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On the estimates of double exponential sums

by

Hong-Quan Liu (Harbin)

1. Introduction. In Theorem 1 of [K1], Kolesnik presented a very use-
ful estimate for double exponential sums (known as the “AB-theorem”, see
[GK]). However, the proof of Theorem 1 of [K1] was not correct, for the use
of the two-dimensional A-process (simultaneously for two variables) intro-
duces a strong complication, and thus the derivatives of the resulting phase
function are not of constant sizes, and, to carry out the necessary argu-
ments, Kolesnik assumed on p. 164 that “each of the domains D1, D2, . . . is
a bounded region in R

n such that any line parallel to any coordinate axis
intersects it in O(1) line segments, and the same is true for the intersection
of D with the regions of the types fxj

(x) ≤ c or fxj
(x) ≥ c for all considered

functions f(x)”, which was not verified in [K1]. In [GK] a corrected ver-
sion of the AB-theorem was given for the special case of a monomial phase
function, but the proof is also not completely satisfactory (see Remark 1
below). Our first aim is to give a rigorous proof of Kolesnik’s AB-theorem
by inventing some new techniques. We have the following theorem.

Theorem 1. Let X ≥ 100, Y ≥ 100, L = log(XY ), and let real numbers

α and β satisfy αβ 6= 0, α + β 6= 1, 2, α 6= 1, 2, β 6= 1, 2. Set

D = {(x, y) | x ∈ I, f1(x) ≤ y ≤ f2(x)} ⊆ [X, 2X] × [Y, 2Y ],

where I is a closed interval , the real function fi(x) is continuous and is

either a linear function (fi(x) = aix + bi) or has continuous derivatives up

to order two on I, and in the latter case it satisfies

(1) f
(r)
i (x) = λi(ϕi)rx

ϕi−r(1 + O(Φ)), i = 1, 2,

where r = 0, 1, 2, λi > 0, ϕi 6= 0, 1, 0 ≤ Φ ≤ L−2, and for real ξ and

integral s,

(ξ)s = ξ(ξ − 1) · · · (ξ − s + 1).
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Let g(x, y) be a real function on [X/2, 4X] × [Y/2, 4Y ]; consider its partial

derivative gi,j(x, y) obtained by taking first the derivative of order i in x,
and then the derivative of order j in y, for i ≥ 0 and j ≥ 0. Assume that

gi,j(x, y) is continuous on [X/2, 4X] × [Y/2, 4Y ] for i ≥ 0, j ≥ 0 and

(2)
gi,j(x,y) = A(α)i(β)jx

α−iyβ−j(1+O(∆)) for 1 ≤ i+j ≤ 3, i ≥ 0, j ≥ 0,

gi,j(x,y) ≪ FX−iY −j for 4 ≤ i+j ≤ 5, i ≥ 0, j ≥ 0,

where F = |A|XαY β ≫ 1, 0 ≤ ∆ ≤ L−2. Then, for τ = Φ + ∆ we have

Sg(D) =
∑

(a,b)∈D

e(g(a, b))

≪ ( 6
√

F 2(XY )3 + 6
√

F−2(XY )7 +
10
√

F 2X5Y 9τ4 +
10
√

F 2X9Y 5τ4)L3,

where e(ξ) = exp(2πiξ) for a real ξ. In particular , for ∆ = Φ = 0 and

F ≫ XY we have

Sg(D) ≪ ( 6
√

F 2(XY )3)L3.

By taking into account an estimate for exponential sums having one
variable with a general phase function similarly to that obtained by us-
ing the exponent pair (11/30, 16/30) (= BA3B(0, 1)), we can improve our
Theorem 1 slightly for certain cases and get the following Theorem 2.

Theorem 2. Let X ≥ 100, Y ≥ 100, F = |A|XαY β ≫ max(X, Y ), and

let real numbers α and β satisfy αβ 6= 0, α < 1, β < 1. Set

D = {(x, y) | x ∈ I, f1(x) ≤ y ≤ f2(x)} ⊆ [X, 2X] × [Y, 2Y ],

where I is a closed interval , fi(x) = λix
ϕi , λi > 0. Let g(x, y) = Axαyβ.

Then, for Z = X + Y , L = log(F + 2), we have

Sg(D) =
∑

(a,b)∈D

e(g(a, b))

≪ L28( 86
√

F 26(XY )43Z5 + 56
√

F 18(XY )28Z + 76
√

F−1(XY )64

+ 164
√

(XY )134Z5 + 8
√

F−1(XY )7Z + 14
√

F 2(XY )7Z4 +
42
√

F 17Z30).

In addition, if F ≫ XY , then the terms 76
√

F−1(XY )64 and 14
√

F 2(XY )7Z4

can be neglected , for in (90′) and (91′) below we have B4 ≪ B8 and B6 ≪ B1.

Remark 1. Theorem 6.12 of [GK] is a special case of Theorem 1 of
[K1]. To prove it, on p. 79 and p. 80 of [GK] the conditions (Ω2) and (Ω3)
on the summation range E were introduced. By assuming (Ω2) and (Ω3)
for the function f(x, y) = Axαyβ and the summation range D, Graham
and Kolesnik [GK] asserted that it suffices to deduce their Theorem 6.12.
However, as the proof of their Theorem 6.12 depends on their Lemmas 6.8
and 6.10, we find that they should also assume (Ω3) for each function

f1(m, n, q, r) = f(m + q, n + r) − f(m, n),
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where |q| ≤ Q, |r| ≤ R, and Q and R are given on p. 83 of [GK]. The
reason is that in their Lemmas 6.8 and 6.10 what they need to show in
practice concerns the exponential sum S1(q, r) and not the original sum S.
In addition, they need to show that the domains D0, D1 and D2 on p. 84
are all of the type (Ω2), for otherwise their argument cannot be carried
out. The authors of [GK] did not explain how to verify the assumptions in
applications, and even for the simplest case with f(x, y) = Axαyβ (Aαβ 6= 0,
α, β 6= 1), it seems impossible to verify the condition (Ω3) for each function
f1(m, n, q, r) directly.

Remark 2. It is plain that Kolesnik’s more complicated arguments (us-
ing at least twice our Lemma 2) of [K1] to [K3] cannot be remedied by our
method.

Remark 3. Recently, we have found mistakes in some works on the
distribution of 4-full numbers. In particular, our Theorem 2 cannot be used
to yield a better result for the 4-full problem, but it can be used to get a
result which is slightly better than 15/92 for the order of ζ(1/2 + it).

2. Lemmas for the proof of Theorem 1. We need several lemmas.
Lemma 1 is used to change the order of variables in a summation.

Lemma 1. Let D be an arbitrary summation range of the shape

D = {(x, y) | x ∈ I, f1(x) ≤ y ≤ f2(x)},
where D ⊆ [X, 2X] × [Y, 2Y ], X ≥ 10, Y ≥ 10, I is a closed interval , the

real function fi(x) is either a linear function on I (fi(x) = aix + bi), or

has continuous derivatives up to order two on I, and in the latter case it

satisfies

(3) f
(r)
i (x) = λi(ϕi)rx

ϕi−r(1 + O(Φ)), i = 1, 2,

where r = 0, 1, 2, λi > 0, ϕi 6= 0, 1, 0 ≤ Φ ≤ L−2, L = log(XY ). Let g be an

arbitrary real function on D. Then for an absolute constant C we have

Sg(D) =
∑

1≤i≤C

Sg(D
′
i) + O(Z), Z = X + Y,

where D′
i ⊆ D, D′

i takes the form

{(x, y) | c ≤ y ≤ d, g1(y) ≤ x ≤ g2(y)}
and gi(y) is either a linear function or has continuous derivatives of order

two on [c, d], and in the latter case it satisfies, similarly to (3),

g
(r)
i (y) = λ−µi

i (µi)ry
µi−r(1 + O(Φ)), i = 1, 2, r = 0, 1, 2, µi = ϕ−1

i .
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Proof. We can assume the complicated case that both f1(x) and f2(x)
are not constant on I. Let

min
x∈I

f1(x) = y1, max
x∈I

f1(x) = Y1, min
x∈I

f2(x) = y2, max
x∈I

f2(x) = Y2.

If f1(x) is a linear function, then f ′
1(x) 6= 0, and otherwise it follows from

(3) that f ′
1(x) 6= 0 on I (we can assume that X is greater than a suitable

constant, for otherwise Lemma 1 follows trivially). The same can be said of
f ′
2(x). Thus f ′

1(x) and f ′
2(x) do not change signs on I. Assume that f ′

1(x)
and f ′

2(x) are positive on I (the other cases can be treated similarly). Then
both f1(x) and f2(x) are strictly increasing on I. Therefore, for yi ≤ y ≤ Yi,
fi(x) = y has a unique solution x = Fi(y), and F ′′

i (y) is continuous and 6= 0
on [yi, Yi]. In particular, if fi(x) satisfies (3), then by taking derivatives in
y on both sides of fi(Fi(y)) = y, we can verify that Fi(y) satisfies

F
(r)
i (y) = λ−µi

i (µi)ry
µi−r(1 + O(Φ)), µi = ϕ−1

i , r = 0, 1, 2.

Exchanging the roles of x and y we have Sg(D) = Sg(D1), where

D1 = {(x, y) | y1 ≤ y ≤ Y2, a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)}, [a, b] = I.

If y1 ≥ Y2, then Sg(D1) = O(1). Let y1 < Y2, and assume that Y1 ≤ Y2.
Then

Sg(D1) = Sg(D2) + Sg(D3) + O(X),

D2 = {(x, y) | y1 ≤ y ≤ Y1, a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)},
D3 = {(x, y) | Y1 ≤ y ≤ Y2, a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)}.

Assume that y1 ≥ y2. Because both f1(x) and f2(x) are strictly increasing,
we have

D2 = {(x, y) | y1 ≤ y ≤ Y1, F2(y) ≤ x ≤ F1(y)},
D3 = {(x, y) | Y1 ≤ y ≤ Y2, F2(y) ≤ x ≤ b}.

If y1 < y2, then for y2 ≤ Y1 we have

Sg(D2) = Sg(D4) + Sg(D5) + O(X),

where

D4 = {(x, y) | y1 ≤ y ≤ y2, a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)}
= {(x, y) | y1 ≤ y ≤ y2, a ≤ x ≤ F1(y)},

D5 = {(x, y) | y2 ≤ y ≤ Y1, a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)}
= {(x, y) | y2 ≤ y ≤ Y1, F2(y) ≤ x ≤ F1(y)}.

Similarly, we can treat the summation on D3. In case Y1 > Y2, we have

Sg(D1) = Sg(D6) + Sg(D7) + O(X),
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D6 = {(x, y) | y1 ≤ y ≤ max(y1, y2), a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)},
D7 = {(x, y) | max(y1, y2) ≤ y ≤ Y2, a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)}

= {(x, y) | max(y1, y2) ≤ y ≤ Y2, F2(y) ≤ x ≤ F1(y)}.
Evidently, for y1 ≥ y2 we have Sg(D6) = O(X), and if y1 < y2, then

D6 = {(x, y) | y1 ≤ y ≤ y2, a ≤ x ≤ F1(y)}.
Thus Lemma 1 is proved in case both f1(x) and f2(x) are not constant on I.
For the other cases, the argument is similar and easier. The proof is finished.

The next result is Weyl’s inequality for two variables, which can be
proved similarly to Lemma 5 of [HB].

Lemma 2. Let X and Y be positive numbers with X ≥ 100, Y ≥ 100,
and M and N be positive integers with M ≤ X, N ≤ Y . Let the summation

range D satisfy

D = {(a, b) | a ∈ I, b ∈ Ja} ⊆ [X, X ′] × [Y, Y ′],

where X ≤ X ′ = O(X), Y ≤ Y ′ = O(Y ), I is an interval , Ja is an interval

depending on a, and Z(m, n) is a complex number for X ≤ m ≤ X ′ and

Y ≤ n ≤ Y ′. Then
∣∣∣

∑

(a,b)∈D

Z(a, b)
∣∣∣
2
≤ (1 + (X ′ − X)M−1)(1 + (Y ′ − Y )N−1)S̃,

where

S̃ =
∑

|q|≤M

∑

|r|≤N

(1 − |q|M−1)(1 − |r|N−1)Sq,r,

Sq,r =
∑

(a,b)∈D(q,r)

Z(a, b)Z(a + q, b + r),

D(q, r) = {(a, b) | (a, b) ∈ D, (a + q, b + r) ∈ D}.

Proof. It is a particular case of Lemma 6.1 of [GK].

Lemma 3. Suppose f(x) is a real function, f ′′(x) is continuous and

|f ′′(x)| ≈ r, r > 0,

on the interval [a, b], b > a > 0. Then
∑

a≤x≤b

e(f(x)) ≪ (b − a)r1/2 + r−1/2.

Proof. It is Lemma 2.2 of [GK].
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Lemma 4. Let f(x) be a real function such that f (4)(x) is continuous on

the interval [a, b] (for k ≥ 3, f (k)(x) denotes the derivative of order k), and

|f ′′(x)| ≈ R−1, βk(x) = f (k)(x)/f ′′(x) = O(U2−k),

where R > 0, U ≥ 1, 3 ≤ k ≤ 4, 1 ≤ a < b ≤ 2a. Then
∑

a≤n≤b

e(f(n)) = λ
∑

α<ν<β

|f ′′(xν)|−1/2e(f(xν) − νxν + 1/8) + O(R1/2)

+ O(log(2 + aR−1)) + O((a + R)U−1).

Proof. It is a particular case of Lemma 3.6 of [GK].

Lemma 5. Let a ≈ X, b ≈ Y , X ≥ 1, Y ≥ 1, qr 6= 0, λ = X/|r|+ Y/|q|,
and

|bq − γ1ar| ≤ η1λ|qr|, |bq − γ2ar| ≤ η2λ|qr|,
where γ1 and γ2 are absolute constants, γ1 6= γ2, and η1 > 0, η2 > 0. Then

there is an absolute constant δ > 0 such that η1 + η2 ≥ 2δ.

Proof. From

|bq − γ1ar| ≤ η1λ|qr|, |bq − γ2ar| ≤ η2λ|qr|,
we get

b|q| ≤ λ
η1|γ2| + η2|γ1|

|γ1 − γ2|
|qr|, a|r| ≤ λ

η1 + η2

|γ1 − γ2|
|qr|,

and thus

|qr|λ ≪ a|r| + b|q| ≤ λ
η1(1 + |γ2|) + η2(1 + |γ1|)

|γ1 − γ2|
|qr|

≤ λ(η1 + η2)(1 + |γ1| + |γ2|)
|γ1 − γ2|

|qr|,

and the conclusion of Lemma 5 follows.

Our Lemma 6 improves the coefficient 2M+N of the corresponding result
of [C].

Lemma 6. Let M, N ≥ 1, Am, Bn, um and νn (1 ≤ m ≤ M , 1 ≤ n ≤ N)
be positive numbers, and 0 ≤ Q1 < Q2. Then there is a number q ∈ [Q1, Q2]
such that

(4)
∑

1≤m≤M

Amqum +
∑

1≤n≤N

Bnq−νn

≤ (M + N)
( ∑

1≤m≤M

AmQum

1 +
∑

1≤n≤N

BnQ−νn

2

+
∑

1≤m≤M

∑

1≤n≤N

(Aνn
m Bum

n )1/(um+νn)
)
.
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Proof. Let q = max(Q1, min1≤i≤M Ci), where

Ci = min(Q2, min
1≤j≤N

λi,j), λi,j = (BjA
−1
i )1/(ui+νj).

Obviously, q ∈ [Q1, Q2]. For a fixed integer m, 1 ≤ m ≤ M , there exists an
integer r, 1 ≤ r ≤ N , such that

max
1≤j≤N

λm,j = λm,r.

Thus, if we denote the right side of (4) as (M + N)S, we have

(5) Amqum ≤ AmQum

1 + AmCum
m ≤ AmQum

1 + Amλum
m,r ≤ S.

For an integer n, 1 ≤ n ≤ N , we have, for some integer k, 1 ≤ k ≤ M ,

min
1≤i≤M

min(Q2, λi,n) = min(Q2, λk,n).

Thus, from

Ci ≥ min(Q2, λi,n),

we get

Bnq−νn ≤ Bn( min
1≤i≤M

Ci)
−νn ≤ Bn( min

1≤i≤M
min(Q2, λi,n))−νn(6)

= Bn(min(Q2, λk,n))−νn ≤ BnQ−νn

2 + Bnλ−νn

k,n ≤ S.

Summing over m and n in (5) and (6) respectively yields the inequality (4).

Lemma 7. Let f(x) be a real function which has continuous derivative

f ′′′(x) on [a, b], where [a, b] ⊆ [N, N ′], N ≥ 1, and N ′ = O(N). Moreover ,
assume that

|f (r)(x)| ≈ λN1−r for x ∈ [a, b],

for all 1 ≤ r ≤ 4, and some λ > 0. Then
∑

a≤n≤b

e(f(n)) ≪ min(λ1/6N4/6, λ1/14N11/14) + λ−1.

Proof. This follows by the familiar arguments showing that (1/6, 4/6)
and (1/14, 11/14) (= A(1/6, 4/6)) are exponent pairs.

3. Proof of Theorem 1. To estimate the exponential sum Sg(D), we
assume that

(7) F ≤ min(X3, Y 3), min(X, Y ) ≥ L6;

the other cases will be treated easily later. Let

(8) max(XL/Y, Y L/X) ≤ t ≤ XY L−4, M = (tX/Y )1/2, N = (tY/X)1/2,

where t is a parameter. Obviously,

1 ≤ M ≤ XL−2, 1 ≤ N ≤ Y L−2.
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By Lemma 2 we get

(9) |Sg(D)|2 = O((XY )2(MN)−1 + XY (MN)−1(S1 + S2 + S3)),

where, for D1 = {(a, b) | (a, b) ∈ D, (a + q, b + r) ∈ D},
S1 =

∑

1≤|q|≤M

∑

1≤|r|≤N

|SG(D1)|, G(a, b) = g(a + q, b + r) − g(a, b),

S2 =
∑

1≤|r|≤N

∣∣∣
∑

(a,b)∈D
(a,b+r)∈D

e(g(a, b + r) − g(a, b))
∣∣∣,

S3 =
∑

1≤|q|≤M

∣∣∣
∑

(a,b)∈D
(a+q,b)∈D

e(g(a + q, b) − g(a, b))
∣∣∣.

To estimate S1, it suffices to estimate SG(D1) for q > 0. From

(10)
X ≤ a ≤ 2X, Y ≤ b ≤ 2Y,

1 ≤ |q| ≤ M ≤ XL−2, 1 ≤ |r| ≤ N ≤ Y L−2,

we get
1
2X ≤ a + q ≤ 4X, 1

2Y ≤ b + r ≤ 4Y.

Let

(11) ̺ =
|q|
X

+
|r|
Y

, λ =
̺XY

|qr| =
Y

|r| +
X

|q| .

By the assumption (2), making Taylor expansion, for real variables a, b, q
and r satisfying (10), we get, for suitable numbers a′, b′ (|a′ − a| ≤ q and
|b′ − b| ≤ r),

Gn,s(a, b) = gn,s(a + q, b + r) − gn,s(a, b)(12)

= qgn+1,s(a, b) + rgn,s+1(a, b) + O(q2|gn+2,s(a
′, b′)|

+ |qrgn+1,s+1(a
′, b′)| + r2|gn,s+2(a

′, b′)|)
= A(α)n(β)sa

α−n−1bβ−s−1(Φn,s(qb, ra) + O(XY ̺(̺ + ∆))),

where n ≥ 0, s ≥ 0, n + s ≤ 2, and Φn,s(ξ, η) = (α − n)ξ + (β − s)η. Let
Gi,j = Gi,j(a, b). From (12) we get

(13) G2,0G0,2 − G2
1,1 = A2a2α−4b2β−4(Φ(qb, ra) + O((XY ̺)2(̺ + ∆))),

where Φ(ξ, η) is the homogeneous polynomial

Φ(ξ, η) = (α)2(β)2Φ2,0(ξ, η)Φ0,2(ξ, η) − (α)21(β)21Φ
2
1,1(ξ, η)

= αβ(2 − α − β)(α(α − 1)ξ2 + 2(α − 1)(β − 1)ξη + β(β − 1)η2).

Because α+β 6= 1, we can show that the equation Φ(t, 1) = 0 has no double
roots. Let the roots be θ1 and θ2, |θ1| ≤ |θ2|. We can assume that θ1 and θ2

are real. In case θ1 and θ2 are conjugate complex numbers, the polynomial
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Φ(t, 1) is positive definite or negative definite, and the treatment would be
simpler. Let

θ3 =
2 − β

α
, θ4 =

β

α − 2
,

D2 = {(a, b) | |bq − θiar| < ̺ for some i},
D3 = {(a, b) | (a, b) ∈ D1, (a, b) 6∈ D2}.

For a fixed integer b, since θi 6= 0, the number of integers a satisfying
|bq − θiar| < ̺ is ≪ 1. Thus

(14) |SG(D2)| ≤
∑

(a,b)∈D2

1 ≪ Y, |SG(D1)| ≪ |SG(D3)| + Y.

For (a, b) ∈ D3 and each i, we have

̺ ≤ |bq − θiar| ≤ 2(1 + |θi|)λ|qr|,
thus we can divide D3 into ≪ L4 small ranges of the shape (note that
λ|qr| = ̺XY , cf. (11))

D4 = {(a, b) | εiλ|qr|∆i ≤ bq − θiar ≤ δiλ|qr|∆i for 1 ≤ i ≤ 4} ∩ D1,

where 1/(XY ) ≤ ∆i ≤ 2(1 +
∑

1≤i≤4 |θi|), and (εi, δi) = (−2,−1) or (1, 2).

For example we can take ∆i = (XY )−12ki , ki ≥ 0 an integer. Consequently,
for some particular range D4 of the above shape, we have

(15) |SG(D3)| ≪ L4|SG(D4)| + L4X,

where the error term O(L4X) of (15) comes from counting the number of
lattice points (a, b) satisfying

bq − θiar = λ∆̃i|qr|, or 2λ∆̃i|qr|, or −2λ∆̃i|qr|, or −λ∆̃i|qr|
for some i and O(L) values of ∆̃i. Let

R1 = max
1≤i≤4

(q−1(εiλ|qr|∆i + θiar)), R2 = min
1≤i≤4

(q−1(δiλ|qr|∆i + θiar)).

Then from

D = {(a, b) | a ∈ I, f1(a) ≤ b ≤ f2(a)}
we have

D4 = {(a, b) | a ∈ I1, B1(a) ≤ b ≤ B2(a)},
where I1 = {a ∈ I | (a + q) ∈ I}, and

B1(a) = max(f1(a+q)−r, f1(a), R1), B2(a) = min(f2(a+q)−r, f2(a), R2).

From now on, we assume that each interval appearing has length ≥ 10 if
it is not empty, for the other cases can be treated easily. By discussing the
monotonicity we can show that I can be divided into O(1) disjoint intervals,
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on each of which both B1(a) and B2(a) have explicit forms. For instance, to
compare f1(a + q) − r and f1(a) we let

G1(a) = f1(a + q) − f1(a) − r.

If f1 is a linear function on I1, then G1 is a constant which may depend on
q and r. In case f1 has continuous derivatives up to order 2 and satisfies (1)
for x ∈ I, we find that

G′
1(a) = f ′

1(a + q) − f ′
1(a)

does not change its sign. It follows that G1(a) is either a constant on I1,
or strictly monotonic on I1. In the latter case there is at most one number
c ∈ I such that G1(c) = 0, and G1(a) does not change its sign on [a1, c) and
(c, b1] respectively, where I1 = [a1, b1], b1 − a1 ≥ 10. Assume for example
G1(a) ≤ 0 for a ∈ [a1, c]. Then for a ∈ [a1, c] we have

max(f1(a + q) − r, f1(a)) = f1(a).

Using the similar method, we can continue our monotonicity arguments by
taking derivatives to get

(16) |SG(D4)| ≪
∑

|SG(D5)| + Y,

where the summation is taken over O(1) disjoint ranges of the shape

D5 = {(a, b) | a ∈ I ′, B1(a) ≤ b ≤ B2(a)} ⊆ D4,

I ′ is a suitable interval contained in I1, B1(a) has an explicit expression, one
of the three forms

f1(a + q) − r, f1(a), k1a + k2, (k1, k2) = (rθiq
−1, εiλ|r|∆i),

for some i, 1 ≤ i ≤ 4, and similarly, B2(a) has one of the following three
forms on I ′:

f2(a + q) − r, f2(a), k′
1a + k′

2, (k′
1, k

′
2) = (rθjq

−1, δjλ|r|∆j),

for some j, 1 ≤ j ≤ 4. We need to estimate each SG(D5). As α + β 6= 2,
αβ 6= 0, by a calculation we find that θ3 and θ4 are not roots of Φ(t, 1) = 0,
thus θ3, θ4 6= θ1, θ2. From α + β 6= 2 we also get θ3 6= θ4. Thus by Lemma 5
there exists an absolute constant δ > 0 (we consider α and β also as absolute
constants, which is indeed the case in applications) such that

(17) ∆i + ∆j ≥ 2δ for i 6= j, {i, j} ⊆ {1, 2, 3, 4}.
Let ∆̃ = min1≤i≤4 ∆i. We distinguish several cases to estimate SG(D5).

Case (i): ∆̃ ≤ L(∆+̺) and ∆3 > δ. As ∆3 > δ, ̺ ≤ 2L−1 and ̺ ≤ L−2,
for (a, b) ∈ D5, from (12) we get

(18) |G0,2(a, b)| ≈ F̺Y −2.
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For (a, b) ∈ D5 and a fixed a ∈ I ′, G0,2(a, b) is continuous on [B1(a), B2(a)]
(we can assume B1(a) < B2(a)), and

(19) |bq − θiar| ≤ 2∆iλ|qr| ≤ 2L(∆ + ̺)λ|qr|
for some i and ∆i. Thus (using ̺λ ≫ 1, cf. (11))

∑

B1(a)≤b≤B2(a)

1 = O(1 + L(∆ + ̺)λ|r|) = O(L(∆ + ̺)λ|r|),

and by (18) and Lemma 3 we get
∣∣∣

∑

B1(a)≤b≤B2(a)

e(G(a, b))
∣∣∣ ≪

( ∑

B1(a)≤b≤B2(a)

1
)
(F̺Y −2)1/2 + (F̺Y −2)−1/2

≪ (L(∆ + ̺)λ|r|)(F̺Y −2)1/2 + (F̺Y −2)−1/2.

Consequently,

(20) SG(D5) = O((F̺3)1/2XL(∆ + ̺)λ + XY (F̺)−1/2).

Case (ii): ∆̃ ≤ L(∆ + ̺) and ∆3 ≤ δ. In this case, we argue similarly
to (i), but with the roles of a and b exchanged. From (17) we get ∆4 > δ,
and thus from (12), for (a, b) ∈ D5 we get

(21) |G2,0(a, b)| ≈ F̺X−2.

By Lemma 1 we have

(22) SG(D5) =
∑

1≤i≤C

SG(D′
i) + O(X + Y ),

where C is an absolute constant, and

D′
i = {(a, b) | b ∈ I ′i, a ∈ I(b)} ⊆ D5,

where I ′i and I(b) are suitable intervals. For (a, b) ∈ D5 and b ∈ I ′i, G2,0(a, b)
is continuous on I(b), and

(23) |bq − θiar| ≤ 2∆iλ|qr| ≤ 2L(∆ + ̺)λ|qr|
for some i and ∆i. Thus (note that all θi 6= 0, and ̺λ ≫ 1)

∑

a∈I(b)

1 = O(1 + L(∆ + ̺)λ|q|) = O(L(∆ + ̺)λ|q|),

and by (21) and Lemma 3 we get
∣∣∣

∑

a∈I(b)

e(G(a, b))
∣∣∣ ≪

( ∑

a∈I(b)

1
)
(F̺X−2)1/2 + (F̺X−2)−1/2

≪ (L(∆ + ̺)λ|q|)(F̺X−2)1/2 + (F̺X−2)−1/2.

Consequently,

SG(D′
i) = O(Y X−1(F̺)1/2L(∆ + ̺)λ|q| + XY (F̺)−1/2),
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and by (22) we get

(24) SG(D5) = O(Y (F̺3)1/2L(∆ + ̺)λ + XY (F̺)−1/2 + X + Y ).

Case (iii): ∆̃ > L(∆ + ̺) and ∆3 > δ. By (12) and (13) we find that
for (a, b) ∈ D5, the functions

G0,2(a, b), G2,0(a, b), G2,0(a, b)G0,2(a, b) − G2
1,1(a, b)

do not change their signs, and satisfy

|G0,2(a, b)| ≈ F̺Y −2, |G2,0(a, b)| ≈ ∆4F̺X−2,(25)

|G2,0(a, b)G0,2(a, b) − G2
1,1(a, b)| ≈ min(∆1, ∆2)(F̺X−1Y −1)2,(26)

where to deduce (26) we have used (cf. (13))
∣∣∣∣Φ

(
qb

ra
, 1

)∣∣∣∣ ≈
∣∣∣∣
(

qb

ra
− θ1

)(
qb

ra
− θ2

)∣∣∣∣ ≈
(

q

X

)2

∆1∆2λ
2 ≈

(
̺Y

|r|

)2

∆1∆2,

and max(∆1, ∆2) ≥ δ (which follows from (26)). From (12) and (25) we have

(27) |G0,2| ≈ F̺Y −2, G0,3 ≪ F̺Y −3, G0,4 ≪ F̺Y −4

for (a, b) ∈ D5, and Gi,j = Gi,j(a, b). We can assume that G0,2 > 0 on D5;
the case of G0,2 < 0 can be treated similarly. For a fixed a ∈ I ′ such that
B1(a) < B2(a) − 10, by Lemma 5 and (27) we obtain

(28)
∑

B1(a)≤b≤B2(a)

e(G(a, b))

=
∑

α1≤u≤α2

Ke(K1) + O(Y (F̺)−1/2) + O(Y (F̺)−1) + O(L),

where

K = K(a, u) = (G0,2(a, b(a, u)))−1/2,

K1 = K1(a, u) = G(a, b(a, u)) − ub(a, u) + 1/8,

and b(a, u) is the solution of G0,1(a, b) = u for given numbers a ∈ I ′ and
α1 ≤ u ≤ α2, αi = αi(a) = G0,1(a, Bi(a)). As G0,2 = G0,2(a, b) > 0 for
(a, b) ∈ D5, for a fixed a ∈ I ′ the function G0,1(a, b) is strictly increasing
with respect to b ∈ [B1(a), B2(a)]. By (2), taking Taylor expansion we have

(29)
αi = G0,1(a, Bi(a)) = Fi(a) + O(FY −1̺(̺ + ∆)),

Fi(a) = Aaα−1Bβ−2
i (qαβBi + ar(β)2).

For a ∈ I ′, there are many choices of (B1(a), B2(a)); we assume the difficult
case that

(B1(a), B2(a)) = (f1(a + q) − r, f2(a + q) − r),
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and neither f1 nor f2 is a linear function. Then from (1) we deduce for
i = 1, 2 that

(30)
Bi(a) = λia

ϕi(1 + O(Φ1)),

B′
i(a) = λiϕia

ϕi−1(1 + O(Φ1)) = ϕiBi(a)a−1(1 + O(Φ1)),

where Φ1 = Φ + ̺. From (29) and (30) we get

(31) αi = gi(a) + O(∆1), gi(a) = Aaα−1bβ−2
i (qαβbi + ar(β)2),

where ∆1 = F̺(̺ + ∆ + Φ)Y −1 and bi = bi(a) = λia
ϕi . Let C1 be a large

absolute constant such that

X1(a) = g1(a) + C1∆1 > α1, X2(a) = g2(a) − C1∆1 < α2,

which is possible in view of (31). As

K = K(a, u) = O(Y (F̺)−1/2), Xi(a) − αi = O(∆1), i = 1, 2,

it follows that

(32)
∑

α1≤u≤α2

Ke(K1) =
∑

X1(a)≤u≤X2(a)

Ke(K1) + O(Y (F̺)−1/2(1 + ∆1)),

whether X1(a) ≥ X2(a) or not. We consider the set of real numbers a with
a ∈ I ′ and B2(a) ≥ B1(a) + 10. Let

F (a) = B2(a) − B1(a) − 10, a ∈ I ′.

By (30) we have

F ′(a) = B′
2(a) − B′

1(a)(33)

= λ2ϕ2a
ϕ2−1(1 + O(Φ1)) − λ1ϕ1a

ϕ1−1(1 + O(Φ1)), a ∈ I ′.

If F ′(a) 6= 0 on I ′, then F (a) is strictly monotonic on I ′. We consider the
difficult case that there is a number a1 ∈ I ′ with F ′(a1) = 0. It ϕ1 = ϕ2,
from (33) we also get λ1 = λ2, and thus

B2(a) − B1(a) = O(Y Φ1) = O(Y (Φ + ̺))

for a ∈ I ′, and by (27) and Lemma 3 we get (as Y ̺ > |r| ≥ 1)
∑

B1(a)≤b≤B2(a)

e(G(a, b)) ≪ (1 + Y (Φ + ̺))(F̺Y −2)1/2 + (F̺Y −2)−1/2(34)

≪ (Φ + ̺)(F̺)1/2 + Y (F̺)−1/2,

SG(D5) =
∑

a∈I′

∑

B1(a)≤b≤B2(a)

e(G(a, b))(35)

≪ X(F̺)1/2(Φ + ̺) + XY (F̺)−1/2.
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Suppose ϕ1 6= ϕ2. Then for any other a2 ∈ I ′ such that F ′(a2) = 0, from
(33) we get

λ1ϕ1

λ2ϕ2
(aϕ1−ϕ2

1 − aϕ1−ϕ2

2 ) = O(Φ1),

which implies that |a2 − a1| ≤ C2XΦ1 for a suitable absolute constant C2.
Let

I ′1 = {a ∈ I ′ | |a − a1| > C2XΦ1}, I ′2 = {a ∈ I ′ | |a − a1| ≤ C2XΦ1}.
We have F ′(a) 6= 0 on I ′1, and I ′1 can be divided into at most two disjoint
intervals on each of which F (a) is strictly monotonic. If F̺ ≤ Y , by Lemma 3
and (27) we get

(36) |SG(D5)| ≪ X((F̺)1/2 + Y (F̺)−1/2) ≪ XY (F̺)−1/2.

Suppose F̺ > Y . By Lemma 3 and (27) we get (as X̺ ≥ |q| ≥ 1)

(37)
∣∣∣
∑

a∈I′
2

∑

B1(a)≤b≤B2(a)

e(G(a, b))
∣∣∣

≪ (1 + X(Φ + ̺))((F̺)1/2 + (F̺Y −2)−1/2) ≪ X(Φ + ̺)(F̺)1/2.

From the observations on I ′1 and (37), there is an interval I ′3 ⊆ I ′ such that

(38) |SG(D5)| ≪
∣∣∣
∑

a∈I′
3

∑

B1(a)≤b≤B2(a)

e(G(a, b))
∣∣∣ + X(Φ + ̺)(F̺)1/2,

and F (a) is strictly monotonic on I ′3 if I ′3 6= ∅. It follows that there are
intervals I ′4, I

′
5 ⊆ I ′3 such that I ′3 = I ′4 ∪ I ′5, and

I ′4 = {a ∈ I ′3 | F (a) ≤ 0}, I ′5 = {a ∈ I ′3 | F (a) > 0}.
By Lemma 3 and (27) we have

∣∣∣
∑

a∈I′
4

∑

B1(a)≤b≤B2(a)

e(G(a, b))
∣∣∣ ≪ X((F̺Y −2)1/2 + (F̺Y −2)−1/2)

≪ XY −1(F̺)1/2 + XY (F̺)−1/2.

Thus (38) gives

(39) |SG(D5)|
≪

∣∣∣
∑

a∈I′
5

∑

B1(a)≤b≤B2(a)

e(G(a, b))
∣∣∣ + X(Φ + ̺)(F̺)1/2 + XY (F̺)−1/2.

We suppose I ′5 6= ∅. By (28), (32), (35) and (39), we have

|SG(D5)| ≪
∣∣∣
∑

a∈I′
5

∑

X1(a)≤u≤X2(a)

Ke(K1)
∣∣∣(40)

+ XY (F̺)−1/2 + X(∆ + Φ + ̺)(F̺)1/2 + XL,
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and, by exchanging the order of summation
∑

a∈I′
5

∑

X1(a)≤u≤X2(a)

Ke(K1) =
∑

u1≤u≤u2

∑

a∈S(u)

Ke(K1),

where u1 = mina∈I′
5
X1(a), u2 = maxa∈I′

5
X2(a), and

S(u) = {a ∈ I ′5 | X1(a) ≤ u ≤ X2(a)}.
The function X1(a) − u is monotonic on each of the O(1) disjoint intervals
contained in I ′5, because from α+β 6= 2 (which implies |α−1+ϕ1(β−1)|+
|α + ϕ1(β − 2)| 6= 0) we find that (cf. (31))

X ′
1(a) = g′1(a)

= βAaα−2bβ−2
1 [αq(α− 1 + ϕ1(β − 1)) + (β − 1)r(α + ϕ1(β − 2))a/b1]

= 0

has at most one solution on I ′5. A similar conclusion holds for X2(a)−u. As
the intersection of two closed intervals is either empty or a closed interval
(maybe consisting of only one point), it follows that S(u) consists of O(1)
disjoint intervals. Therefore for a suitable interval I(u) ⊆ S(u) ⊆ I ′5 we get

(41)
∣∣∣
∑

a∈I′
5

∑

X1(a)≤u≤X2(a)

Ke(K1)
∣∣∣ ≪

∑

u1≤u≤u2

∣∣∣
∑

a∈I(u)

Ke(K1)
∣∣∣.

For a u with u1 ≤ u ≤ u2, suppose I(u) 6= ∅, and I(u) is an interval of length
> 0. Then, for all a ∈ I(u), (a, b(a, u)) ∈ D5, where b(a, u) is the solution of

G0,1(a, b(a, u)) = u.

Taking derivatives in a of both sides of this equality, we get

∂b

∂a
(a, u) = b′a(a, u) = −G1,1(a, b(a, u))/G0,2(a, b(a, u)).

Thus (by (27))

K ′
a(a, u) = −1

2G
−3/2
0,2 (G0,3 · b′a + G1,2)

= −1
2G

−5/2
0,2 (G1,2G0,2 − G1,1G0,3) ≪ Y X−1(F̺)−1/2,

and by partial summation,

(42)
∣∣∣

∑

a∈I(u)

Ke(K1)
∣∣∣ ≪ Y (F̺)−1/2

∣∣∣
∑

a∈I1(u)

e(K1(a, u))
∣∣∣,

where I1(u) ⊆ I(u), I1(u) is an interval. Let I1(u) 6= ∅. For a ∈ I(u), by
(25) and (26) we have

(K1)
′
a = G1,0,

|(K1)
′′
a| = |G2,0 + G1,1b

′
a| = |(G2,0G0,2 − G2

1,1)/G0,2| ≈ ∆(1)F̺X−2,
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where we let ∆(1) = min(∆1, ∆2). By (27) and Lemma 3 we get

(43)
∣∣∣

∑

a∈I1(u)

e(K1)
∣∣∣ ≪ (F̺)1/2 + X(∆(1))−1/2(F̺)−1/2.

Consequently, as F̺ > Y and ui = O(F̺Y −1), from (41)–(43) we deduce
that ∣∣∣

∑

a∈I′
5

∑

X1(a)≤u≤X2(a)

Ke(K1)
∣∣∣ ≪ F̺ + X(∆(1))−1/2.

Therefore from (40) we obtain

(44) |SG(D5)|
≪ F̺ + XY (F̺)−1/2 + X(∆ + Φ + ̺)(F̺)1/2 + XL + X(∆(1))−1/2.

To eliminate the term X(∆(1))−1/2 of (44), similarly to the estimate (24)
of (ii) we can derive that

SG(D5) = O(Y X−1(F̺)1/2∆(1)λ|q| + XY (F̺)−1/2 + X + Y )

= O((F̺)1/2̺Y 2|r|−1∆(1) + XY (F̺)−1/2 + X + Y ).

Thus from (44) we get for F̺ > Y the estimate

SG(D5) = O(F̺ + XY (F̺)−1/2(45)

+ X(∆ + Φ + ̺)(F̺)1/2 + XL + Y + R),

R = min(X∆(1)−1/2, F 1/2̺3/2Y 2|r|−1∆(1))

≤ 6
√

F̺3X4Y 4|r|−2.

In view of (36), we find that (45) also holds for F̺ ≤ Y . For other choices
of (B1(a), B2(a)), we can deduce similarly to prove (45).

Case (iv): ∆̃ > L(∆ + ̺) and ∆3 ≤ δ. By (17) we have ∆1, ∆2, ∆4 ≥ δ.
Using the decomposition (22) and noting that D′

i has a similar form to D5,
but with the roles of a and b exchanged, we can treat SG(D′

i) as we treated
SG(D5) in (iii), but with the roles of a and b exchanged, and we get for
F̺ ≥ X, similarly to (44), the estimate

SG(D′
i) = O(F̺ + XY (F̺)−1/2 + Y (∆ + Φ + ̺)(F̺)1/2 + Y L).

For F̺ < X, similarly to (36) we get

SG(D′
i) = O(XY (F̺)−1/2).

Thus the estimate

(46) SG(D5) = O(F̺ + XY (F̺)−1/2 + Y (∆ + Φ + ̺)(F̺)1/2 + Y L + X)

always holds.
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Case (v): Final estimate. From (20), (24), (45), and (46), we have (note
that ̺λ ≫ 1, cf. (11))

SG(D5) = O(F̺ + XY (F̺)−1/2 + LZ(47)

+ Z(∆ + Φ + ̺)(F̺)1/2̺λ + 6
√

F̺3X4Y 4|r|−2).

where Z = X + Y . From (14)–(16) and (47) we obtain

L−5|SG(D1)| ≪ F̺ + XY (F̺)−1/2 + Z(48)

+ (F̺)1/2Z(∆ + Φ + ̺) + 6
√

F̺3X4Y 4|r|−2.

In case Φ(t, 1) = 0 has conjugate complex roots, we can argue similarly and
relatively simply to obtain (48), for in this case

|G2,0G0,2 − G2
1,1| ≈ (F̺X−1Y −1)2

always holds, and we only need to divide D3 into ≪ L2 small ranges of the
shape

{(a, b) | εiλ|qr|∆i ≤ bq − θiar ≤ δiλ|qr|∆i for 3 ≤ i ≤ 4} ∩ D1.

From (8) and (48) we get

L−6 XY

t
S1 ≪

√
F 2XY t + 4

√
F−2(XY )9t−1 + XY Z(49)

+
4
√

F 2XY Z4t3 +
4
√

F 2X3Y 3Z4τ4t +
12
√

F 2X19Y 15t,

where τ = ∆ + Φ. For 1 ≤ r ≤ N , the condition “(a, b) ∈ D and (a, b + r) ∈
D ” is equivalent to

(a, b) ∈ D′
1 = {(a, b) | a ∈ I, f1(a) ≤ b ≤ f2(a) − r}.

Let G(a, b) = g(a, b + r) − g(a, b). We can estimate directly SG(D′
1) as we

estimated SG(D5) in (iii), for now

|G2,0G0,2 − G2
1,1| ≈ (F̺X−1Y −1)2, ̺ = |r|/Y,

always holds. Thus we can deduce, similarly to (45) (the additional “R”
term will not emerge here, cf. (36) and (44)) that

SG(D′
1) = O(F |r|Y −1 + XY (F |r|Y −1)−1/2(50)

+ ZL + X(F |r|Y −1)1/2(∆ + Φ + |r|/Y )).

A similar estimate with r ∈ [−N,−1], and D′
1 replaced by

{(a, b) | a ∈ I, f1(a) − r ≤ b ≤ f2(a)},
also holds. For 1 ≤ |q| ≤ M , the condition “(a, b) ∈ D and (a + q, b) ∈ D”
is equivalent to

(a, b) ∈ D′′
1 = {(a, b) | a ∈ I1, f1(a) ≤ b ≤ f2(a)},
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where I1 is the interval determined by a ∈ I and (a+q) ∈ I. Suppose I1 6= ∅.
Let

G(a, b) = g(a + q, b) − g(a, b).

We can deduce similarly to (47) and (50) to get (̺ = |q|/X)

SG(D′′
1) = O(F |q|X−1 + XY (F |q|X−1)−1/2 + ZL(51)

+ X(F |q|X−1)1/2(∆ + Φ + |q|/X)).

From (8), (50) and (51) we have

L−1 XY

t
(S2 + S3) ≪ FZ +

4
√

F−2t−3X7Y 7Z4 +
√

t−1XY Z4(52)

+
4
√

t−1F 2X5Y Z4τ4 +
4
√

tF 2X3Y −1Z4.

As t ≥ max(XL/Y, Y L/X) ≫ Z2(XY )−1, we can compare similar terms of
(49) and (52); for instance, we have

FZ ≪
√

F 2XY t2,
4
√

F−2t−3X7Y 7Z4 ≪ 4
√

F−2(XY )9t−1,√
t−1XY Z4 ≪ XY Z,

4
√

t−1F 2X5Y Z4τ4 ≪ 4
√

F 2X3Y 3Z4τ4t,
4
√

tF 2X3Y −1Z4 ≪ 4
√

F 2XY Z4t3.

Thus, from (9), (49) and (52) we get

L−6|Sg(D)|2 ≪ (XY )2t−1 +
√

F 2XY t + 4
√

F−2(XY )9t−1(53)

+ XY Z +
4
√

F 2XY Z4t3 +
4
√

F 2X3Y 3Z4τ4t

+
12
√

F 2X19Y 15t.

The term
12
√

F 2X19Y 15t of (53) can be neglected. Indeed, let the seven terms
of (53) be A1, . . . , A7. For F ≤ XY , by Hölder’s inequality we get

A3 + A5 ≫ A
2/3
3 A

1/3
5 ≫ A7.

Let F > XY . Then for X ≥ Y 2,

A1 + A5 ≫ A
8/21
1 A

13/21
5 ≫ A7,

and for X < Y 2,

A2 + A3 ≫ A
4/9
2 A

5/9
3 ≫ A7.

Thus we get from (53) the estimate

L−6|Sg(D)|2 ≪ (XY )2t−1 +
√

F 2XY t + 4
√

F−2(XY )9t−1(54)

+ XY Z +
4
√

F 2XY Z4t3 +
4
√

F 2X3Y 3Z4τ4t.

Suppose X ≥ Y in (54). Then we have

L−6|Sg(D)|2 ≪ (XY )2t−1 +
√

F 2XY t + 4
√

F−2(XY )9t−1(55)

+ X2Y +
4
√

F 2X5Y t3 +
4
√

F 2X7Y 3τ4t.
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By (1) and Lemma 1 we have

Sg(D) =
∑

1≤i≤C

Sg(D
′
i) + O(X),

where C is an absolute constant, and for each i,

D′
i = {(a, b) | b ∈ I ′i, g1(b) ≤ a ≤ g2(b)} ⊆ D,

I ′i is an interval, g1 and g2 are suitable functions. Thus we can use Lemma 7
to estimate the sum over a in Sg(D

′
i), and get

Sg(D
′
i) = O(Y (

6
√

FX3 + X/F )) = O(
6
√

FX3Y 6 + 6
√

F−2(XY )7),

and thus
Sg(D) = O(

6
√

FX3Y 6 + 6
√

F−2(XY )7 + X).

If F ≥ Y 3 or Y ≤ L6, then
6
√

FX3Y 6 ≤ L3( 6

√
F 2(XY )3), and we have

(56) Sg(D) = O(L3( 6
√

F 2(XY )3 + 6
√

F−2(XY )7 + X)).

Suppose (7). The estimate (55) is derived for t ≥ XL/Y (cf. (8)). For
0 ≤ t < XL/Y and F < Y 3, we have

(XY )2t−1 ≫ XY 3L−1 ≫ (
3
√

FX3Y 6)L−1,

and thus from (55) and (56) we get for all t satisfying 0 ≤ t ≤ XY L−4 the
estimate

L−6|Sg(D)|2 ≪ (XY )2t−1 +
√

F 2XY t + 4
√

F−2(XY )9t−1(57)

+ X2Y +
4
√

F 2X5Y t3 +
4
√

F 2X7Y 3τ4t

+ 3
√

F 2(XY )3 + 3
√

F−2(XY )7.

Suppose also t ≤ 3

√
F 2(XY )−1. Then 4

√
F−2(XY )9t−1 ≪ (XY )2t−1, and

from (66) we get

L−6|Sg(D)|2 ≪ (XY )2t−1 +
√

F 2XY t + X2Y +
4
√

F 2X5Y t3(58)

+
4
√

F 2X7Y 3τ4t + 3
√

F 2(XY )3 + 3
√

F−2(XY )7

for 0 ≤ t ≤ min( 3

√
F 2(XY )−1, XY L−4). By Lemma 6 we can choose t in

this range in (58) to get

L−6|Sg(D)|2 ≪ 3
√

F 2(XY )3 + 3
√

F−2(XY )7(59)

+
7
√

F 2X11Y 7 +
5
√

F 2X9Y 5τ4 + X2Y

= B1 + · · · + B5, say.

By Hölder’s inequality we have

B3 = B
3/7
1 B

4/7
5 ≪ B1 + B5,

and

B5 ≪ B
1/2
1 B

1/2
2 ≪ B1 + B2 for X ≤ Y 2, B5 ≪ 3

√
X7Y ≪ B2 for X > Y 2
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(using (7)). Hence Theorem 1 follows from (59) in case X ≥ Y . As X and
Y are symmetric in (54), for the case X < Y we can argue similarly. The
proof of Theorem 1 is finished.

4. Preliminaries to the proof of Theorem 2

(I) The polynomials Fi(t), 3 ≤ i ≤ 7. Let (cf. (22))

(1′) F (t) = Φ(t, 1) = αβ(2−α−β)[α(α−1)t2+2(α−1)(β−1)t+β(β−1)].

To introduce the polynomials Fi(t) for 3 ≤ i ≤ 7, which will be used in the
proof of Theorem 2, we use deeper arguments in the setting of (iii) of §3,
but with the choices (q and r are fixed)

g(a, b) = Aaαbβ , G(a, b) = A[(a + q)α(b + r)β − aαbβ ],

and correspondingly, we take “∆ = Φ = 0” in (iii) (§3). Thus using (42) we
can differentiate the function (u is a fixed number)

K1 = K1(a, u) = G(a, b(a, u)) − ub(a, u) + 1/8,

using b′a = −G1,1/G0,2 to get (Gi,j = Gi,j(a, b(a, u)))

(2′) (K1)
′
a = G1,0, (K1)

′′
a = (G2,0G0,2−G2

1,1)G
−1
0,2, (K1)

(i)
a = PiG

1−c(i)
0,2 ,

where 3 ≤ i ≤ 5, c(3) = 4, c(4) = 6, c(5) = 8, Pi takes the form

(3′) Pi = Pi(a, b(a, u)) =
∑

C(i; r1, . . . , rk, i1, j1, . . . , ik, jk)G
r1

i1,j1
· · ·Grk

ik,jk
,

∑
means summation over lattice points (r1, . . . , rk, i1, j1, . . . , ik, jk) satisfy-

ing the conditions

r1 + · · · + rk = c(i), i1r1 + · · · + ikrk = i,

j1r1 + · · · + jkrk = 2(c(i) − 1), i1 + j1, . . . , ik + jk ≤ i,

where r1, . . . , rk ≥ 1, i1, j1, . . . , ik, jk ≥ 0, c(i) ≥ k ≥ 1, (i1, j1), . . . , (ik, jk)
are different from each other, and C(i; r1, . . . , jk) is a suitable integer. We
note that for 3 ≤ i ≤ 5, (2′) and (3′) can be proved by a direct computation
(a procedure which may be described as “taking the formal derivatives”)
with unspecified coefficients C(i; r1, . . . , jk). Let P = G2,0G0,2 − G2

1,1, and

(4′) P6 = P4P − 3P 2
3 , P7 = P5P

2 − 10PP3P4 + 15P 3
3 .

Using (12) and (13), from (3′) and (4′) we get (b = b(a, u))

(5′) Pi(a, b) = Ac(i)aε(α,i)bδ(β,i)(Φi(qb, ra) + O((XY ̺)c(i)̺)), 3 ≤ i ≤ 7,

where ε(α, i) = (α − 1)c(i) − i, δ(β, i) = (β − 3)c(i) + 2 for 3 ≤ i ≤ 5,
c(6) = 8, c(7) = 12 and

ε(α, 6) = 8α − 14, δ(β, 6) = 8β − 20,

ε(α, 7) = 12α − 21, δ(β, 7) = 12β − 30,
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Φi(ξ, η) is a homogeneous polynomial of degree c(i),

(6′) Φi(ξ, η) = λiξ
c(i) + · · · + µiη

c(i), 3 ≤ i ≤ 7,

λi and µi are constants. Let the polynomials Fi(t) be defined by

(7′) Fi(t) = Φi(t, 1) = λit
c(i) + · · · + µi, 3 ≤ i ≤ 7.

We will use the real roots of the equations Fi(t) = 0 to define summation
ranges. To estimate S1 and S3 of (9), we will use λi 6= 0 for 3 ≤ i ≤ 7, and to
estimate S2 of (9), we will also require µi 6= 0 for 3 ≤ i ≤ 7 as a condition.
Stimulated by the proof of Lemma 7 in [C], we manage to obtain the values
of λi and µi for 3 ≤ i ≤ 5, and so for i = 6 and 7, in terms of α and β. We
have

Lemma 8. Let α, β 6= 0, 1, 2. Then

λi = (αβ(β − 1))c(i)−1α(α − 1)

(
2 − α − β

β − 1

)

i−1

, 3 ≤ i ≤ 5,

λ6 = α8β6(α − 1)2(2 − α − β)2(3 − α − 2β)(2α + 3β − 5),

λ7 = α12β9(2 − α − β)3(α − 1)3(β − 1)3(3 − α − 2β)

× (5 − 2α − 3β)(7 − 3α − 4β),

µi = αβ

(
2 − α − β

β − 2

)

i−1

(β(β − 1)(β − 2))c(i)−1, 3 ≤ i ≤ 5,

µ6 = α2β8(β − 1)6(β − 2)2(2 − α − β)2(4 − α − 2β)(2α + 3β − 6),

µ7 = α3β12(2 − α − β)3(β − 1)9(β − 2)3(4 − α − 2β)

× (6 − 2α − 3β)(8 − 3α − 4β),

where (s)i−1 = s(s−1) · · · (s− i+2) for a real s. Thus for αβ 6= 0, α, β < 1,
we have λiµi 6= 0 for all 3 ≤ i ≤ 7 (note that mα + nβ 6= k for any positive

integers m, n and k with k ≥ m + n).

Proof. Obviously, λi and µi are independent of q and r. To calculate λi

for 3 ≤ i ≤ 5, we choose the special values of q and r, q = [N ] = [
√

Xt/Y ]
and r = 1, where t is the parameter given by (8). Thus for L = log(XY ),

(8′) q ≫ L1/2, |qY | ≫ XL1/2, ̺ ≈ |q|/X,

and from (2′), (5′) and (6′) we find for 3 ≤ i ≤ 5 that

G
c(i)−1
0,2 (K1)

(i)
a = Ac(i)aε(α,i)bδ(β,i)(λi(qb)

c(i) + O((qY )c(i)−1X)(9′)

+ O((XY ̺)c(i)̺))

= Ac(i)aε(α,i)bδ(β,i)(λi(qb)
c(i) + O((qY )c(i)L−1/2)).

Let

G(a, b) = A[(a + q)α(b + 1)β − aαbβ], a ≈ X, b ≈ Y.



224 H. Q. Liu

The assumption G0,2 > 0 is equivalent to αAβ(β − 1) > 0, for by (12) and
(8′) we have

G0,2(a, b) = Aβ(β − 1)αaα−1bβ−2q(1 + O(L−1/2)),

which implies that

G0,2(a, b)(Aβ(β − 1)αq)−1 ≈ Xα−1Y β−2.

Similarly, we have

(10′) G0,1(a, b) = Aβαaα−1bβ−1q(1 + O(L−1/2)),

which implies that

G0,1(a, b)(Aβαq)−1 ≈ Xα−1Y β−1.

We compare the function (a ≈ X, b ≈ Y )

(11′) G̃(a, b) = αqAaα−1bβ

with G(a, b). For a fixed number u satisfying u(Aβαq)−1 ≈ Xα−1Y β−1, and
a real variable a ∈ I(u) for a suitable interval I(u) depending on u, I(u) ⊆ I ′5
(cf. (41)), let

K̃1 = K̃(a, u) = G̃(a, b̃(a, u)) − ub̃(a, u) + 1/8,

where b̃(a, u) is determined by G̃0,1(a, b̃(a, u)) = u. Then (2′) is also valid

with K1, Gr,s and Pi replaced by K̃1, G̃r,s and P̃i, where

G̃r,s = G̃r,s(a, b̃(a, u)),

P̃i = P̃i(a, b̃(a, u)) =
∑

C(i; r1, . . . , jk)G̃
r1

i1,j1
· · · G̃rk

ik,jk
.

For 3 ≤ i ≤ 5, we can show that

(12′) G
c(i)−1
0,2 (K1)

(i)
a

= G̃
c(i)−1
0,2 (K̃1)

(i)
a + O(L−1/2(F |q|X−1)c(i)X−iY −2(c(i)−1)),

where Gi,j = Gi,j(a, b(a, u)), G̃i,j = G̃i,j(a, b̃(a, u)), and F = |A|XαY β. In
fact, from (10′) and (11′) we get

(13′) b(a, u) = b̃(a, u)(1 + O(L−1/2)), b̃(a, u) =

(
u

αβqA
a1−α

)1/(β−1)

,

and thus by (12) (“∆ = 0”) and (8′) we have

Gi,j = Gi,j(a, b(a, u)) = A(α)i+1(β)ja
α−i−1bβ−jq(1 + O(L−1/2))

= A(α)i+1(β)ja
α−i−1(̃b(a, u))β−jq(1 + O(L−1/2))

= G̃i,j(1 + O(L−1/2)).

Consequently, from (2′) and (3′) we get (using G̃i,j ≪ F (|q|/X)X−iY −j)
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G
c(i)−1
0,2 (K1)

(i)
a = Pi(a, b(a, u)) =

∑
C(i; r1, . . . , jk)G

r1

i1,j1
· · ·Grk

ik,jk

=
∑

C(i; r1, . . . , jk)G̃
r1

i1,j1
· · · G̃rk

ik,jk
(1 + O(L−1/2))

= P̃i(a, b̃(a, u)) + O(L−1/2(F |q|X−1)c(i)X−iY −2(c(i)−1))

= G̃
c(i)−1
0,2 (K̃1)

(i)
a + O(L−1/2(F |q|X−1)c(i)X−iY −2(c(i)−1)),

and (12′) follows. We can compute the value of G̃
c(i)−1
0,2 (K̃1)

(i)
a precisely in

terms of the value of b̃(a, u) of (13′). We have

(K̃1)
′
a = G̃1,0(a, b̃(a, u)) = Aα(α − 1)qaα−2b̃β

= Aα(α − 1)q

(
u

Aαβq

)β/(β−1)

a(2−α−β)/(β−1),

(K̃1)
(i)
a = Aα(α − 1)q

(
u

Aαβq

)β/(β−1)(2 − α − β

β − 1

)

i−1

a(2−α−β)/(β−1)−i+1

= Aqα(α − 1)

(
2 − α − β

β − 1

)

i−1

aα−1−ib̃β ,

G̃
c(i)−1
0,2 = (Aαβ(β − 1)qaα−1b̃β−2)c(i)−1,

and thus

G̃
c(i)−1
0,2 (K̃1)

(i)
a = (Aq)c(i)a(α−1)c(i)−ib̃(β−2)c(i)+2(14′)

× (αβ(β − 1))c(i)−1α(α − 1)

(
2 − α − β

β − 1

)

i−1

.

From (12′), (13′) and (14′) we get

G
c(i)−1
0,2 (K1)

(i)
a = (Aq)c(i)a(α−1)c(i)−ib(β−2)c(i)+2(αβ(β − 1))c(i)−1(15′)

× α(α − 1)

(
2 − α − β

β − 1

)

i−1

(1 + O(L−1/2)).

From (9′) and (15′) we get

(16′) λi = (αβ(β − 1))c(i)−1α(α − 1)

(
2 − α − β

β − 1

)

i−1

, 3 ≤ i ≤ 5.

To calculate µi for 3 ≤ i ≤ 5, by taking q = 1 and r = [
√

Y t/X], similarly
to (9′), from (2′), (5′) and (6′) we get

(17′) G
c(i)−1
0,2 (K)(i)a = Ac(i)aε(α,i)bδ(β,i)(µi(ra)c(i) + O((ra)c(i)L−1/2)),

where G(a, b) = A[(a + 1)α(b + r)β − aαbβ ], a ≈ X, b ≈ Y . Now we have

G0,1(a, b) = Aβ(β − 1)aαbβ−2r(1 + O(L−1/2)),

G0,2(a, b) = Aβ(β − 1)(β − 2)aαbβ−3r(1 + O(L−1/2)),



226 H. Q. Liu

and the assumption G0,2 > 0 of (ii) of §3 is equivalent to Aβ(β−1)(β−2) > 0.
In particular we have

G0,1(a, b)(Aβ(β − 1)r)−1 ≈ XαY β−2.

We compare G(a, b) with the function

G̃(a, b) = βrAaαbβ−1.

For a fixed number u satisfying

u(Aβ(β − 1)r)−1 ≈ XαY β−2,

and a real variable a ∈ I(u) for a suitable interval I(u) depending on u,
I(u) ⊆ I ′5 (cf. (41)), let

K̃1 = K̃1(a, u) = G̃(a, b̃(a, u)) − ub̃(a, u) − 1/8,

where b̃(a, u) is determined by G̃0,1(a, b̃(a, u)) = u. For 3 ≤ i ≤ 5, similarly
to (12′) we can deduce that

(18′) G
c(i)−1
0,2 (K1)

(i)
a = G̃

c(i)−1
0,2 (K̃1)

(i)
a + O(L−1/2(F |r|Y −1)c(i)X−iY 2−2c(i)).

We have (cf. (13′))

b̃(a, u) =

(
u

β(β − 1)rA
a−α

)1/(β−2)

,

thus

(K̃1)
′
a = G̃1,0(a, b̃(a, u)) = αβrAaα−1b̃β−1

= αβrA

(
u

β(β − 1)rA

)(β−1)/(β−2)

a(2−α−β)/(β−2),

(K̃1)
(i)
a = αβrA

(
u

β(β − 1)rA

)(β−1)/(β−2)

×
(

2 − α − β

β − 2

)

i−1

a(2−α−β)/(β−2)−i+1

= αβrA

(
2 − α − β

β − 2

)

i−1

aα−ib̃β−1,

G̃
c(i)−1
0,2 = (β(β − 1)(β − 2)rAaαb̃β−3)c(i)−1,

G̃
c(i)−1
0,2 (K̃1)

(i)
a = (Ar)c(i)aα(c(i)−1)+α−ib̃(β−3)(c(i)−1)+β−1αβ(19′)

×
(

2 − α − β

β − 2

)

i−1

(β(β − 1)(β − 2))c(i)−1

= (Ar)c(i)aαc(i)−ib(β−3)c(i)+2αβ

(
2 − α − β

β − 2

)

i−1

× (β(β − 1)(β − 2))c(i)−1(1 + O(L−1/2)).
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From (18′) and (19′) we have

G
c(i)−1
0,2 (K1)

(i)
a = (Ar)c(i)aαc(i)−ib(β−3)c(i)+2αβ

(
2 − α − β

β − 2

)

i−1

(20′)

× (β(β − 1)(β − 2))c(i)−1(1 + O(L−1/2)).

From (17′) and (20′) we obtain

(21′) µi = αβ

(
2 − α − β

β − 2

)

i−1

(β(β − 1)(β − 2))c(i)−1 for 3 ≤ i ≤ 5.

From (21′) we get

P (a, b) = G2,0(a, b)G0,2(a, b) − G2
1,1(a, b)

= A2a2α−4b2β−4(Φ(qb, ra) + O((XY ̺)2(̺ + ∆))),

Φ(qb, ra) = α2(α − 1)β(2 − α − β)(qb)2 + 2αβ(2 − α − β)(α − 1)(β − 1)qrab

+ αβ2(β − 1)(2 − α − β)(ra)2,

thus in view of (4′)–(7′), (16′), and (21′) we get

λ6 = λλ4 − 3λ2
3

= α8β6(α − 1)2(β − 1)2(2 − α − β)2(3 − α − 2β)(2α + 3β − 5),

µ6 = µµ4 − 3µ2
3

= α2β8(β − 1)6(β − 2)2(2 − α − β)2(4 − α − 2β)(2α + 3β − 6),

λ7 = λ5λ
2 − 10λλ3λ4 + 15λ3

3

= α12β9(2 − α − β)3(α − 1)3(β − 1)3(3 − α − 2β)

× (5 − 2α − 3β)(7 − 3α − 4β),

µ7 = µ5µ
2 − 10µµ3µ4 + 15µ3

3

= α3β12(2 − α − β)3(β − 1)9(β − 2)3(4 − α − 2β)

× (6 − 2α − 3β)(8 − 3α − 4β),

where

λ = α2(α − 1)β(2 − α − β), µ = αβ2(β − 1)(2 − α − β).

The proof of Lemma 8 is finished.

(II) The polynomials Fi(t), 8 ≤ i ≤ 12. In (iv) of §3, to estimate each
SG(D′

i) of (22) similarly to the way we estimated SG(D5) in (iii) of §3,
we need to reverse the orders of a and b in the treatment. Consequently,
similarly to (41) we arrive at the exponential sum

∑

ν1≤ν≤ν2

∣∣∣
∑

b∈I(ν)

K2e(K3)
∣∣∣,
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where νi = O(F̺X−1), F̺ > X, I(ν) is an interval depending on ν, b ∈ I(ν)
implies that b ≈ Y , and

K2 = K2(b, ν) = |G2,0(a(b, ν), b)|−1/2,

K3 = K3(b, ν) = G(a(b, ν), b) − νa(b, ν) + 1/8,

a(b, ν) is the solution of G1,0(a(b, ν), b) = ν for given b and ν, and

G(a, b) = A[(a + q)α(b + r)β − aαbβ],

q and r satisfy (8). Then, for each fixed ν, by partial summation we need to
estimate, similarly to (42) and (43), the sum

∣∣∣
∑

b∈I1(ν)

e(K3(b, ν))
∣∣∣,

for a suitable interval I1(ν) ⊆ I(ν). Our purpose here is to introduce a
number of additional polynomials, which will be used to define summation
ranges. Thus we can omit many detailed explanations, and we only need to
consider (formal) derivatives. We have

(a(b, ν))′b = −G1,1(a(b, ν), b)/G2,0(a(b, ν), b).

Thus, for Gi,j = Gi,j(a(b, ν), b), we get, similarly to (2′),

(22′) (K3)
′
b = G0,1, (K3)

′′
b = (G2,0G0,2 − G2

1,1)/G2,0, (K3)
(i)
b = Pi+5G

1−c(i)
2,0 ,

where 3 ≤ i ≤ 5, c(3) = 4, c(4) = 6, c(5) = 8, and

Pi+5 = Pi+5(a(b, ν), b)(23′)

=
∑

1
C(i + 5; r1, . . . , rk, i1, j1, . . . , ik, jk)G

r1

i1,j1
· · ·Grk

ik,jk
,

∑
1 means a suitable summation over lattice points (r1, . . . , rk, i1, j1, . . . ,

ik, jk) satisfying

r1 + · · · + rk = c(i), i1r1 + · · · + ikrk = 2(c(i) − 1),

j1r1 + · · · + jkrk = i, i1 + j1, . . . , ik + jk ≤ i,

r1, . . . , rk ≥ 1, i1, j1, . . . , ik, jk ≥ 0, c(i) ≥ k ≥ 1, (i1, j1), . . . , (ik, jk) are
different from each other, and C(i+5; r1, . . . , jk) is a suitable integer. We can
obtain the expression (23′) by a direct calculation. However, our argument
will not need a precise value of each coefficient C(i+5; r1, . . . , jk). As in (I),
let P = G2,0G0,2 − G2

1,1. Let

(24′) P11 = P9P − 3P 2
8 , P12 = P10P

2 − 10PP8P9 + 15P 3
8 .

Then, similarly to (5′), using (12) and (13), from (22′) and (24′) we obtain

Pi+5 = Pi+5(a(b, ν), b)(25′)

= Ac(i)aε̃(α,i)bδ̃(β,i)(Φi+5(qb, ra) + O((XY ̺)c(i)̺)), 3 ≤ i ≤ 7,
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where ε̃(α, i) = c(i)(α−3)+2, δ̃(β, i) = c(i)(β−1)−i for 3 ≤ i ≤ 5, c(6) = 8,

c(7) = 12 and ε̃(α, 6) = 8α − 20, δ̃(β, 6) = 8β − 14, ε̃(α, 7) = 12α − 30,

δ̃(β, 7) = 12β − 12, Φi+5(ξ, η) is a homogeneous polynomial of degree c(i),

(26′) Φi+5(ξ, η) = λi+5ξ
c(i) + · · · + µi+5η

c(i), 3 ≤ i ≤ 7,

λi+5 and µi+5 are constants. Let the polynomials Fi+5(t) be defined by

(27′) Fi+5(t) = Φi+5(t, 1) = λi+5t
c(i) + · · · + µi+5, 3 ≤ i ≤ 7.

To estimate S1 of (9) the condition λi 6= 0 for 8 ≤ i ≤ 12 is necessary. We
have

Lemma 9. Let α, β 6= 0, 1, 2. Then

λi+5 = αβ

(
2 − α − β

α − 2

)

i−1

(α(α − 1)(α − 2))c(i)−1, 3 ≤ i ≤ 5,

λ11 = α8β2(α − 1)6(α − 2)2(2 − α − β)2(4 − 2α − β)(3α + 2β − 6),

λ12 = α12β3(α − 1)9(α − 2)3(2 − α − β)3(4 − 2α − β)(6 − 3α − 2β)

× (8 − 4α − 3β).

Thus “αβ 6= 0, α < 1 and β < 1” implies that λi 6= 0 for 8 ≤ i ≤ 12.

Proof. To calculate λi+5 for 3 ≤ i ≤ 5, we can choose special values of
q and r as in (I) by letting q = [

√
Xt/Y ], r = 1, where t is given by (8).

Then from (22′), (25′) and (26′) we get for a = a(b, ν), similarly to (9′),

(28′) G
c(i)−1
2,0 (K3)

(i)
b = Pi+5(a, b)

= Ac(i)aε̃(α,i)bδ̃(β,i)(λi+5(qb)
c(i) + O((qY )c(i)L−1/2)), 3 ≤ i ≤ 5.

As in (I), (11′)–(16′), we compare the two functions

G(a, b) = A[(a + q)α(b + 1)β − aαbβ], G̃(a, b) = αqAaα−1bβ .

Assume that α(α − 1)(α − 2)A > 0 (the contrary case can be treated simi-
larly). For a suitable number ν, let

K̃3 = K̃3(b, ν) = G̃(ã(b, ν), b) − νã(b, ν) + 1/8,

where ã(b, ν) is determined by G̃1,0(ã(b, ν), b) = ν for real variables b be-
longing to a suitable interval. For 3 ≤ i ≤ 5 we can deduce similarly to (12′)

that (G̃i,j = G̃i,j(ã(b, ν), b))

(29′) G
c(i)−1
2,0 (K3)

(i)
b

= G̃
c(i)−1
2,0 (K̃3)

(i)
b + O(L−1/2(F |q|X−1)c(i)X2−2c(i)Y −i).

On the other hand, from

ã(b, ν) =

(
ν

Aα(α − 1)q
b−β

)1/(α−2)

,
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we get

(K̃3)
′
b = G̃0,1(ã(b, ν), b) = αβqAãα−1bβ−1

= αβqA

(
ν

Aα(α − 1)q

)(α−1)/(α−2)

b(2−α−β)/(α−2),

(K̃3)
(i)
b = αβqA

(
ν

Aα(α − 1)q

)(α−1)/(α−2)

×
(

2 − α − β

α − 2

)

i−1

b(2−α−β)/(α−2)−i+1

= αβqA

(
2 − α − β

α − 2

)

i−1

ãα−1bβ−i,

G̃
c(i)−1
2,0 = (α(α − 1)(α − 2)qAãα−3bβ)c(i)−1,

G̃
c(i)−1
2,0 (K̃3)

(i)
b = (qA)c(i)ã(α−3)c(i)+2bβc(i)−iαβ(30′)

× (α(α − 1)(α − 2))c(i)−1

(
2 − α − β

α − 2

)

i−1

= (qA)c(i)ã(α−3)c(i)+2bβc(i)−iαβ(α(α − 1)(α − 2))c(i)−1

×
(

2 − α − β

α − 2

)

i−1

(1 + O(L−1/2)),

because we have, similarly to (13′),

a(b, ν) = ã(b, ν)(1 + O(L−1/2)).

From (29′) and (30′) we get

(31′) G
c(i)−1
2,0 (K3)

(i)
b

= (qA)c(i)a(α−3)c(i)+2bβc(i)−iαβ(α(α − 1)(α − 2))c(i)−1

×
(

2 − α − β

α − 2

)

i−1

(1 + O(L−1/2)).

Thus it follows from (28′) and (31′) that

λi+5 = αβ(α(α − 1)(α − 2))c(i)−1

(
2 − α − β

α − 2

)

i−1

, 3 ≤ i ≤ 5.

Consequently, from (22′), (24′), (25′) and similarly to the calculation of λ6

and λ7 of (I), we get

λ11 = λλ9 − 3λ2
8

= α8β2(α − 1)6(α − 2)2(2 − α − β)2(4 − 2α − β)(3α + 2β − 6),
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λ12 = λ2λ10 − 10λλ8λ9 + 15λ3
8

= α12β3(α − 1)9(α − 2)3(2 − α − β)3(4 − 2α − β)

× (6 − 3α − 2β)(8 − 4α − 3β),

which proves Lemma 9.

Similarly, we can also calculate each µi for 8 ≤ i ≤ 12 in terms of α
and β. However, the condition “µi 6= 0 for 8 ≤ i ≤ 12”, which is indeed the
case in a lot of applications, is not imperative in the proof of Theorem 2 (cf.
§5).

(III) Additional lemmas for the proof of Theorem 2

Lemma 10. Suppose the real function f(x) has continuous derivative

f ′′(x) on an interval [a, b], and it satisfies

|f ′(x)| ≈ λ1, |f ′′(x)| ≈ λ2,

where λi > 0. Then
∑

a≤x≤b

e(f(x)) ≪ λ1λ
−1/2
2 + λ−1

1 + log(2 + λ1).

Proof. Suppose that

λ1 ≪ |f ′(x)| ≤ Cλ1

on [a, b], where C is an absolute constant. If Cλ1 ≤ 1/2, by Lemma 4.19 of
[T] we have ∑

a≤x≤b

e(f(x)) ≪ λ−1
1 ,

and if Cλ1 > 1/2, then by Lemmas 4.7 and 4.4 of [T] we obtain
∑

a≤x≤b

e(f(x)) ≪ (1 + λ1)λ
−1/2
2 + log(2 + λ1) ≪ λ1λ

−1/2
2 + log(2 + λ1).

Combining these two estimates gives the assertion of the lemma.

Lemma 11. Let I = [X, X ′], X ′ > X ≥ 1, let Q be a positive integer ,
and Zn (X ≤ n ≤ X ′) be complex numbers. Then

∣∣∣
∑

n∈I

Zn

∣∣∣
2
≤ (1 + (X ′ − X)Q−1)

∑

|q|≤Q

(1 − |q|Q−1)
∑

n,n+q∈I

ZnZn+q.

Proof. This can be proved similarly to Lemma 5 of [HB]. If Q ≥ 1 and Q
is not an integer, to ensure the validity of the inequality we should replace
Q−1 by [Q]−1.

In the next lemma, we extend the action of the exponent pair
(11/30, 16/30) = BA2(1/2, 1/2) to a general class of functions.
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Lemma 12. Let f(x) be a real function on [a, b] whose derivatives of

orders 1 to 5 are continuous and satisfy (for 1 ≤ a < b ≤ 2a)

|f ′′(x)| ≈ λ2, |f ′′′(x)| ≈ λ3, |f (4)(x)| ≪ λ4,

λ3 ≈ λ2U
−1, λ4 ≪ λ2U

−2, 0 < U ≪ a,

|(f (4)(x)f ′′(x) − 3(f ′′′(x))2)(f ′′(x))−5| ≈ r1 > 0,

|(f (5)(x)(f ′′(x))2 − 10f ′′(x)f ′′′(x)f (4)(x) + 15(f ′′′(x))3)(f ′′(x))−7| ≈ r2 > 0.

Then
∣∣∣

∑

a≤x≤b

e(f(x))
∣∣∣ ≪ 30

√
η28r2

1r
−1
2 λ13

2 +
8

√
η5λ2

3λ
−2
2 r−2

1

+ (
4

√
ηλ3

2λ
−2
3 + 8

√
η7λ3

2 + (ηλ2)
1/2 + 1)L + λ

−1/2
2 + ηU−1,

where η = b − a and L = log(2 + (b − a)λ2).

Proof. Assume ηλ2 ≥ 1. By Lemma 4 we have

(32′)
∑

a≤x≤b

e(f(x))

= λ
∑

y1≤y≤y2

|f ′′(xy)|−1/2e(F (y)) + O(λ
−1/2
2 ) + O(L) + O((b− a + λ−1

2 )U−1),

where F (y) = f(xy) − yxy, xy is the solution of f ′(x) = y for y ∈ [y1, y2],
and y1 = min(f ′(a), f ′(b)), y2 = max(f ′(a), f ′(b)), λ = 1 or −i according
as f ′′(x) > 0 or f ′′(x) < 0 on [a, b]. We can suppose λ = 1 without loss
of generality in our treatment. Then y1 = f ′(a), y2 = f ′(b). Let F0(y) =
(f ′′(xy))

−1/2. Then for y ∈ [y1, y2] we have

F ′
0(y) = −1

2(f ′′(xy))
3/2f ′′′(xy)(xy)

′
y = −1

2(f ′′(xy))
5/2f ′′′(xy),

and thus F ′
0(y) keeps a constant sign. By partial summation we get

(33′)
∑

y1≤y≤y2

F0(y)e(F (y))

= −
y2\
y1

( ∑

y1≤y≤t

e(F (y))
)
F ′

0(t) dt + F0(y2)
∑

y1≤y≤y2

e(F (y))

≪ (|F0(y1)| + |F0(y2)|)
∣∣∣

∑

y1≤y≤y3

e(F (y))
∣∣∣ ≪ λ

−1/2
2

∣∣∣
∑

y1≤y≤y3

e(F (y))
∣∣∣,

where y3 is some suitable number in [y1, y2]. We assume the difficult case
that y3 ≥ y1 + 100. Let y3 − y1 = δ, and I = [y1, y3]. By Lemma 11 we get

(34′) |Σ|2 =
∣∣∣
∑

y∈I

e(F (y))
∣∣∣
2
≪ δ2Q−1 + δQ−1

∑

1≤|q|≤Q

|Σ1|, Σ1 =
∑

y∈I1

e(F1(y)),
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where I1 = {y | y ∈ I, y + q ∈ I}, F1(y) = F (y + q) − F (y), Q ∈ [1, δ/log δ]
is a parameter. Applying Lemma 11 repeatedly we get

|Σ1|2 ≪ δ2Q−1
1 + δQ−1

1

∑

1≤|q1|≤Q1

|Σ2|, Σ2 =
∑

y∈I2

e(F2(y)),(35′)

|Σ2|2 ≪ δ2Q−1
2 + δQ−1

2

∑

1≤|q2|≤Q2

|Σ3|, Σ3 =
∑

y∈I3

e(F3(y)),(36′)

where I2 = {y | y ∈ I1, y + q1 ∈ I1}, I3 = {y | y ∈ I2, y + q2 ∈ I2}, and

F2(y) = F1(y + q1) − F1(y), F3(y) = F2(y + q2) − F2(y),

Q1 and Q2 are parameters which belong to [1, δ/log δ]. We suppose that
|I3| ≥ 10, where |I3| is the length of I3. For a real variable y ∈ I1, we have

(37′) F1(y) = q

1\
0

F ′(y + tq) dt,

for y ∈ I2 by (37′) we have

(38′) F2(y) = q1

1\
0

F ′
1(y + t1q1) dt1 = qq1

1\
0

1\
0

F ′′(y + tq + t1q1) dt dt1,

and for y ∈ I3 by (38′) we get

F3(y) = q2

1\
0

F ′
2(y + t2q2) dt2(39′)

= qq1q2

1\
0

1\
0

1\
0

F ′′′(y + tq + t1q1 + t2q2) dt dt1 dt2.

For all y ∈ I, from f ′(xy) = y we get (xy)
′ = 1/f ′′(xy). Thus, taking

derivatives of F (y) we get

(40′) F ′(y) = −xy, F ′′(y) = −1/f ′′(xy), F ′′′(y) = f ′′′(xy)(f
′′(xy))

−3,

(41′) F (4)(y) = (f (4)(xy)f
′′(xy) − 3(f ′′′(xy))

2)(f ′′(xy))
−5,

(42′) F (5)(y)

=
f (5)(xy)(f

′′(xy))
2 − 10f ′′(xy)f

′′′(xy)f
(4)(xy) + 15(f ′′′(xy))

3

(f ′′(xy))7
.

For y ∈ I3, by (39′), (41′), (42′) and our assumption we get

|F ′
3(y)| =

∣∣∣qq1q2

1\
0

1\
0

1\
0

F (4)(y + tq + t1q1 + t2q2) dt dt1 dt2

∣∣∣ ≈ r1|qq1q2|,

|F ′′
3 (y)| =

∣∣∣qq1q2

1\
0

1\
0

1\
0

F (5)(y + tq + t1q1 + t2q2) dt dt1 dt2

∣∣∣ ≈ r2|qq1q2|,
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thus by Lemma 7 we have

|Σ3| ≪ r1r
−1/2
2 |qq1q2|1/2 + (r1|qq1q2|)−1 + 1.

Consequently, by (36′) we get

(43′) |Σ2|2 ≪ δ2Q−1
2 + r1r

−1/2
2 |qq1|1/2δQ

1/2
2 + δQ−1

2 r−1
1 |qq1|−1L.

If δ2 ≥ δr−1
1 |qq1|−1L, from (43′) we get

|Σ2|2 ≪ δ2Q−1
2 + r1r

−1/2
2 |qq1|1/2δQ

1/2
2 .

Let Q2 = min(δ/L, 3

√
δ2r−2

1 r2|qq1|−1). We get (for Q2 < 1, (43′) holds triv-

ially)

(44′) |Σ2|2 ≪ δL +
3

√
δ4r2

1r
−1
2 |qq1|.

If δ2 < δ(r1|qq1|)−1L, from (38′), (40′), (41′) and our assumption we get (for
y ∈ I2)

|F ′
2(y)| =

∣∣∣qq1

1\
0

1\
0

F ′′′(y + tq + t1q1) dt dt1

∣∣∣ ≈ |qq1|λ3λ
−3
2 ,

|F ′′
2 (y)| =

∣∣∣qq1

1\
0

1\
0

F (4)(y + tq + t1q1) dt dt1

∣∣∣ ≈ |qq1|r1.

Hence by Lemma 10 we get the estimate

|Σ2| ≪ |qq1|1/2λ3λ
−3
2 r

−1/2
1 + (|qq1|λ3λ

−3
2 )−1 + 1(45′)

≪ δ−1/2λ3λ
−3
2 r−1

1 L1/2 + (|qq1|λ3λ
−3
2 )−1 + 1.

From (44′) and (45′) we always have

|Σ2| ≪ 6

√
δ4r2

1r
−1
2 |qq1| + δ−1/2λ3λ

−3
2 r−1

1 L1/2(46′)

+ (|qq1|λ3λ
−3
2 )−1 + δ1/2L1/2.

From (35′) and (46′) we get

|Σ1|2 ≪ δ2Q−1
1 +

6

√
δ10r2

1r
−1
2 Q1|q| + δ1/2λ3λ

−3
2 r−1

1 L1/2

+ δλ−1
3 λ3

2|q|−1Q−1
1 L + δ3/2L1/2.

If δ2 ≥ δλ−1
3 λ3

2|q|−1L, then

(47′) |Σ1|2 ≪ δ2Q−1
1 +

6

√
δ10r2

1r
−1
2 Q1|q| + δ1/2λ3λ

−3
2 r−1

1 L1/2 + δ3/2L1/2.

Let Q1 = min(δL−1/2, 7

√
δ2r−2

1 r2|q|−1) in (47′). We get

|Σ1|2 ≪ 7

√
δ12r2

1r
−1
2 |q| + δ1/2λ3λ

−3
2 r−1

1 L1/2 + δ3/2L1/2.(48′)
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If δ2 < δλ−1
3 λ3

2|q|−1L, by (37′), (40′) and our assumption we get

|F ′
1(y)| =

∣∣∣q
1\
0

F ′′(y + tq) dt
∣∣∣ ≈ |q|λ−1

2 ,

|F ′′
1 (y)| =

∣∣∣q
1\
0

F ′′′(y + tq) dt
∣∣∣ ≈ |q|λ3λ

−3
2 ,

where y ∈ I1. Hence by Lemma 10 we have

|Σ1| ≪ (|q|λ−1
3 λ2)

1/2 + |q|−1λ2 + 1(49′)

≪ (λ4
2λ

−2
3 δ−1L)1/2 + λ2|q|−1 + 1.

From (48′) and (49′) we always have the estimate

|Σ1| ≪ 14

√
δ12r2

1r
−1
2 |q|(50′)

+ ( 4

√
δλ2

3λ
−6
2 r−2

1 +

√
λ4

2λ
−2
3 δ−1 + δ3/4)L1/2 + λ2|q|−1.

It follows from (34′) and (50′) that

|Σ|2 ≪ δ2Q−1 + (
14

√
δ26r2

1r
−1
2 Q(51′)

+
4

√
δ5λ2

3λ
−6
2 r−2

1 +

√
δλ4

2λ
−2
3 + δ7/4)L1/2 + λ2δQ

−1L.

For δ2 ≥ δλ2L, δ2Q−1 ≥ λ2δQ
−1L, let Q = min(δL−1/2, 15

√
δ2r−2

1 r2) in

(51′). We obtain

|Σ|2 ≪ 15

√
δ28r2

1r
−1
2 + (

4

√
δ5λ2

3λ
−6
2 r−2

1 +

√
δλ4

2λ
−2
3 + δ7/4)L1/2.

For δ2 < δλ2L, |Σ| = O(λ2L), and thus

|Σ| ≪ 30

√
δ28r2

1r
−1
2 + (

8

√
δ5λ2

3λ
−6
2 r−2

1 +
4

√
δλ4

2λ
−2
3 + δ7/8 + λ2)L.(52′)

As δ ≪ 1 + ηλ2, if ηλ2 ≥ 1, the conclusion of Lemma 12 follows from (32′),
(33′) and (52′). In case ηλ2 < 1, it follows from Lemma 3, for we have

∣∣∣
∑

a≤x≤b

e(f(x))
∣∣∣ ≪ (b − a)λ

1/2
2 + λ

−1/2
2 = ηλ

1/2
2 + λ

−1/2
2 ≪ λ

−1/2
2 .

The proof of Lemma 12 is finished.

Remark. In §2.3 of A. Ivić’s book The Riemann Zeta-Function, it is
claimed that if f(x) is a real function, having continuous derivatives of any
order on the interval [N, 2N ], N ≥ 1, and satisfying

|f (k)(x)| ≈ λN1−k, k ≥ 1, λ > 0,
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then for any exponent pair (p, q), we have the estimate

(∗)
∣∣∣

∑

n≤x≤2n

e(f(x))
∣∣∣ ≪ λpN q + λ−1.

However, taking f(x) = Cx3/2, C = 2(27)−1/2, and using Lemma 4 of
the present paper to calculate the exponential sum of (∗), it is easy to
observe that the estimate of (∗) does not hold for (p, q) = (2/7, 4/7) and
(11/53, 33/53). The mistake comes from relying heavily on a famous paper
of E. Phillips (published in Quart. J. Math. in 1933), simplifying van der
Corput’s method, in which the proof of a key result of van der Corput
(Lemma 7 of the reference [C] of the present paper) was not given. However,
using induction and Lemmas 10 and 11 of our paper, we find that (∗) does
hold for (p, q) = ArB(0, 1), where r is any non-negative integer.

5. Proof of Theorem 2. A polynomial with real coefficients can be
factorized as the product of positive definite quadratic polynomials with real
coefficients and linear polynomials with real coefficients. Let the real roots
of the equation (cf. §4, (I) and (II)) Fi(t) = 0 be θi1, . . . , θiki

, where |θi1| ≤
· · · ≤ |θiki

|, multiple roots are counted with multiplicity, i = 3, 6, 7, 8, 11,
and 12 and k3 ≤ 4, k6 ≤ 8, k7 ≤ 12, k8 ≤ 4, k11 ≤ 8, k12 ≤ 12. Here we note
that, by the condition of Theorem 2 and Lemmas 8 and 9, Fi(t) 6≡ 0 for
these i. In case ki = 0 for some i, the argument below will be simpler. Thus
we assume the difficult case that ki ≥ 1 for all these i. As at the beginning
of §3, assume that θ11 and θ12 (|θ11| ≤ |θ12|) are the real roots of F (t) = 0
(cf. §4, (I)), and θ21 = (2 − β)/α, θ22 = β/(α − 2). Assume (7) and (8). As
at the beginning of §3, by (18), to estimate the exponential sum Sg(D), we
need to estimate the exponential sum SG(D1). As at the beginning of §3 (of
course, we consider the difficult case that θ11 and θ12 are real), let

D2 = {(a, b) | |bq − θijar| < ̺ for some (i, j)},
D3 = {(a, b) | (a, b) ∈ D1, (a, b) 6∈ D2}.

As at the beginning of §3 we get SG(D2) = O(Y ). Thus

(53′) |SG(D1)| ≪ |SG(D3)| + Y.

As is (15) we have, for some particular D4 (note that k1 + · · · + k12 ≤ 52),

(54′) |SG(D3)| ≪ L52|SG(D4)| + L52X,

where (note that for (i, j) ∈ Γ , θij is real, and vice versa)

D4 = {(a, b) | εijλ|qr|∆ij ≤ bq − θijar ≤ δijλ|qr|∆ij, (i, j) ∈ Γ} ∩ D1,

Γ = {(i, j) | i = 1, 2, 3, 6, 7, 8, 11, 12, 1 ≤ j ≤ ki, k1 = k2 = 2},
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∆ij , εij and δij are numbers satisfying 1/(XY ) ≤ ∆ij ≤ 2(1+
∑

(i,j)∈Γ |θij |),
(εij , δij) = (−2,−1) or (1, 2). Suppose q > 0. Let

R1 = max
(i,j)∈Γ

(q−1(εijλ|qr|∆ij+θijar)), R2 = min
(i,j)∈Γ

(q−1(δijλ|qr|∆ij+θijar)).

Then as at the beginning of §3 we have

D4 = {(a, b) | a ∈ I1, B1(a) ≤ b ≤ B2(a)},
where I1 = {a ∈ I | (a + q) ∈ I}, and

B1(a) = max(f1(a+q)−r, f1(a), R1), B2(a) = min(f2(a+q)−r, f2(a), R2).

Using the method of showing (16), by taking derivatives to discuss mono-
tonicity we get

(55′) |SG(D4)| ≪
∑

D5

|SG(D5)| + Y,

where the summation is taken over O(1) disjoint ranges D5 of the shape

D5 = {(a, b) | a ∈ I ′, B1(a) ≤ b ≤ B2(a)} ⊆ D4,

I ′ is a suitable interval contained in I1, B1(a) has one of the three forms

f1(a + q) − r, f1(a), k1a + k2, (k1, k2) = (rθijq
−1, εijλ|r|∆ij),

for some (i, j) ∈ Γ , and similarly, B2(a) has one of the following three forms
on I ′:

f2(a), f2(a + q) − r, k′
1a + k′

2, (k′
1, k

′
2) = (rθi′j′q

−1, δi′j′λ|r|∆i′j′),

for some (i′, j′) ∈ Γ . Note that ∆11 and ∆12 correspond to ∆1 and ∆2 in §3,
and ∆21 and ∆22 correspond to ∆3 and ∆4 in §3 (see the beginning of §3).
Thus, as in (17), we have

(56′) ∆ps + ∆p′s′ ≥ 2δ for p, p′, s, s′ = 1 or 2, (p, s) 6= (p′, s′),

where δ is a suitably small positive constant which depends only on α and β,
which, as at the beginning of §3, enables us to carry out the argument
below. Let ∆̃ = min(i,j)∈Γ ∆ij. We distinguish several cases to estimate the
exponential sum SG(D5).

Case (i): ∆̃ ≤ L̺ and ∆21 > δ. In this case, we reason as in (i) of §3.
Thus, similarly to (20), we get

(57′) SG(D5) = O(X(F̺3)1/2L̺λ + XY (F̺)−1/2),

where, as in (11), ̺ = |q|/X + |r|/Y and λ = ̺XY/|qr|.
Case (ii): ∆̃ ≤ L̺ and ∆21 ≤ δ. In this case, we argue similarly to (ii)

of §3 (if ∆̃ = ∆ij and θij = 0 for some (i, j) ∈ Γ , the treatment is simpler).
Thus, similarly to (24), we deduce the estimate

(58′) SG(D5) = O(Y (F̺3)1/2L̺λ + XY (F̺)−1/2 + X + Y ).
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Case (iii): ∆̃ > L̺ and ∆21 > δ. This case is similar to (iii) of §3. Thus,
as in (40), (41) and (42), for F̺ > Y we get (with “∆ = Φ = 0”)

(59′) |SG(D5)|
≪

∣∣∣
∑

a∈I′
5

∑

X1(a)≤u≤X2(a)

Ke(K1)
∣∣∣ + XY (F̺)−1/2 + X(F̺3)1/2 + XL,

(60′)
∣∣∣
∑

a∈I′
5

∑

X1(a)≤u≤X2(a)

Ke(K1)
∣∣∣ ≪

∑

u1≤u≤u2

∣∣∣
∑

a∈I(u)

Ke(K1)
∣∣∣

and

(61′)
∣∣∣

∑

a∈I(u)

Ke(K1)
∣∣∣ ≪ Y (F̺)−1/2

∣∣∣
∑

a∈I1(u)

e(K1(a, u))
∣∣∣,

where I ′5, I(u) and I1(u) are suitable intervals,

I1(u) ⊆ I(u) ⊆ S(u) = {a ∈ I ′5 | X1(a) ≤ u ≤ X2(a)},
a ∈ I ′5 implies that B1(a) < B2(a) − 10, X1(a) and X2(a) are suitable
functions, [X1(a), X2(a)] ⊆ [α1(a), α2(a)] in case X1(a) ≤ X2(a), u1, u2 =
O(F̺Y −1), and, without losing the generality, assuming that G0,2 > 0
on D5,

K = K(a, u) = (G0,2(a, b(a, u)))−1/2,

K1 = K1(a, u) = G(a, b(a, u)) − ub(a, u),

b(a, u) is the solution of G0,1(a, b(a, u)) = u for given a and u, and for a
number u, u1 ≤ u ≤ u2, if I1(u) 6= ∅ and I1(u) is an interval of length > 0
then for all a ∈ I1(u), we have (a, b(a, u)) ∈ D5. As in (iii) of §3 we have

(62′) (b(a, u))′a = −G1,1(a, b(a, u))/G0,2(a, b(a, u)).

We take derivatives in a ∈ I1(u) based on (62′) and use the notations of (I)
of §4 to get (cf. (2′), (4′))

(K1)
′
a = G1,0, (K1)

′′
a = (G2,0G0,2 − G2

1,1)G
−1
0,2 = PG−1

0,2,

(K1)
(i)
a = PiG

1−c(i)
0,2 , 3 ≤ i ≤ 5,

(K1)
′′
a(K1)

(4)
a − 3((K1)

′′′
a )2 = (P4P − 3P 2

3 )G−6
0,2 = P6G

−6
0,2,

(K1)
(5)
a ((K1)

′′
a)

2 − 10(K1)
′′
a(K1)

′′′
a (K1)

(4)
a + 15((K1)

′′′
a )3

= (P5P
2 − 10PP3P4 + 15P 3

3 )G−9
0,2 = P7G

−9
0,2,

where Gi,j = Gi,j(a, b(a, u)), c(3) = 4, c(4) = 6, c(5) = 8, c(6) = 8, c(7)
= 12, and Pi satisfies (5′), that is,

Pi = Ac(i)aε(α,i)bδ(β,i)(Φi(qb, ra) + O((XY ̺)c(i)̺)), 3 ≤ i ≤ 7,

where

ε(α, i) = (α − 1)c(i) − i, δ(β, i) = (β − 3)c(i) + 2, 3 ≤ i ≤ 5,
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ε(α, 6) = 8α−14, δ(β, 6) = 8β−20, ε(α, 7) = 12α−21, δ(β, 7) = 12β−30,

Φi(ξ, η) is a homogeneous polynomial for 3 ≤ i ≤ 7, which, by the assump-
tions of Theorem 2 on α and β and Lemma 8, has the form

Φi(ξ, η) = λiξ
c(i) + · · · + µiη

c(i), λiµi 6= 0.

For each 3 ≤ i ≤ 7, since the complex roots appear in conjugate pairs, we
know that 2 | (c(i)−ki). Thus from |qb|+ |ra| ≈ XY ̺ = |qr|λ, for (a, b) ∈ D5

we get

|Φi(qb, ra)| ≈ (XY ̺)2(c(i)−ki)/2(∆i1XY ̺) · · · (∆iki
XY ̺) = ∆i(XY ̺)c(i),

∆i = ∆i1 · · ·∆iki
≪ 1.

Consequently, if ∆̃12 > L̺ and X is sufficiently large, then by the definition
of the summation range D5 in (III) of §4, we get (cf. the beginning of §3,
(26), and (I) of §4)

|Φi(qb, ra)| ≫ ∆̃12(XY ̺)c(i) > L̺(XY ̺)c(i),

|Pi| ≈ Ac(i)Xε(α,i)Y δ(β,i)(XY ̺)c(i)∆i,

|(K1)
′′
a| ≈ λ2, |(K1)

′′′
a | ≈ λ3, (K1)

(4)
a ≪ λ4,

|((K1)
′′
a(K1)

(4)
a − 3((K1)

′′′
a )2)((K1)

′′
a)

−5| ≈ r1,

|((K1)
(5)
a ((K1)

′′
a)

2 − 10(K1)
′′
a(K1)

′′′
a (K1)

(4)
a + 15((K1)

′′′
a )3)((K1)

′′
a)

−7| ≈ r2,

where

λ2 = ∆(1)F̺X−2, ∆(1) = min(∆11, ∆12),

λ3 = F̺X−3∆3, λ4 = F̺X−4,

r1 = (F̺)−3X4(∆(1))−5∆6, r2 = (F̺)−4X5(∆(1))−7∆7.

Note that Lemma 11 holds also for 0 < U < 1. Let

U = min(λ2λ
−1
3 , (λ2λ

−1
4 )1/2), η = |I1(u)| > 10, L = log(2 + FXY ).

For every real number a ∈ I1(u), we have (a, b(a, u)) ∈ D5. Thus by Lem-
ma 11 we get (for some terms, using simply the estimate η ≪ X)

(63′)
∣∣∣

∑

a∈I1(u)

e(K1(a, u))
∣∣∣

≪ 30

√
η28(F̺)11X−23∆−1

7 +
8

√
η5(F̺)3X−4∆−2

6

+ (
4

√
F̺X−1∆−2

3 + 8
√

(F̺)3X +
√

F̺X−1 + 1)L

+
√

X2(F̺∆(1))−1 + (∆(1))−1.

Hence, from (59′)–(61′), (63′), ui = O(F̺Y −1) and F̺ ≥ Y we get the
estimate
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(64′) L−1SG(D5)

≪ 30

√
(F̺)−4X−23Y 30∆−1

7 · S̃(28/30) +
8

√
(F̺)−1X−4Y 8∆−2

6 · S̃(5/8)

+
4

√
(F̺)3X−1∆−2

3 + 8
√

(F̺)7X + F̺X−1/2 + X(∆(1))−1/2

+ (F̺)1/2(∆(1))−1 + XY (F̺)−1/2 + XF 1/2̺3/2,

where, for 0 < c < 1,

S̃(c) =
∑

u1≤u≤u2

|I(u)|c,

and |I(u)| is the length of the interval I(u). By Hölder’s inequality we get

S̃(c) ≪
( ∑

u1≤u≤u2

1
)1−c( ∑

u1≤u≤u2

|I(u)|
)c

(65′)

≪ (F̺Y −1)1−c
( ∑

u1≤u≤u2

∑

a∈I(u)

1 + F̺Y −1
)c

≪
( ∑

u1≤u≤u2

∑

a∈I(u)

1
)c

· (F̺Y −1)1−c + F̺Y −1.

Similarly to the arguments between (40) and (41), we have
∑

u1≤u≤u2

∑

a∈I(u)

1 ≤
∑

u1≤u≤u2

∑

a∈S(u)

1(66′)

≤
∑

a∈I′
5

∑

X1(a)≤u≤X2(a)

1 ≤
∑

a∈I′
5

∑

α1(a)≤u≤α2(a)

1,

where αi(a) = G0,1(a, Bi(a)) for a given (B1(a), B2(a)). Without loss of
generality, we have assumed that G0,2 > 0 on D5. As a ∈ I ′5 implies that
B1(a) < B2(a), thus α1(a) < α2(a). For every pair of real numbers (a, u),
with a ∈ I ′5 and u ∈ [α1(a), α2(a)], we have

(67′) |b(a, u)q − θijar| ≪ λ|qr|∆̃
for some pair (i, j)∈Γ , because the condition on (a, u) implies that (a, b(a, u))
∈ D5. From

∂b(a, u)

∂u
= (G0,2(a, b(a, u)))−1,

(27) and (67′), we know that for each given real number a ∈ I ′5, the number

of integers u satisfying α1(a) ≤ u ≤ α2(a) is ≪ 1 + |r|λF̺Y −2∆̃ ≪ 1 +

λ∆̃F̺2Y −1 (̺ = |q|/X + |r|/Y , cf. (11)), that is,

(68′)
∑

α1(a)≤u≤α2(a)

1 ≪ 1 + λF̺2Y −1∆̃.
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Therefore, in view of (64′)–(66′), ∆7 ≥ ∆̃12, ∆6 ≥ ∆̃8 and ∆3 ≥ ∆̃4, we

obtain (using ̺λ ≫ 1 and X∆̃ ≫ L)

S̃(c) ≪ F̺Y −1[(XY (F̺)−1)c + (̺λ∆̃X)c],

L−1SG(D5) ≪ 30

√
(F̺)−2X5Y 28∆̃−12 + 30

√
F 26̺54λ28X5(69′)

+
8

√
(F̺)2XY 5∆̃−16 +

8

√
(F̺)7̺5λ5X∆̃−11

+
4

√
(F̺)3X−1∆̃−8 + 8

√
(F̺)7X + F̺X−1/2

+ X(∆(1))−1/2 + (F̺)1/2(∆(1))−1

+ XY (F̺)−1/2 + X(F̺3)1/2.

Recall that |(K1)
′′
a| ≈ ∆(1)F̺X−2, and ∆̃ > L̺. Thus similarly to (43), by

using Lemma 3 we get
∣∣∣

∑

a∈I1(u)

e(K1)
∣∣∣ ≪

( ∑

a∈I1(u)

1
)
(F̺X−2)1/2 + (∆(1)F̺X−2)−1/2.

Consequently, from (59′)–(61′), and ui = O(F̺Y −1), F̺ ≥ Y , we get

L−1SG(D5)

≪ X−1Y
( ∑

u1≤u≤u2

∑

a∈I1(u)

1
)

+ X(∆(1))−1/2 + XY (F̺)−1/2 + X(F̺3)1/2.

From (66′) and (68′) we have
∑

u1≤u≤u2

∑

a∈I1(u)

1 ≤
∑

u1≤u≤u2

∑

a∈I(u)

1 ≪ X + λF̺2XY −1∆̃,

thus

L−1SG(D5) ≪ F̺2λ∆̃ + Y + X(∆(1))−1/2(70′)

+ XY (F̺)−1/2 + X(F̺3)1/2.

If ∆̃12 ≤ L̺, by (70′) we have

L−2SG(D5) ≪ Fλ̺25/12 + Y + X(∆(1))−1/2(71′)

+ XY (F̺)−1/2 + X(F̺3)1/2.

Suppose ∆̃12 > L̺. Then the estimate (69′) can be derived. From (69′) and
(70′) we obtain

L−1SG(D5) ≪ R1 + R2 + R3 + R4 + 30
√

F 26̺54λ28X5(72′)

+ 8
√

(F̺)7X + F̺X−1/2 + X(∆(1))−1/2

+ (F̺)1/2(∆(1))−1 + XY (F̺)−1/2 + X(F̺3)1/2,
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where

R1 = min(
30

√
(F̺)−2X5Y 28∆̃−12, F̺2λ∆̃) ≤ 42

√
F 10̺22X5Y 28λ12,

R2 = min(
8

√
(F̺)2XY 5∆̃−16, F̺2λ∆̃) ≤ 24

√
F 18̺34XY 5λ16,

R3 = min(
8

√
(F̺)7̺5λ5X∆̃−11, F̺2λ∆̃) ≤ 19

√
F 18̺34Xλ16,

R4 = min(
4

√
(F̺)3X∆̃−8, F̺2λ∆̃) ≤ 12

√
(F̺)11(̺λ)8X.

From (71′) and (72′) we get the estimate

L−2SG(D5) ≪ 42
√

F 10̺22X5Y 28λ12 + 24
√

F 18̺34XY 5λ16(73′)

+ 19
√

F 18̺34Xλ16 + 30
√

F 26̺54λ28X5

+ 12
√

(F̺)11(̺λ)8X + Fλ̺25/12 + 8
√

(F̺)7X

+ XY (F̺)−1/2 + X(F̺3)1/2 + F̺X−1/2

+ X(∆(1))−1/2 + Y + (F̺)1/2(∆(1))−1.

To diminish the terms involving ∆(1) in (73′), similarly to the estimate
between (44) and (45) of (iii) of §3, we have

(74′) SG(D5) = O((F̺)1/2̺Y 2|r|−1∆(1) + XY (F̺)−1/2 + X + Y ).

The estimate (73′) is derived for F̺ > Y . Assume also F̺ > X. Then, as
̺λ ≫ 1 (cf. (11)), we have

19
√

F 18̺34Xλ16 = 19
√

(F̺)18(̺λ)16X ≫ 12
√

(F̺)11(̺λ)8X.

Thus by (73′) and (74′), for F̺ > Y and F̺ > X we have the estimate

L−2SG(D5) ≪ 42
√

F 10̺22X5Y 28λ12 + 24
√

F 18̺34XY 5λ16(75′)

+ 19
√

F 18̺34Xλ16 + 30
√

F 26̺54λ28X5

+ Fλ̺25/12 + 8
√

(F̺)7X + XY (F̺)−1/2

+ X(F̺3)1/2 + F̺X−1/2 + X + Y + R5 + R6,

where

R5 = min(X(∆(1))−1/2, (F̺3)1/2Y 2|r|−1∆(1)) ≤ 6
√

F̺3X4Y 4|r|−2,

R6 = min((F̺)1/2(∆(1))−1, (F̺3)1/2Y 2|r|−1∆(1)) ≤
√

F̺2Y 2|r|−1.

If F̺ ≤ Y or F̺ ≤ X, then similarly to (36) or as in (iv) of §3 (using (22))
we deduce that

SG(D5) ≪ XY (F̺)−1/2 + X + Y,

and thus (75′) holds as well.
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Case (iv): ∆̃ > L̺ and ∆21 ≤ δ. In this case, from (56′) we have
∆11, ∆12, ∆22 > δ. Similarly to (22), we have

SG(D5) =
∑

1≤i≤C

SG(D′
i) + O(X + Y ),

where D′
i has a similar form to D5, but with the roles of a and b exchanged.

Hence, in view of (iv) of §3 and (ii) of §5, we can estimate SG(D′
i) sim-

ilarly to the estimation of SG(D5) in (iii) of §5, but with the roles of a

and b exchanged. In case ∆̃ = ∆ij and θij = 0, the treatment is simpler.
Correspondingly, similarly to (75′) we obtain

L−2SG(D′
i) ≪ 42

√
F 10̺22X28Y 5λ12 + 24

√
F 18̺34X5Y λ16

+ 19
√

F 18̺34Y λ16 + 30
√

F 26̺54λ28Y 5 + Fλ̺25/12

+ 8
√

(F̺)7Y + XY (F̺)−1/2 + Y (F̺3)1/2

+ F̺Y −1/2 + X + Y + 6
√

F 4̺6X4Y −1|q|−2

+ 6
√

F̺3X4Y 4|q|−2 +
√

F̺2X2|q|−1.

Thus

L−2SG(D5) ≪ 42
√

F 10̺22X28Y 5λ12 + 24
√

F 18̺34X5Y λ16(76′)

+ 19
√

F 18̺34Y λ16 + 30
√

F 26̺54λ28Y 5 + Fλ̺25/12

+ 8
√

(F̺)7Y + XY (F̺)−1/2 + Y (F̺3)1/2

+ F̺Y −1/2 + X + Y + 6
√

F 4̺6X4Y −1|q|−2

+ 6
√

F̺3X4Y 4|q|−2 +
√

F̺2X2|q|−1.

Case (v): Final estimate. From (57′), (58′), (75′) and (76′), we get (note
that ̺λ ≫ 1)

L−2SG(D5) ≪ Z(F̺3)1/2̺λ + XY (F̺)−1/2 + 42
√

F 10̺22X5Y 5Z23λ12(77′)

+ Z + 24
√

F 18̺34XY Z4λ16 + 19
√

F 18̺34Zλ16

+ 30
√

F 26̺54λ28Z5 + Fλ̺25/12 + 8
√

(F̺)7Z

+ F̺(X−1/2 + Y −1/2) + 6
√

F 4̺6λ2X−1Y −1Z3

+ 6
√

F̺3λ2X2Y 2Z2 +
√

F̺2λZ,

where Z = X + Y . As ̺λ ≫ 1, we have F̺25/12λ ≫ F̺(X−1/2 + Y −1/2).
Thus from (53′)–(55′) and (77′) we get the estimate

L−54|SG(D1)| ≪ Z(F̺3)1/2̺λ + XY (F̺)−1/2(78′)

+ 42
√

F 10̺22X5Y 5Z23λ12 + 24
√

F 18̺34XY Z4λ16

+ 19
√

F 18̺34Zλ16 + 30
√

F 26̺54λ28Z5 + Fλ̺25/12

+ 8
√

(F̺)7Z + 6
√

F̺3λ2(XY Z)2 +
√

F̺2λZ.
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If F (ξ) = 0 or one of the equations Fi(ξ) = 0 (i = 3, 6, 7, 8, 11, 12) does not
have real roots, then F (ξ) or Fi(ξ) is positive or negative definite, and we
can derive (78′) similarly and relatively simply. For 0 < α ≤ 1, as (cf. (11))

̺ =
|q|
X

+
|r|
Y

≪ M

X
+

N

Y
≪

(
t

XY

)1/2

, ̺λ = ̺2XY |qr|−1 ≪ |q|Y
|r|X +

|r|X
|q|Y | ,

we have

(79′)

̺α ≪
(

t

XY

)α/2

,

∑

q

∑

r

(̺λ)α ≪
(

Y

X

)α ∑

q

∑

r

∣∣∣∣
q

r

∣∣∣∣
α

+

(
X

Y

)α ∑

q

∑

r

∣∣∣∣
r

q

∣∣∣∣
α

≪ MNL = tL,

where 1 ≤ |q| ≤ M , 1 ≤ |r| ≤ N , and t is a suitable parameter. Distinguish-
ing the cases |r| < Y |q|X−1 or |r| ≥ Y |q|X−1, we obtain

∑

q

∑

r

XY (F̺)−1/2 ≪ 4
√

F−2(XY )5t3.

From (79′) we also have
∑

q

∑

r

30
√

F 26̺54λ28Z5 ≪ 30
√

F 26Z5t43(XY )−13L.

We can use a similar method to handle other terms of (78′) and obtain

L−55 XY

t
S1 ≪ 4

√
F 2XY Z4t3 + 4

√
F−2(XY )9t−1(80′)

+ 42
√

F 10t5(XY )42Z23

+ 24
√

F 18t9(XY )16Z4 + 19
√

F 18t9(XY )10Z

+ 30
√

F 26t13(XY )17Z5 + 24
√

F 24t13(XY )11

+ 16
√

F 14t7(XY )9Z2 + 12
√

F 2t(XY )15Z4

+ XY Z + 4
√

F 2t(XY )3Z2

=
∑

1≤i≤11

Ai, say.

Then, as in the proof of Theorem 1, we need to estimate S2 and S3 of (9).
For 1 ≤ r ≤ N we estimate SG(D′

1), where G(a, b) = g(a, b + r) − g(a, b),
and

D′
1 = {(a, b) | a ∈ I, f1(a) ≤ b ≤ f2(a) − r}.

We can use directly the method of (iii) of §5 (cf. also (iv) of §3) for estimating
SG(D5) to deal with SG(D′

1). Let F |r|/Y > max(X, Y ). Then corresponding
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to (75′) we obtain the estimate (note that ̺ = |r|/Y )

L−1SG(D′
1) ≪

30

√(
F

|r|
Y

)26

X5 +
8

√(
F

|r|
Y

)7

X + F
|r|
Y

X−1/2(81′)

+ XY

(
F

|r|
Y

)−1/2

+ XF 1/2

( |r|
Y

)3/2

+ Z,

as the corresponding ∆7, ∆6, ∆3 and ∆(1) are all ≈ 1 in (63′), by the
assumptions on α and β (corresponding to the homogeneous polynomials
Φ(ξ, η) and Φi(ξ, η) of (I) of §4 and (iii) of §5, now we have the polynomials
λξ2 and λiξ

c(i)). As in (iii) of §5 (cf. (36)), we find that (81′) is also true if
F |r|/Y ≤ max(X, Y ). The estimate (81′) holds also if −N ≤ r ≤ −1 and
D′

1 is replaced by {(a, b) | a ∈ I1, f1(a) − r ≤ b ≤ f2(a)}. Similarly to (81′),
using the method of (I) of §4 and (iii) of §5 (but the details are simpler), we
deduce that

L−1SG(D′
2) ≪

30

√(
F

|q|
X

)26

Z5 +
8

√(
F

|q|
X

)7

Z + F
|q|
X

Z−1/2(82′)

+ XY

(
F

|q|
X

)−1/2

+ ZF 1/2

( |q|
X

)3/2

+ Z.

From (81′) and (82′) we get respectively (cf. (9))

L−2 XY

t
S2 ≪ 30

√
F 26t−2X7Y 32 +

16
√

F 14X3Y 17t−1 + FY X−1/2(83′)

+
4
√

F−2X7Y 11t−3 +
4
√

F 2X3Y 3t +
√

X3Y 3t−1

and

L−2 XY

t
S3 ≪ 30

√
F 26X37Y 2t−2 +

16
√

F 14X19Y 2t−2 + FX1/2(84′)

+
4
√

F−2X11Y 7t−3 +
4
√

F 2X7Y −1t +
√

X5Y t−1.

As t ≥ max(XL/Y, Y L/X) (cf. (8)), we can compare similar terms of (80′),
(83′) and (84′). We have

30
√

F 26t−2X7Y 32,
30
√

F 26t−2X37Y 2 ≪ A6,
16
√

F 14X3Y 17t−1,
16
√

F 14X19Y t−1 ≪ A8,

FY X−1/2, FX1/2 ≪ A7,
4
√

F−2X7Y 11t−3,
4
√

F−2X11Y 7t−3 ≪ A2,
4
√

F 2X3Y 3t,
4
√

F 2X7Y −1t ≪ A1,
√

X3Y 3t−1,
√

X5Y t−1 ≪ A10.

Consequently, by (9) we get the estimate

(85′) L−55|Sg(D)|2 ≪ (XY )2t−1 +
∑

1≤i≤11

Ai,
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provided that t ≥ max(XL/Y, Y L/X). For 1 ≤ t ≤ max(XL/Y, Y L/X)
and F < min(X3, Y 3), we have

(LXY )2t−1 > min(XY 3, X3Y ) > 3
√

FX3Y 3 min(X3, Y 3).

By the method of proving the estimate (56), we get

Sg(D) = O(
6
√

FX3Y 6 + XY/F ) = O(
6
√

FX3Y 6),

and, by exchanging the roles of a and b handling Sg(D) directly as we did
for Sg(D

′
1), we obtain the estimate

Sg(D) = O(
6
√

FX6Y 3).

Thus we have

(86′) |Sg(D)| = O( 6
√

FX3Y 3 min(X3, Y 3)),

which implies, for 1 ≤ t ≤ max(XL/Y, Y L/X) and F < min(X3, Y 3), the
estimate

(87′) |Sg(D)|2 = O((LXY )2t−1).

By (85′) and (87′), assuming 0 ≤ t ≤ XY L−4 and (7), we always have the
estimate

(88′) L−55|Sg(D)|2 ≪ (XY )2t−1 +
∑

1≤i≤11

Ai.

Suppose X2 ≥ Y and Y 2 ≥ X. Then

A3 ≪ A
132/287
2 A

155/287
6 ≪ A2 + A6, A4 ≪ A

7/82
2 A

75/82
6 ≪ A2 + A6,

A8 ≪ A
1/20
2 A

19/20
6 ≪ A2 + A6, A10 ≪ A

1/2
1 A

1/2
2 ≪ A1 + A2,

A9 ≪ A
1/3
2 A

2/3
11 ≪ A2 + A11, A11 ≪ A

11/41
2 A

30/41
6 ≪ A2 + A6,

and it follows from (88′) that

L−55|Sg(D)|2 ≪(XY )2t−1 +
4
√

F 2XY Z4t3 + 4
√

F−2(XY )9t−1(89′)

+ 19
√

F 18t9(XY )10Z + 30
√

F 26t13(XY )17Z5

+ 24
√

F 24t13(XY )11

for all 0 ≤ t ≤ XY L−4. By Lemma 3, we can choose t in the range 0 ≤ t ≤
XY L−4 in (89′) to get

L−56|Sg(D)|2 ≪ 28
√

F 18(XY )28Z + 43
√

F 26(XY )43Z5 + 37
√

F 24(XY )37(90′)

+ 38
√

F−1(XY )64 + 4
√

F−1(XY )7Z + 7
√

F 2(XY )7Z4

+ 55
√

(XY )91Z + 82
√

(XY )134Z5 + (XY )2F−1/2

+ XY L3 =
∑

1≤i≤10

Bi, say.
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By (7), F ≫ max(X, Y ) and Z ≫ (XY )1/2, we deduce that

B3 ≪ B1, B7 ≪ B8, B10 ≪ B1, B9 ≪ B5.

Consequently, by assuming X2 ≥ Y , Y 2 ≥ X, and (7) we obtain

L−28|Sg(D)| ≪ 56
√

F 18(XY )28Z + 86
√

F 26(XY )43Z5(91′)

+ 76
√

F−1(XY )64 + 8
√

F−1(XY )7Z

+ 14
√

F 2(XY )7Z4 + 164
√

(XY )134Z5.

If (7) holds, but X > Y 2 or Y > X2, then from
6
√

FX3Y 6 ≪ 6
√

FX6 ≪
√

B5, or
6
√

FX6Y 3 ≪ 6
√

FY 6 ≪
√

B5

and (86′) (note that (86′) is derived without assuming X ≤ Y 2 or Y ≤ X2),
we find that (91′) still holds. Assume that (7) is not true, that is, F ≥
min(X3, Y 3) or min(X, Y ) ≤ L6. If F ≥ Y 3, then by Lemma 7 we get

(92′) |Sg(D)| ≪ Y
14
√

FX10 ≪ 42
√

F 17X30 ≪ 42
√

F 17Z30.

If L6 ≥ Y , then similarly we have (cf. (90′))

(93′) |Sg(D)| ≪ Y
14
√

FX10 ≪ L6
√

B6.

The cases of F ≥ X3 or X ≤ L6 can be treated similarly. Theorem 2 follows
from (91′), (92′) and (93′).
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