2-rational, and one

has ordResϕ(ζ1,1/
√
2) = 1. The nearest Q2-rational points in the tree are ζG

and ζ1,1/2; one has ordResϕ(ζG) = 2 and ordResϕ(ζ1,1/2) = 4.

In the remaining examples, ϕ does not have potential good reduction.

Example 6.3: The function

ϕ(z) =
zp − z
p

,

with K = Cp for an arbitrary prime p. It is known (see [1, Example 10.120])
that the Berkovich Julia set of ϕ(z) is contained in P1(Cp) (indeed, it is pre-
cisely Zp), and its invariant measure µϕ is the additive Haar measure on Zp.
Thus, ϕ(z) cannot have potential good reduction; if it did, its Berkovich
Julia set would be the unique point Q ∈ H1

K where it attained good reduc-
tion. Below we will give a direct proof that ϕ does not have potential good
reduction.

Here d = p, and Res(ϕ) = pp, so ordRes(ϕ) = p. The fixed points
of ϕ(z) are ∞ and the solutions u0, . . . , up−1 to zp − (1 + p)z = 0. Since
zp − (1 + p)z ≡ zp − z ≡ z(z − 1) · · · (z − (p− 1)) (mod p), Hensel’s lemma
shows that each ui belongs to Zp, and we can label the ui so that u0 = 0
and ui ≡ i (mod p) for i = 1, . . . , p− 1. The poles of ϕ(z) are all at ∞. The
tree Γ spanned by {∞, 0, u1, . . . , up−1} has ζG as its only branch point.

First consider ordResϕ(·) on the path [0,∞]. As before, write QA for
ζ0,|A|; by (2.8),

ordResϕ(QA) = p+ (p2 + p) ord(A)− 2pmin
(
ord(Ap), ord(A), ord(pA)

)
= max

(
p+ (p− p2) ord(A), p+ (p2 − p) ord(A)

)
.

The minimum is achieved at ζG (when ord(A) = 0), and ordResϕ(ζG) = p.

Next fix i with 1 ≤ i ≤ p−1, and consider ordResϕ(·) on the path [ui,∞].
Taking γ =

[
1 ui
0 1

]
, we see that

ϕγ(z) =
(z + ui)

p − (z + ui)− pui
p

=
apz

p + ap−1z
p−1 + · · ·+ a1z

p

where ap = 1, aj =
(
p
j

)
up−ji for j = 2, . . . , p − 1, and a1 = pup−1i − 1. In

particular ord(ap) = ord(a1) = 0, and ord(aj) = 1 for j = 2, . . . , p − 1. By
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formula (2.8) we have

ordResϕ(γ(QA)) = ordResϕγ (QA)

= p+ (p2 + p) ord(A)− 2pmin
(
ord(apA

p), . . . , ord(a1A), ord(pA)
)

= max
(
p+ (p− p2) ord(A), p+ (p2 − p) ord(A)

)
.

Again the minimum is achieved at ζG (when ord(A) = 0), and ordResϕ(ζG)
= p. Thus MinResLoc(ϕ) = {ζG}, and ϕ(z) does not have potential good
reduction. Here ρ(ζG, ζG) = 0 < 2

d−1 ordRes(ϕ) = 2p/(p − 1). Note that
ϕ(ζG) = ζ0,p, so MinResLoc(ϕ) is not fixed by ϕ.

Example 6.4: The function

ϕ(z) =
p4z3 + pz + 1

p6z3
,

where K = Cp and p is odd. Here Res(ϕ) = p18. The function ϕ(z) has a
triple pole at 0, and its fixed points are the roots of −p6z4 + p4z3 + pz + 1.
By the theory of Newton polygons, if the fixed points u1, . . . , u4 are ordered
by increasing size, then |u1| = p, |u2| = |u3| = p3/2, and |u4| = p2. The tree
Γ spanned by {0, u1, u2, u3, u4} has branch points at ζ0,p and ζ0,p3/2 .

Consider ordResϕ(·) on the path [0,∞]; note that only the subsegment
[0, ζ0,p2 ] is contained in Γ . Let QA ∈ P1

K be the point corresponding to
D(0, |A|). Then ordResϕ(QA) is given by

max
(
−18− 12 ord(A),−6− 6 ord(A), 12 + 6 ord(A), 18 + 12 ord(A)

)
.

This function achieves its minimum value of 3 when ord(A) = −3/2; it has
breaks when ord(A) = −1, ord(A) = −3/2, and ord(A) = −2.

The initial segments of [ζ0,p3/2 , u1] and [ζ0,p3/2 , u4] belong to [0,∞], so
ordResϕ(·) is increasing along them. To show that ordResϕ(·) achieves its
minimum on P1

K at ζ0,p3/2 , it suffices to check that it is increasing along
[ζ0,p3/2 , u2] and [ζ0,p3/2 , u3].

Take γ =
[
p3/2 0
0 1

]
; conjugating ϕ by γ brings ζ0,p3/2 to ζG. One finds

ϕγ(z) =
z3 + z + p1/2

p1/2z
.

The fixed points of ϕγ lie in the directions of 0, ±i, and ∞ at ζG, where
i =
√
−1; these correspond to the directions of u1, u2, u3, and u4 at ζ0,p3/2 ,

respectively. Since p is odd, the directions of ±i at ζG are distinct. Conju-
gating ϕγ by ν =

[
1 i
0 1

]
yields

ϕγν(z) =
(1− ip1/2)z3 + (3 + i)z2 + (−2 + 3ip1/2)z

p1/2(z + i)3
.

Since ord(−2 + 3ip1/2) = 0 when p is odd, it follows from Lemma 2.4 (or
directly from formula (2.8)) that ordResϕ(·) is increasing in the direction of
u2 at ζ0,p3/2 . A similar argument applies for u3.
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Thus ϕ(z) does not have potential good reduction: MinResLoc(ϕ) =
{ζ0,p3/2} with ordResϕ(ζ0,p3/2) = 3. Here ϕ(ζ0,p3/2) = ζ0,p, so MinResLoc(ϕ)

is not fixed by ϕ. Note that ρ(ζG, ζ0,p3/2) = 3/2 < 2
d−1 ordRes(ϕ) = 18 and

that ordResϕ(ζ0,p) = ordResϕ(ζ0,p2) = 6.

Example 6.5: The function

ϕ(z) =
pnz3 + z2 − pnz
−pnz2 + z + pn

,

where n ≥ 2 and K = Cp for arbitrary p. Here Res(ϕ) = −4p4n, so
ordRes(ϕ) = 4n+ 2 ord(2). The fixed points of ϕ are 0, ±1, and ∞, and the

poles are α± = (1±
√

1 + 4p2n)/(−2pn), where

α− = −pn + p3n + · · · , α+ = 1/pn + pn − p3n + · · · .
The tree Γ spanned by {0,±1,∞, α−, α+} has branch points at ζ0,1/pn ,
ζ0,p− ord(2) , and ζ0,pn .

First consider ordResϕ(·) on the path [0,∞]. Let QA ∈ P1
K be the point

corresponding to D(0, |A|); then

ordResϕ(QA) = 2 ord(2) + max
(
−2n− 6 ord(A), 4n,−2n+ 6 ord(A)

)
.

This takes its minimum value of 4n+2 ord(2) for all A with ord(A) ∈ [−n, n].
Thus MinResLoc(ϕ) is a segment with [ζ0,1/pn , ζ0,pn ] ⊆ MinResLoc(ϕ) ⊂ Γ .

We next show that MinResLoc(ϕ) = [ζ0,1/pn , ζ0,pn ]. Since n ≥ 2 >
ord(2), the point ζ0,p− ord(2) belongs to the interior of [ζ0,1/pn , ζ0,pn ]. Since
MinResLoc(ϕ) is a segment, ordResϕ(ζ) is necessarily increasing along the
paths [ζ0,p− ord(2) ,±1].

Note that the paths [ζ0,1/pn , α+] and [ζ0,1/pn ,−pn] share an initial seg-

ment. Take γ =
[
pn 0
0 1

]
, ν =

[
1 −1
0 1

]
and set η = γ ◦ ν =

[
pn −pn
0 1

]
. Then

η takes [0,∞] to the path [−pn,∞], with η(ζG) = ζ0,1/pn . One computes

ϕη(z) = (ϕγ)ν(z) =
p2n(z − 1)3 − p2n(z − 1)2 + z2 − 2z + 2

−p2n(z − 1)2 + z
.

If we write the numerator of ϕη as a3z
3 +a2z

2 +a1z+a0, then ord(a2) = 0,
and it follows from (2.8) that ordResϕη(·) is increasing in the direction ~v0
at ζG. This means ordResϕ(·) is increasing in the direction ~vα− at ζ0,1/pn . By
a similar argument, one sees that ordResϕ(·) is increasing in the direction
~vα+ at ζ0,pn .

Thus MinResLoc(ϕ) is the segment [ζ0,1/pn , ζ0,pn ], and the minimal value
of ordResϕ(·) is 4n+2 ord(2); in particular ϕ(z) does not have potential good
reduction. Each point of [ζ0,1/pn , ζ0,pn ] is fixed by ϕ: ζ0,pα is an indifferent
fixed point for −n < α < n, and ζ0,1/pn and ζ0,pn are repelling fixed points of

degree 2. In this case MinResLoc(ϕ) is contained in {z ∈ H1
K : ρ(ζG, z) ≤ n},

while 2
d−1 ordRes(ϕ) = 4n+ 2 ord(2).
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For rationality considerations involving MinResLoc(ϕ), it will be useful
to note the relation between ordResϕγ (·) and ordResϕ(·) for conjugates ϕγ .
For each γ ∈ GL2(K), for all Q ∈ P1

K one has

(6.1) ordResϕγ (Q) = ordResϕ(γ(Q)).

To see this, by continuity it is enough to check it for type II points. Suppose
Q = τ(ζG) for some τ ∈ GL2(K). Then by the definitions,

ordResϕγ (Q) = ordResϕγ (τ(ζG)) = ordResϕ(γ(τ(ζG))) = ordResϕ(γ(Q)).

It follows that MinResLoc(ϕγ) = γ−1(MinResLoc(ϕ)).
Take u ∈ Cp with |u| = 1, and let γ1 =

[
1 u
−1 u

]
. One easily sees that

(6.2) ϕ1(z) := ϕγ1(z) =
−z3 + (4pn + 1)u2z

(4pn − 1)z2 + u2
,

and that γ1(ζu,1/pn) = ζ0,pn and γ1(ζ−u,1/pn) = ζ0,1/pn . Thus MinResLoc(ϕ1)
is the segment [ζ−u,1/pn , ζu,1/pn ]. When p is odd, the midpoint of this segment
is ζG = ζ0,1. When p = 2, its midpoint is ζu,1/2.

Next conjugate ϕ1(z) by γ2 =
[ 1 0
0 p1/2

]
. Then

(6.3) ϕ2(z) := (ϕ1)
γ2(z) =

−z3 + (4pn + 1)u2pz

(4pn − 1)z2 + pu2

and MinResLoc(ϕ2) = [ζ−up1/2,1/pn+1/2 , ζup1/2,1/pn+1/2 ]. When p is odd, the
midpoint of this segment is ζ0,p−1/2 . When p = 2, its midpoint is ζu21/2,2−3/2 .

Example 6.6: The function

ϕ(z) =
z2

(1 + pz)4
,

where K = Cp and p ≥ 5. This function was studied by Favre and Rivera-
Letelier ([9]; or see [1, Example 10.124]), who showed that its Berkovich
Julia set is the segment [ζG, ζ0,p2 ], and that its invariant measure µϕ is the
uniform measure of mass 1 on that segment (relative to the path distance).
Here Res(ϕ) = p8. The poles of ϕ are all at z = −1/p, and the fixed points of
ϕ are z = 0 and the roots of 1+(4p−1)z+6p2z2 +4p3z3 +p4z4 = 0. By the
theory of Newton polygons, these roots can be labeled so that |u1| = 1 and
|u2| = |u3| = |u4| = p4/3. The tree Γ spanned by {0,−1/p, u1, u2, u3, u4}
has branch points at ζG, ζ0,p, and ζ0,p4/3 .

On the path [0,∞], we have

ordResϕ(ζ0,|A|) = max
(
−24− 20 ord(A), 8 + 4 ord(A)

)
,

which takes its minimum value of 8/3 at ord(A) = 4/3. Conjugating by

γ =
[
p−4/3 0

0 1

]
gives

(6.4) ϕγ(z) =
z2

z4 + 4p1/3z3 + 6p2/3z2 + 4pz + p4/3
.
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The fixed points u2, u3, u4 lie in the directions ~vp4/3 , ~vζ3p4/3 , ~vζ23p4/3
at ζ0,p4/3 ,

where ζ3 is a primitive cube root of unity, and it is easily checked that
ordResϕ(·) is increasing in each of those directions. Thus MinResLoc(ϕ) =
{ζ0,p4/3}. Note that ζ0,p4/3 is fixed by ϕ; indeed, by (6.4), ζ0,p4/3 is a re-
pelling fixed point of ϕ of degree 2. Also note that ρ(ζG, ζ0,p4,3) = 4/3 <
2
d−1 ordRes(ϕ) = 16/3.

Example 6.7: The function

ϕ(z) =
pz3 + z2

p
,

with K = Cp for an arbitrary prime p. Here Res(ϕ) = p6. The fixed points
of ϕ(z) are 0, ∞, and the solutions u1, u2 to pz2 + z − p = 0:

u1 = p+ p3 + · · · , u2 = −p−1 − p− p3 + · · · ,
so that |u1| = 1/p, |u2| = p. The poles of ϕ(z) are all at ∞. The tree Γ
spanned by {0,∞, u1, u2} has branch points at ζ0,1/p and ζ0,p.

First consider ordResϕ(·) on [0,∞]. We have

ordResϕ(ζ0,|A|) = 6 + 12 ord(A)− 6 min
(
ord(pA3), ord(A2), ord(pA)

)
= max

(
−6 ord(A), 6, 6 + ord(A)

)
.

This takes the constant value 6 when −1 ≤ ord(A) ≤ 0. By convexity, the
minimum value of ordResϕ(·) on P1

K is 6, and MinResLoc(ϕ) contains the
segment [ζG, ζ0,p].

To see that MinResLoc(ϕ) contains no other points, note that the path
[ζ0,p, u2] shares an initial segment with [ζ0,p, p

−1]. Conjugating ϕ by γ =[
1/p 1/p
0 1

]
yields ϕγ(z) = (z3 + 4z2 + 5z + (2− p2))/p2; here γ(0) = p−1 and

γ(ζG) = ζ0,1/p. One finds that ordResϕγ (ζ0,|A|) equals

max
(
6− 6 ord(A), 6− 6 ord(5) + 6 ord(A), 6− 6 ord(2) + 12 ord(A)

)
.

Since either ord(5) = 0 or ord(2) = 0, the right side is increasing for small
positive values of ord(A). Thus ordResϕ(·) is increasing along [ζ0,p, u2], and
MinResLoc(ϕ) = [ζG, ζ0,p]. Note that MinResLoc(ϕ) is contained in

{z ∈ H1
K : ρ(ζG, z) ≤ 1},

while 2
d−1 ordRes(ϕ) = 6. For 0 ≤ α ≤ 1, we have ϕ(ζ0,pα) = ζ0,p2α+1 , so no

point of MinResLoc(ϕ) is fixed by ϕ.

7. The case d = 1. For completeness, in this section we consider
ordResϕ(·) when d = 1, that is, when ϕ(z) = f1z+f0

g1z+g0
∈ K(z) is such that

f1g0 − f0g1 6= 0. It is no longer true that MinResLoc(ϕ) is a point or a
segment of finite path-length: the underlying reason for the difference is the
simple fact that 12 − 1 = 0, whereas d2 − d > 0 when d ≥ 2.

There are three cases to consider:
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(1) the case where ϕ(z) ≡ z;
(2) the case where ϕ(z) has exactly two distinct fixed points, which

means there are a γ ∈ GL2(K) and a C ∈ K× with |C| ≤ 1 and
C 6= 1 such that ϕγ(z) = Cz;

(3) the case where ϕ(z) has a single fixed point of multiplicity 2, which
means there is a γ ∈ GL2(K) such that ϕγ(z) = z + 1.

It is easy to distinguish between these cases: the second case occurs
when the Jordan normal form of the matrix corresponding to ϕ is

[
λ 0
0 µ

]
with λ 6= µ; the third case when it is

[
λ 1
0 λ

]
. In the second case C = λ/µ

when the eigenvalues are ordered so that |λ| ≤ |µ|. If ϕ and the eigenvalues
are rational over a subfield H ⊂ K, then γ can be chosen to belong to
GL2(H).

We will need some terminology. Given points x0 6= x1 ∈ P1(K), the
strong tube of radius R around the path [x0, x1] is the set

T[x0,x1](R) = [x0, x1] ∪ {z ∈ H1
K : ρ(z, x) ≤ R for some x ∈ [x0, x1]}.

If z ∈ P1
K corresponds to a sequence of nested discs {D(ai, ri)}i≥1 by

Berkovich’s classification theorem(see [1, p. 5]), define diam∞(z) = limi→∞ ri;
set diam∞(∞) = ∞. In particular, diam∞(ζa,r) = r. The horodisc of codi-
ameter R, tangent to the point ∞, is the set

H∞(R) = {z ∈ P1
K : diam∞(z) ≥ R}.

The only type I point belonging to H∞(R) is∞; a point ζa,r of type II or III
belongs to H∞(R) if and only if r ≥ R. For each a ∈ K, the intersection of
the path [a,∞] with H∞(R) is the ray [ζa,R,∞]. For each S > R, the point
ζ0,S belongs to H∞(R); if a ∈ K and |a| ≤ S, the intersection of [a, ζ0,S ]
with H∞(R) is

{z ∈ [a, ζ0,S ] : ρ(ζ0,S , z) ≤ log(S/R)}.
Thus H∞(R) can be described informally as “the set of points in P1

K ac-
cessible by moving the ray [ζ0,R,∞] without stretching, keeping it anchored
at ∞”. For an arbitrary x0 ∈ P1(K), a horodisc tangent to x0 is a set of the
form γ(H∞(R)) for some R, where γ ∈ GL2(K) is such that γ(∞) = x0.

Theorem 7.1. Suppose ϕ(z) ∈ K(z) has degree d = 1. The function
ordResϕ(·) on type II points extends to a function ordResϕ : P1

K → [0,∞]
which is piecewise affine and convex upwards on each path in P1

K , with
respect to the logarithmic path distance. It is finite and continuous on H1

K
with respect to the strong topology, and achieves its minimum on a nonempty
set MinResLoc(ϕ) ⊂ P1

K . Furthermore:

(1) If ϕ(z) = z, then ordResϕ(·) ≡ 0 and MinResLoc(ϕ) = P1
K .

(2) If ϕ(z) has exactly two fixed points x0, x1, let γ ∈ GL2(K) and C ∈
K× with |C| ≤ 1, C 6= 1, be such that ϕγ(z) = Cz. The minimal value
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of ordResϕ(·) is ord(C), and ϕ has potential good reduction if and only if
|C| = 1. When |C| < 1, or when |C| = 1 and |C−1| = 1, then MinResLoc(ϕ)
is the path [x0, x1]. When |C| = 1 and |C − 1| < 1, set R = ord(C − 1) > 0;
then MinResLoc(ϕ) is the strong tube T[x0,x1](R). The function ordResϕ(·)
takes the value ∞ at each point of P1(K)\{x0, x1}, and is continuous on
P1
K\{x0, x1} relative to the strong topology.

(3) If ϕ(z) has one fixed point x0, let γ ∈ GL2(K) be such that ϕγ(z) =
z+1. Then the minimal value of ordResϕ(·) is 0, ϕ has potential good reduc-
tion, and MinResLoc(ϕ) is the horodisc tangent to x0 given by γ(H∞(1)).
The function ordResϕ(·) takes the value ∞ at each point of P1(K)\{x0},
and is continuous on P1

K\{x0} relative to the strong topology.

Proof. The fact that ordResϕ(·) extends from type II points to a func-
tion ordResϕ : P1

K → [0,∞] which is piecewise affine and convex upwards
on each path in P1

K with respect to the logarithmic path distance, and is
finite and continuous on H1

K with respect to the strong topology, follows by
the same argument as in the proof of Theorem 1.1. Indeed, ordResϕ(·) is
Lipschitz continuous on H1

K , with Lipschitz constant 12 + 1 = 2. To prove
the remaining assertions, we will make explicit computations in each case.

When ϕ(z) = z, it is easy to see that ϕγ(z) = z for each γ ∈ GL2(K),
and the assertions in part (1) of the theorem follow trivially.

Next assume ϕ has exactly two distinct fixed points x0 and x1, and
let γ ∈ GL2(K) be such that ϕγ(z) = Cz with |C| ≤ 1, C 6= 1. After
relabeling x0, x1 if necessary, we can assume that γ(0) = x0 and γ(∞) = x1.
Given A ∈ K× and B ∈ K, put τ = τA,B =

[
A B
0 1

]
. As A and B vary, the

points ζB,|A| = τA,B(ζG) range over all type II points in H1
K . Consider the

representation (F γ(X,Y ), Gγ(X,Y )) = (CX, Y ) for ϕγ . One sees easily that
ordRes(ϕγ) = ord(C) and (F γτ , Gγτ ) = (ACX + B(C − 1)Y,AY ), which
gives

(7.1) ordResϕγ (ζB,|A|)

= max
(
ord(C), ord(C)− 2 ord(B)− 2 ord(C − 1) + 2 ord(A)

)
.

When |C| < 1, or when |C| = |C − 1| = 1, formula (7.1) simplifies to

ordResϕγ (ζB,|A|) = max
(
ord(C), ord(C) + 2 ord(A)− 2 ord(B)

)
.

When B = 0, then ordResϕγ (ζ0,|A|) = ord(C) for all A, so ordResϕγ (·) ≡
ord(C) on the path [0,∞]. Next suppose that B 6= 0. The path [B,∞]
meets [0,∞] at ζ0,|B|, and for |A| ≤ |B| we see that ordResϕγ (ζB,|A|) =
ord(C)−2 ord(A/B) > ord(C). Thus ordResϕ(·) increases as one moves away
from [0,∞], and ordResϕγ (B) =∞. It follows that MinResLoc(ϕγ) = [0,∞]
and that ordResϕγ (x) = ∞ for all x ∈ P1(K)\{0,∞}. By Proposition 2.3,
ordResϕγ (·) is continuous on P1

K\{0,∞} relative to the strong topology.
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When |C − 1| < 1, formula (7.1) becomes

ordResϕγ (ζB,|A|) = max
(
0,−2 ord(C − 1) + 2 ord(A)− 2 ord(B)

)
.

When B = 0, then ordResϕγ (ζ0,|A|) = 0 for all A, so ordResϕγ (·) = 0
on [0,∞]. When B 6= 0, for |A| ≤ |B| we see that ordResϕγ (ζB,|A|) = 0
if ord(A/B) ≤ ord(C − 1), while ordResϕγ (ζB,|A|) = −2 ord(C − 1) +
2 ord(A/B) > 0 if ord(A/B) > ord(C − 1). Setting R = ord(C − 1), we see
that MinResLoc(ϕγ) is the strong tube T[0,∞](R) and that ordResϕγ (x) =∞
for all x ∈ P1(K)\{0,∞}. By Proposition 2.3, ordResϕγ (·) is continuous on
P1
K\{0,∞} relative to the strong topology. Transferring these assertions

back to ϕ using formula (6.1), we obtain part (2) of the theorem.
Finally suppose ϕ has exactly one fixed point x0. Let γ ∈ GL2(K) be such

that ϕγ(z) = z+1; then γ(∞) = x0. Given A ∈ K× and B ∈ K, let τ = τA,B
be as above. Consider the representation (F γ(X,Y ), Gγ(X,Y )) = (X+Y, Y )
for ϕγ . Then ordRes(ϕγ) = 0 and (F γτ , Gγτ ) = (AX + Y,AY ), which gives

(7.2) ordResϕγ (ζB,|A|) = max(0, 2 ord(A)).

For each B ∈ K, formula (7.2) shows that ordResϕγ (ζB,|A|) = 0 if |A| ≥ 1,
while ordResϕγ (ζB,|A|) = 2 ord(A) > 0 if |A| < 1. Thus MinResLoc(ϕγ)

is the horodisc H∞(1), and ordResϕγ (x) = ∞ for all x ∈ P1(K)\{∞}.
By Proposition 2.3, ordResϕγ (·) is continuous on P1

K\{∞} relative to the
strong topology. Transferring these assertions back to ϕ using formula (6.1),
we obtain part (3) of the theorem.
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