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On the estimates of double exponential sums
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HonG-QuAN Liu (Harbin)

1. Introduction. In Theorem 1 of [K1], Kolesnik presented a very use-
ful estimate for double exponential sums (known as the “AB-theorem”, see
[GK]). However, the proof of Theorem 1 of [K1] was not correct, for the use
of the two-dimensional A-process (simultaneously for two variables) intro-
duces a strong complication, and thus the derivatives of the resulting phase
function are not of constant sizes, and, to carry out the necessary argu-
ments, Kolesnik assumed on p. 164 that “each of the domains D1, Do, ... is
a bounded region in R™ such that any line parallel to any coordinate axis
intersects it in O(1) line segments, and the same is true for the intersection
of D with the regions of the types f; (z) < cor fa, ( ) > ¢ for all considered
functions f(z)”, which was not verified in [K1]. In [GK] a corrected ver-
sion of the AB-theorem was given for the special case of a monomial phase
function, but the proof is also not completely satisfactory (see Remark 1
below). Our first aim is to give a rigorous proof of Kolesnik’s AB-theorem
by inventing some new techniques. We have the following theorem.

THEOREM 1. Let X >100,Y > 100, L = log(XY"), and let real numbers
a and B satisfy af #0, a4+ 0 # 1,2, a #1,2, 5 #1,2. Set

D={(my)|zel, fi(z) <y< fola)} C [X,2X] x [V,2V],

where I is a closed interval, the real function f;(x) is continuous and is
either a linear function (fi(x) = a;x + b;) or has continuous derivatives up
to order two on I, and in the latter case it satisfies

(1) £ @) = Ai(pi)ra® "1+ O()),  i=1,2,

where 7 = 0,1,2, \; > 0, p; # 0,1, 0 < & < L2, and for real ¢ and
integral s,

€)s=&E -1 (E—s+1).
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Let g(z,y) be a real function on [X/2,4X] x [Y/2,4Y]; consider its partial
derivative g; j(x,y) obtained by taking first the derivative of order i in x,
and then the derivative of order j in y, for i > 0 and j > 0. Assume that
gi.j(x,y) is continuous on [X/2,4X] x [Y/2,4Y] fori >0, j > 0 and
(2) @)= A(@)i(B)jz "y I (1+0(4)) for 1 <i+j <3,i>0,5 >0,
9ij(z,y) K FX'Y ™9 for 4 <i+j <5,i>0,j>0,
where F = |A|X°YP > 1,0< A< L72 Then, fort =&+ A we have
Se(D) =Y e(g(a,b))
(a,b)eD

< (VFAXY)R + F2XY) + VF2X5Y 974 4 VF2XOY574) L3,
where e(§) = exp(2mi) for a real £&. In particular, for A = & = 0 and
F > XY we have

Sy(D) < (Y/F2(XY)3)L>.

By taking into account an estimate for exponential sums having one
variable with a general phase function similarly to that obtained by us-
ing the exponent pair (11/30,16/30) (= BA3B(0,1)), we can improve our
Theorem 1 slightly for certain cases and get the following Theorem 2.

THEOREM 2. Let X > 100, Y > 100, F = |A|X*Y? > max(X,Y), and
let real numbers o and 3 satisfy af #0, a <1, B < 1. Set

D ={(z,y) |z el filr) <y < folx)} € [X,2X] x [V, 2Y],

where I is a closed interval, fi(z) = Na¥i, A\; > 0. Let g(x,y) = AzyP.
Then, for Z =X +Y, L =log(F + 2), we have

Se(D)= ) elg(ab))
(a,b)eD
< LB(X/FH(XY)BZ5 + ¥/F8(XY)BZ + V/F-1(XY)8
+ 9Y/(XY)13125 4 3/ F-1(XY)TZ + WFA(XY) Z4 + VF17Z30),
In addition, if F > XY, then the terms N/ F~1(XY)% and \/F?(XY)"Z4
can be neglected, for in (90) and (91") below we have By < Bg and Bs < B .

REMARK 1. Theorem 6.12 of [GK] is a special case of Theorem 1 of
[K1]. To prove it, on p. 79 and p. 80 of [GK] the conditions ({22) and ({23)
on the summation range E were introduced. By assuming ({22) and ({23)
for the function f(z,y) = Az®y” and the summation range D, Graham
and Kolesnik [GK] asserted that it suffices to deduce their Theorem 6.12.
However, as the proof of their Theorem 6.12 depends on their Lemmas 6.8
and 6.10, we find that they should also assume ({23) for each function

fl(m7n7q7r) :f(m+Q7n+r) _f(m?n)7
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where |¢| < @, |r|] < R, and @ and R are given on p. 83 of [GK]. The
reason is that in their Lemmas 6.8 and 6.10 what they need to show in
practice concerns the exponential sum Sj(g,r) and not the original sum S.
In addition, they need to show that the domains Dy, D; and Dy on p. 84
are all of the type ({22), for otherwise their argument cannot be carried
out. The authors of [GK] did not explain how to verify the assumptions in
applications, and even for the simplest case with f(z,y) = Az*y® (AaB # 0,
a, 3 # 1), it seems impossible to verify the condition ({23) for each function
fi(m,n,q,r) directly.

REMARK 2. It is plain that Kolesnik’s more complicated arguments (us-
ing at least twice our Lemma 2) of [K1] to [K3] cannot be remedied by our
method.

REMARK 3. Recently, we have found mistakes in some works on the
distribution of 4-full numbers. In particular, our Theorem 2 cannot be used
to yield a better result for the 4-full problem, but it can be used to get a
result which is slightly better than 15/92 for the order of ((1/2 + ).

2. Lemmas for the proof of Theorem 1. We need several lemmas.
Lemma 1 is used to change the order of variables in a summation.

LEMMA 1. Let D be an arbitrary summation range of the shape

D={(z,y) |z el fiz) <y < fo(z)},

where D C [X,2X] x [Y,2Y], X > 10, Y > 10, I is a closed interval, the
real function f;(x) is either a linear function on I (fi(xz) = a;xz + b;), or
has continuous derivatives up to order two on I, and in the latter case it
satisfies

(3) 17 (@) = Nlp)sa? T (14+0(@), i=12,
where r = 0,1,2, \; >0, 0; #0,1,0< & < L™2 L =1log(XY). Let g be an
arbitrary real function on D. Then for an absolute constant C' we have
Sy(D)= ) S(D)+0(2), Z=X+Y,
1<i<C

where D C D, D! takes the form

{(x,y) lc<y<d, g1(y) <z < g2(y)}

and g;(y) is either a linear function or has continuous derivatives of order
two on [c,d], and in the latter case it satisfies, similarly to (3),

07 () = N )y A+ 0(@)), = 1,2, =0,1,2, 5 = ;.
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Proof. We can assume the complicated case that both fi(z) and fo(x)
are not constant on I. Let

I;lel?fl(fc) 1, Igg;cfl(fc) 1s I;flel}lfz(fc) Y2, Igg;cfz(fc) 2

If f1(x) is a linear function, then fi(x) # 0, and otherwise it follows from
(3) that fi(z) # 0 on I (we can assume that X is greater than a suitable
constant, for otherwise Lemma 1 follows trivially). The same can be said of
f5(x). Thus f{(z) and f5(z) do not change signs on I. Assume that f](z)
and f}(x) are positive on I (the other cases can be treated similarly). Then
both fi(z) and fa(x) are strictly increasing on I. Therefore, for y; <y <Y,
fi(x) = y has a unique solution z = Fj(y), and F’(y) is continuous and # 0

n [y, Yi]. In particular, if f;(z) satisfies (3), then by taking derivatives in
y on both sides of f;(F;(y)) = y, we can verify that F;(y) satisfies

FD(g) = A (i) T (L4 O(@), pi =it r=0,1,2
Exchanging the roles of « and y we have Sy(D) = S4(D1), where
Di={(z,y) | <y<Ya,a<a<b filz) <y < fol)}, o] =1

If y1 > Y, then Sy(D1) = O(1). Let y1 < Y3, and assume that Y7 < Y.
Then

Sg(D1) = S4¢(D2) + Sy(D3) + O(X)
Do ={(z,y) | <y<Y1,a<z<b fi(z) < fa(2)},
Ds={(z,y) | Y1<y<Yya<ax<b fi(z) < fa(x)}.

Assume that y; > yo2. Because both fi(x) and fa(x) are strictly increasing,
we have

Dy ={(z,y) |y1 <y <Y1, Fa(y) <z < Fi(y)},
D3 = {(z,y) | Y1 <y <Y, Fa(y) <z < b}.

If y1 < ys, then for yo <Y we have
Sg(D2) = S¢(D4) + Sg(D5) + O(X),
where
{@y) [y <y <y, a<z<b fi(z) <y < foz)}
I{(l‘,y)lylﬁyéymaﬁﬂcﬁﬂ( )}
{(@y)y2<y<V,a<z<b, filz) <y < fola)}
={(z,y) |y <y <Y1, Fa(y) <z < Fi(y)}-
Similarly, we can treat the summation on Ds. In case Y7 > Ys, we have

Sg(D1) = S4(Ds) + 54(D7) + O(X),
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Dg
D~

{(z,y) ly1 <y <max(yi,42), a <z <D, fi(z) <y

{(z,y) | max(y1,y2) Sy < Yo, a <2 <b, fi(z) <y < foa)}
{(z,y) [ max(y1,42) <y <Yz, Fa(y) <z < Fi(y)}-
Evidently, for y1 > y2 we have S;(Dg) = O(X), and if y1 < yo, then
De={(z,9) |y Sy <y, a<z<Fi(y)}

Thus Lemma 1 is proved in case both fi(x) and fo(x) are not constant on I.
For the other cases, the argument is similar and easier. The proof is finished.

The next result is Weyl’s inequality for two variables, which can be
proved similarly to Lemma 5 of [HB|.

LEMMA 2. Let X and Y be positive numbers with X > 100, Y > 100,
and M and N be positive integers with M < X, N <Y . Let the summation
range D satisfy

D={(a,b)|aecl, beJ,}CI[X,X]x[V,Y],

where X < X' =0(X),Y <Y’ ' =0(Y), I is an interval, J, is an interval
depending on a, and Z(m,n) is a complex number for X < m < X' and
Y <n <Y’ Then

S Za, b)]2 < (14 (X' = X)M D1+ (V' —Y)NS,
(a,b)eD

where
S = (1= |gIM =) (1 = [#[N~1)Syr,

lg|<M |r|<N
SQJ’ = Z Z(a7b)Z(a+Q7b+T)7
(a,b)eD(q,r)

D(q,r) ={(a,b) | (a,b) € D, (a+¢q,b+1r) € D}.
Proof. 1t is a particular case of Lemma 6.1 of [GK].
LEMMA 3. Suppose f(x) is a real function, f"(x) is continuous and
[f'@) ~r, >0,

on the interval [a,b], b > a > 0. Then

S (7)) < (- a2 4 V2

a<x<b

Proof. Tt is Lemma 2.2 of [GK].
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LEMMA 4. Let f(z) be a real function such that f(z) is continuous on
the interval [a,b] (for k >3, f*)(z) denotes the derivative of order k), and

1f"(@)| ~ R Be(x) = [P (2)/f"(x) = OU*F),
where R >0, U >1,3<k <4, 1§a<b§2a. Then
Yooelfm) =X D " @) Pe(f(x) — va, +1/8) + O(RY?)

a<n<b a<v<f
+O0(log(2 +aR™)) + O((a+ R)U™).
Proof. 1t is a particular case of Lemma 3.6 of [GK].
LEMMA 5. Leta~ X, b=Y, X >1,Y >1,qr #0, A= X/|r|+Y/|ql,
and
[bg —miar| < mAlgrl,  [bg = y2ar| < m2Algrl,

where 1 and 72 are absolute constants, v1 # v2, and n1 > 0, ne > 0. Then
there is an absolute constant 6 > 0 such that n1 4+ n2 > 20.

Proof. From
|bq — yar| <mAgr|,  |bg — year| < mAlgr],

we get
plgt < AR ) gy <y R g
171 — 72l M — el
and thus
1+ |y2]) +n2(1 +
grlA < alr| + blg| < A n(d+ |ye]) + n2(1 + ) P
|71 — 72l
A+ m2) (1 + |y | + 2
CAlm et m) (0t b
71 — el
and the conclusion of Lemma 5 follows.
Our Lemma 6 improves the coefficient 2+ of the corresponding result

of [C].

LEMMA 6. Let M,N > 1, Ay, Bpy um and vy, (1 <m < M,1<n<N)
be positive numbers, and 0 < Q1 < Q2. Then there is a number q € [Q1, Q2]
such that

(4) Z Amqum+ Z Bnq_yn

1<m<M 1<n<N

<M+ AnQir > B

1<m<M 1<n<N

Y (A B ),

1<m<M 1<n<N
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Proof. Let ¢ = max(Q1, minj<;<py C;), where
C—mi ; . - AL/ (uitvy)
Ci = min(@a, min Nij)s  Nig = (BiA; )Y

Obviously, ¢ € [Q1, Q2]. For a fixed integer m, 1 < m < M, there exists an
integer r, 1 < r < N, such that

max Amj = Amr-

1<j<N
Thus, if we denote the right side of (4) as (M + N)S, we have
(5) Apg"™ < A QY™ + A Clm < A QY + A A, < S.

For an integer n, 1 <n < N, we have, for some integer k, 1 < k < M,

121115}” min(Q2, Ain) = min(Q2, A p)-

Thus, from
C; > min(Q2, Ain),
we get
~Vn < i )TV <L 1 1 . —Un
(6) Bnq > Bn(lgg}w Cz) > Bn(lgg}w HllIl(QQ, )\z,n))

= Ba(min(Qa, M) ™ < BaQ3" + Budil < 5.
Summing over m and n in (5) and (6) respectively yields the inequality (4).

LEMMA 7. Let f(x) be a real function which has continuous derivative
" (x) on [a,b], where [a,b] C [N,N'], N > 1, and N' = O(N). Moreover,
assume that

|FT) (@) ~ AN for a € [a, ],

forall 1 <r <4, and some X > 0. Then
> e(f(n)) < min(AVENYE NN 4 37T

a<n<b

Proof. This follows by the familiar arguments showing that (1/6,4/6)
and (1/14,11/14) (= A(1/6,4/6)) are exponent pairs.

3. Proof of Theorem 1. To estimate the exponential sum Sy (D), we
assume that

(7) F <min(X?3Y?), min(X,Y) > L5,
the other cases will be treated easily later. Let
(8) max(XL/Y,YL/X)<t<XYL™ M= (tX/Y)/? N=(tY/X)"/?
where t is a parameter. Obviously,
1<M<XL?% 1<N<YL2
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By Lemma 2 we get
(9)  ISe(D)]? = O((XY)*(MN) ™ + XY (MN) ™ (S1 + Sz + S3)),
where, for D1 = {(a,b) | (a,b) € D, (a + q,b+r) € D},

Si= Y, > ISa(Dy)l, Gla,b)=gla+qb+r)—g(ab),

1<]g|<M 1<|r|<N

So= Y | Y elglabtr)—glab)),

1<|r|<N (a,b)eD
(a,b+r)ED

Ss= > ( > 6(9(a+q,b)—g(aab))(-

1<g<M ' (ap)eD
(a+Q7b)€D

To estimate S1, it suffices to estimate Sg(D;) for ¢ > 0. From
X<a<2X, Y<b<2Y,

1<|¢<M<XL2 1<|f|<N<YL?
we get
IX<a+q<4X, LY <b+r<4Y.
Let
lg| | Ir] oXY Y X
11 0= —+ —, = = — + —.
(1) x*ty a1 Tl

By the assumption (2), making Taylor expansion, for real variables a, b, g
and r satisfying (10), we get, for suitable numbers a/, ' (|’ — a|] < ¢ and
b —bl <),
(12) Gn,s(aa b) = gn,s(a +q,b+ T) - gn,s(av b)

= q9n+1,5(a,0) + 7gn s11(a,b) + O(¢°|gns2,s(a’, V)]

+ lqrgni1s01(a’, b)) + 72 |gnsra(d’, 0)])

= A(@)n(B3)sa* "Ny, 5(gb, ma) + O(XY 0(0 + A))),
where n > 0, s > 0, n+ s < 2, and @, 4(£,n) = (« —n){ + (B — s)n. Let
Gi; = G, j(a,b). From (12) we get
(13)  G20Go2 — Gi 1 = A2a®™ 0?4 (D(gb,ra) + O((XY 0)*(0 + 4))),

where (&, n) is the homogeneous polynomial

B(£,m) = (@)2(8)2P2,0(&, M Po2(€,m) — ()T (B)1PT 1 (€, n)
= af(2—a - f)(ala - 1)E +2(a = 1)(B - 1)én + S(6 - 1)n?).
Because a+ (3 # 1, we can show that the equation ®(¢,1) = 0 has no double

roots. Let the roots be 6, and 65, 01| < |62|. We can assume that 6, and 6,
are real. In case 6; and 6 are conjugate complex numbers, the polynomial
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&(t,1) is positive definite or negative definite, and the treatment would be
simpler. Let

_ _ B
b3 = o 94—@_2,
Dy = {(a,b) | |bqg — b;ar| < o for some i},
Ds = {(a,b) | (a,b) € Dy, (a,b) & Do}.
For a fixed integer b, since 6; # 0, the number of integers a satisfying
|bqg — 0;ar| < p is < 1. Thus

(14) |Sa(D2)| < Z 1<Y, |Sq(D1)| < [Sa(Ds)|+Y.
(a,b)EDQ

For (a,b) € D3 and each i, we have
0 < |bg — Giar| < 2(1 + |6;])Algr|,
thus we can divide D3 into < L* small ranges of the shape (note that
Agr| = oXY, cf. (11))
Dy = {(a,b) | eiM|qr|A; < bq — b;ar < 6;M|qr|A; for 1 <i <4} N Dy,
where 1/(XY) < A; <2(1+ 31,44 10i]), and (i, ;) = (=2, 1) or (1,2).

For example we can take A; = (XY)712% k; > 0 an integer. Consequently,

for some particular range D, of the above shape, we have
(15) |Sa(Ds)| < L*Sa(Da)| + L*X,
where the error term O(L*X) of (15) comes from counting the number of
lattice points (a,b) satisfying
bq — O;ar = )\A~,~\qr|, or 2A£,~]qr|, or —2)\A~Z~|q7°], or —)\A~i|qr]
for some i and O(L) values of A;. Let

Ry = 1%?§(q_1(5i)\|qr|Ai +6;ar)), Ry= 1I£ii£4(q_1(5i)\|qr|Ai + 0;ar)).

Then from
D ={(a,b) [a €1, fi(a) <b< faa)}
we have
Dy ={(a,b) |a €I, Bi(a) <b< By(a)},
where I1 ={a € 1| (a+q) € I}, and

Bi(a) = max(fi(a+q)—r, fi(a), B1), Ba(a) =min(f2(a+q)—r, f2(a), R2).

From now on, we assume that each interval appearing has length > 10 if
it is not empty, for the other cases can be treated easily. By discussing the
monotonicity we can show that I can be divided into O(1) disjoint intervals,
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on each of which both Bj(a) and Ba(a) have explicit forms. For instance, to
compare f1(a+ q) —r and fi(a) we let

Gi(a) = fila+q) = fi(a) — .
If f1 is a linear function on I, then GG is a constant which may depend on

g and . In case f; has continuous derivatives up to order 2 and satisfies (1)
for x € I, we find that

Gi(a) = fila+q) — fi(a)
does not change its sign. It follows that Gi(a) is either a constant on Iy,
or strictly monotonic on I;. In the latter case there is at most one number
¢ € I such that Gi(c) =0, and G(a) does not change its sign on [a1,c) and

(¢, b1] respectively, where I1 = [a1,b1], by — a; > 10. Assume for example
G1(a) <0 for a € [ai, ¢]. Then for a € [a1, ¢] we have

max(fi(a+q) —r, f1i(a)) = fi(a).

Using the similar method, we can continue our monotonicity arguments by
taking derivatives to get

(16) S6(D)| < 3 1S6(Ds)| + Y,
where the summation is taken over O(1) disjoint ranges of the shape
D5 = {(CL, b) | ac I,’ Bl(a) <b< BQ(Q)} - D47

I’ is a suitable interval contained in I;, Bi(a) has an explicit expression, one
of the three forms

fila+q)—7r  fila), kia+ka, (ki,ko) = (rfiqg ", ei\|r|As),

for some i, 1 < i < 4, and similarly, Bs(a) has one of the following three
forms on I’:

fala+q) =1, faa), Ka+ky, (K, k)= (r0qg ", 5;\|r|4;),

for some j, 1 < j < 4. We need to estimate each Sg(Ds). As a + [ # 2,
af # 0, by a calculation we find that #3 and 6, are not roots of @(¢,1) = 0,
thus 03,04 # 61,05. From o + 8 # 2 we also get 03 # 04. Thus by Lemma 5
there exists an absolute constant § > 0 (we consider « and 3 also as absolute
constants, which is indeed the case in applications) such that

(17) Ai+ A5 226 fori# j, {ivj} € {1,2,3,4}.
Let A = min;<;<4 4A;. We distinguish several cases to estimate Sg(Ds).

CASE (i): A< L(A+9) and Az > 6. As A3 > 6, 0<2L 'and o < L2,
for (a,b) € Ds, from (12) we get

(18) |Go2(a,b)| ~ FoY 2.
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For (a,b) € D5 and a fixed a € I’, G 2(a,b) is continuous on [Bj(a), Ba2(a)]
(we can assume Bj(a) < By(a)), and

(19) |bg — Giar| < 2A;A|gr| < 2L(A + 0)Algr|
for some i and A;. Thus (using oA > 1, cf. (11))
> 1=001+L(A+ 0Ar]) = O(L(A+ 0)Alr)),
B1(a)<b<Ba(a)

and by (18) and Lemma 3 we get

Y G| < (Y ) Fy Y (Foy )

B1(a)<b<Ba(a) B1(a)<b<Bz(a)

< (L(A+ QA (Foy =312 4 (Foy =3)71/2.
Consequently,
(20) Sa(Ds) = O((F@*)2XL(A + 9+ XY (Fo)™'/%).
CASE (ii): A < L(A + o) and Az < 8. In this case, we argue similarly

o (i), but with the roles of a and b exchanged. From (17) we get Ay > 9,
and thus from (12), for (a,b) € D5 we get

(21) |Ga0(a,b)| ~ FoX 2.

By Lemma 1 we have

(22) = > Sa(D)+0(X +Y),
1<i<C

where C' is an absolute constant, and
Dl ={(a,b) |be I, acI(b)} C Ds,

where I/ and I(b) are suitable intervals. For (a,b) € D5 and b € I}, G (a,b)
is continuous on I(b), and

(23) |bg — biar| < 24iA|gr| < 2L(A + 0)Algr|
for some ¢ and A;. Thus (note that all 8; # 0, and pA > 1)
> 1=0(1+ L(A+0)\gl) = O(L(A+ 0)Ng]),
a€clI(b)

and by (21) and Lemma 3 we get
|5 tton] (3 Jirox-hosh
a€I(b) acl(b)
< (L(A+ 0)Na)(FoX )12 4 (FoX—2)71/2,
Consequently,
Sa(D;) = O(Y X (Fo)'L(A+ 0)Alg| + XY (Fo)~'/?),
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and by (22) we get
(24)  Sa(Ds) = O(Y(Fo*)Y2L(A + o)A+ XY (Fo) V2 + X +Y).

CasE (iii): A > L(A+ o) and Az > 8. By (12) and (13) we find that
for (a,b) € Ds, the functions
G072<a, b), GQ’O(G, b), G270(a, b)Go’Q(a, b) — G%jl(a, b)
do not change their signs, and satisfy
(25)  |Goz(a,b)| =~ FoY ™2 |Gap(a,b)| = AyFoX 2,
(26)  |Gao(a,0)Goa(a,b) — GT,(a,b)| & min(Ay, Ag) (FoX Y1),
where to deduce (26) we have used (cf. (13))
b b b 2 %
(LAY 2L (L)~ (L) 20,02~ () A4,
ra ra ra X |7
and max(Aj, Ag) > ¢ (which follows from (26)). From (12) and (25) we have
(27) Gopol ~ FoY ™, Goz < FoY ™, Goa < Foy™*

for (a,b) € Ds, and G, ; = G; j(a,b). We can assume that G2 > 0 on Ds;
the case of Go2 < 0 can be treated similarly. For a fixed a € I’ such that
Bj(a) < Ba(a) — 10, by Lemma 5 and (27) we obtain

(28) > e(Gla,b))
Bi(a)<b<B3(a)
= ) Ke(K1)+O(Y(Fo) ')+ O(Y (Fo)™) + O(L),

ar<u<az

where

K = K(a,u) = (Goz(a, bla,u))) "'/,

K = K (a,u) = G(a, b(a,w)) — ubla,u) + 1/8,
and b(a,wu) is the solution of Gy 1(a,b) = u for given numbers a € I’ and
a1 < u < g, o5 = ai(a) = Go,i(a, Bi(a)). As Goa = Goa(a,b) > 0 for
(a,b) € Ds, for a fixed a € I’ the function Gy i(a,b) is strictly increasing

with respect to b € [Bi(a), Ba(a)]. By (2), taking Taylor expansion we have
(29) a; = Goa(a, Bi(a)) = Fi(a) + O(FY "to(e + 4)),
Fi(a) = Aa*"'B}*(qaBB; + ar(8)2).

For a € I', there are many choices of (Bj(a), B2(a)); we assume the difficult
case that

(Bi(a), Bz(a)) = (fila +q) =7 f2la + q) =),
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and neither f; nor fo is a linear function. Then from (1) we deduce for
1 =1,2 that
BZ(CL) = )\ia“""(l + O(@l)),

Bj(a) = Xipia® (14 O(®1)) = @iBi(a)a™ ' (14 O(1)),
where @1 = @ + p. From (29) and (30) we get
(31) a;i = gila) + O(A1),  gi(a) = Aa® '] (qaBb; + ar(B)2),

where A1 = Fo(o+ A+ @)Y ! and b; = b;(a) = \a?i. Let C; be a large
absolute constant such that

Xl(a) = gl(a) + 01A1 > o1, Xg(a) = gg(a) — 01A1 < a9,

(30)

which is possible in view of (31). As
K =K(a,u) = 0(Y(Fo)™'?),  Xi(a) — i =0(41), i=1,2,
it follows that
(32) > Ke(K) = Y Ke(Ky)+O(Y(Fo) '2(1+ Ay)),

a1 <u<as Xi(a)<u<Xs(a)

whether X (a) > Xa(a) or not. We consider the set of real numbers a with
a € I' and By(a) > Bi(a) + 10. Let

F(a) = Ba(a) — Bi(a) — 10, a€l’
By (30) we have
(33) F'(a) = By(a) - B(a)
= Aapaa??* (14 0(21)) — Mip1a® (1 +0(®1)), acl.

If F'(a) # 0 on I, then F(a) is strictly monotonic on I’. We consider the
difficult case that there is a number a; € I’ with F'(a1) = 0. It ¢1 = ¢2,
from (33) we also get A\ = A2, and thus

By(a) = Bi(a) = O(Y®1) = O(Y(2 + 0))
for a € I, and by (27) and Lemma 3 we get (as Yo > |r| > 1)
(B4 D elGah) < (1+Y(P+0)(FoY )2 4 (Foy=2)71/2

Bi(a)<b<Bs(a) 1/2 -1/2
< (P+0)(Fo)'? +Y(Fo) /2,

(35) Sa(Ds)=>_ Y. e(G(a,b))

a€l’ B1(a)<b<Baz(a)
< X(Fo)'2(® + 0) + XY (Fo)~/2.
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Suppose p1 # 2. Then for any other ay € I’ such that F’'(a3) = 0, from
(33) we get

A1p1 P1—p2 P1—p2
——(a —a =0(d1),
)\2@2( i 5077 =0(91)

which implies that |ay — a;| < CoX®P; for a suitable absolute constant Cs.
Let

I'={ael'lla—a|>CoX®}, Ih={acl |la—a|<CoXd}.

We have F’'(a) # 0 on I{, and I] can be divided into at most two disjoint
intervals on each of which F'(a) is strictly monotonic. If F/o <Y, by Lemma 3
and (27) we get

(36)  Sa(Ds)| < X((Fo)'? +Y(Fo)™'/?) < XY (Fo)~'/%.
Suppose Fp > Y. By Lemma 3 and (27) we get (as Xp > |¢| > 1)
BN > Y G
ael} By (a)<b<Bs(a)

< (1+X (2 +0)((Fo)'/? + (FoY*)7'/%) < X (& + 0)(Fo)'/*.
From the observations on I and (37), there is an interval I C I’ such that
(33)  1Sea)l< | Y eGlab)|+ X(@+ o)(Fo)l2,

a€l} Bi(a)<b<Bs(a)

and F(a) is strictly monotonic on I3 if I5 # (. It follows that there are
intervals I}, It C If such that I = I} U I, and

IN={a€l}|F(a) <0}, Ii={acl)|F(a)>0}.

By Lemma 3 and (27) we have

1> > G| < X((Foy )Y 4 (Foy =)~/

a€l) B1(a)<b<Bz(a)

< XY Y F)Y? 4 XY (Fo)~1/2.
Thus (38) gives
(39)  |Sa(Ds)|
<[> Y G|+ X(@+ 0)(Fo)'+ XY (Fo) 2,

a€lf B1(a)<b<Bz(a)
We suppose I # 0. By (28), (32), (35) and (39), we have
(0) IsaDa)l< | Y Ke(ky)
a€ll X1(a)<u<Xa(a)

+ XY (Fo) V2 + X(A+ &+ 0)(Fo)'/? + XL,
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and, by exchanging the order of summation
S Yoo KeK)= Y. Y Ke(ky),
aclf Xi(a)<u<Xa(a) ui<u<uz a€S(u)
where w1 = min,ep; Xi(a), up = max,cp; Xo2(a), and
S(u) ={a €I} | X1(a) <u < Xo(a)}.
The function X;(a) — u is monotonic on each of the O(1) disjoint intervals
contained in I7, because from a+ (3 # 2 (which implies @ — 1+ ¢ (8—1)| +
la+ ¢1(8 — 2)| # 0) we find that (cf. (31))
Xi(a) = g1(a)
= BAa""*b*lag(a— 1+ @1(B— 1) + (8= r(a + ¢1(8 - 2))a/bi]
=0
has at most one solution on I7. A similar conclusion holds for Xs(a) —u. As
the intersection of two closed intervals is either empty or a closed interval

(maybe consisting of only one point), it follows that S(u) consists of O(1)
disjoint intervals. Therefore for a suitable interval I(u) C S(u) C I we get

(41) \Z > Ke(Kl)\<< > ‘ZKe(Kl)‘.
a€ll Xi(a)<ulXz(a) ur<u<uz a€l(u)

For a u with uy < u < ug, suppose I(u) # 0, and I(u) is an interval of length
> 0. Then, for all a € I(u), (a,b(a,u)) € D5, where b(a,u) is the solution of

Go,1(a,b(a,u)) = u.

Taking derivatives in a of both sides of this equality, we get

%(a,u) =V, (a,u) = —G11(a,b(a,u))/Go2(a,b(a,u)).

Thus (by (27))
K (a,u) = =G4 3 *(Gos - U, + Gr.2)
= 1G5 (G12Go2 — G11Goz) < YX Y (Fo) /2,
and by partial summation,
(42) | > Ke(kn)| < v(Fo) 2 S e(ka(a,u)|
a€l(u) a€li(u)

where I1(u) C I(u), I1(u) is an interval. Let I1(u) # 0. For a € I(u), by
(25) and (26) we have

(K1), = G10,
[(K1)a] = |G2,0 + G| = |(G2,0Go2 — G11)/Goz| = A(1)FoX 2,
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where we let A(1) = min(A;, As). By (27) and Lemma 3 we get
(43) > k)| < (Fo) 24 X (A1) A (Fo)
a€li(u)

Consequently, as Fo > Y and u; = O(FoY 1), from (41)-(43) we deduce
that

‘ Z Z Ke(K))| < Fo+ X (A(1))~Y2

acll X1(a)<uXa(a)
Therefore from (40) we obtain
(49)  |Sa(Ds))
< Fo+XY(Fo) ' 2+ X(A+®+0)(Fo)'? + XL + X(A(1))" V2

To eliminate the term X (A(1))~/2 of (44), similarly to the estimate (24)
of (ii) we can derive that

Sa(Ds) = O(YX M (Fo)' 2A(1)Ng| + XY (Fo) /> + X +Y)
= O((Fo)?oY?r| P A(1) + XY (Fo) V2 + X +Y).
Thus from (44) we get for Fp > Y the estimate
(45) Sa(Ds) = O(Fo+ XY (Fo)~'/?
+X(A+®+0)(Fo)'/? + XL+Y +R),
R = min(XA1)"V2 F1/232y2r|71 A(1))
< {FPXYr|2

In view of (36), we find that (45) also holds for F'p < Y. For other choices
of (Bi(a), B2(a)), we can deduce similarly to prove (45).

CASE (iv): A > L(A+ o) and Az < 8. By (17) we have Ay, Ay, Ay > 6.
Using the decomposition (22) and noting that D} has a similar form to Ds,
but with the roles of a and b exchanged, we can treat Sg(D}) as we treated
Sc(Ds) in (iii), but with the roles of a and b exchanged, and we get for
Fop > X, similarly to (44), the estimate

Sa(D)) = O(Fo+ XY (Fo) Y2 4 Y(A+ &+ 0)(Fo)'/? + YL).
For Fp < X, similarly to (36) we get
S¢(D}) = O(XY (Fg)~'/2).
Thus the estimate
(46) Sc(Ds) = O(Fo+ XY (Fo) Y2+ Y (A4 &+ 0)(Fo)/? + YL 4 X)
always holds.



Estimates of double exponential sums 219

CASE (v): Final estimate. From (20), (24), (45), and (46), we have (note
that oA > 1, cf. (11))

(47)  Sq(Ds)=O(Fo+ XY (Fo) Y2+ LZ
+ Z(A+ P+ 0)(Fo) 2o\ + {/FA XY 4r[2).
where Z = X +Y. From (14)—(16) and (47) we obtain
(48) L75Sq(Dy)| < Fo+ XY (Fo) Y2+ 7
+ (FQ)1/2Z(A + &+ 0) + YFP XY 4|2

In case @(t,1) = 0 has conjugate complex roots, we can argue similarly and
relatively simply to obtain (48), for in this case

G2,0Go2 — G1 1| = (FoX 'Y 1)

always holds, and we only need to divide D3 into < L? small ranges of the
shape

{(a,b) | eiM|qr|A; < bg — b;ar < 6;M|qr|A; for 3 <i <4} N D;y.
From (8) and (48) we get

(49) L°° ¥ S < VF2XYt + YF2XY)r 1+ XYZ

+ VF2XY Z43 + VF2X3Y3 7474 + VF2X Y15,

where 7 = A+ @. For 1 <r < N, the condition “(a,b) € D and (a,b+7r) €
D?” is equivalent to

(a,b) € D} = {(a,b) |a €I, fi(a) <b< fola) —r}.

Let G(a,b) = g(a,b+ 1) — g(a,b). We can estimate directly Sg(D]) as we
estimated Sg(Ds) in (iii), for now

G2,0Go2 — GL | = (FoX'Y ™2 o=1r|/Y,

always holds. Thus we can deduce, similarly to (45) (the additional “R”
term will not emerge here, cf. (36) and (44)) that

(50) Sa(Dy) = O(F|r[Y ™" + XY (Flr|y—1)~1/2
+ZL+ X(Flrly HY2(A + &+ |r|/Y)).
A similar estimate with r € [-N, —1], and D] replaced by
{(a,0) [a €I, fi(a) —r <b< fala)},

also holds. For 1 < |¢| < M, the condition “(a,b) € D and (a + ¢,b) € D”
is equivalent to

(a,b) € DY ={(a;b) |a € I, fi(a) <b < fa(a)},
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where I is the interval determined by a € I and (a+q) € I. Suppose I # ().
Let

G(a,b) =g(a+q,b) — g(a,b).
We can deduce similarly to (47) and (50) to get (o = |q|/X)
(51) Sa(DY) = O(Flg|X ' + XY (Flg|X1)~V2 + ZL
+ X (FlalX™H)"*(A + @ + |al/X)).
From (8), (50) and (51) we have
et

(52) (834 83) < FZ+ VF-23XTY7Z4 4+ Vi-1XY Z4

+ VT LF2X5Y ZAr4 + ViF2X3Y -1 74,

Ast>max(XL/Y,YL/X) > Z?(XY )™ !, we can compare similar terms of
(49) and (52); for instance, we have

FZ < VF2XY12, VF23XTY774 < {/F2(XY)%1,
VXY 74 < XY Z, VEIF2X5Y 7404 <« VF2X3Y3 7474,
VIF2X3Y -174 <« VF2XY Z483.
Thus, from (9), (49) and (52) we get
(53)  L7%S,(D)]? < (XY)2t 1 + VF2XYt + /F-2(XY)%t!
+ XY Z + VF2XY Z43 + VF2X3Y3 7474
+ VF2X1Y 15,

The term ¥/ F2X19Y15¢ of (53) can be neglected. Indeed, let the seven terms
of (53) be Ay,..., A7. For F < XY, by Holder’s inequality we get

A+ A5 > AZPAVE s A
Let F > XY. Then for X > Y?,
A+ Ay > AP AP s A

and for X < Y?2,
Ay + Az > AYO AN > A,
Thus we get from (53) the estimate
(54)  L78S,(D)]? < (XY)*t 1 + VF2XYt + +/F2(XY)%t1
+ XY Z + VE2XY Z43 + VF2X3Y3 7474,
Suppose X > Y in (54). Then we have
(55)  L7YS,(D) < (XY)2 '+ VF2XYt + /F2(XY)9%1
+ X2y + VF2X5Y 13 + VF2XTY374¢,
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By (1) and Lemma 1 we have
Se(D) = > 8y(D}) + O(X),
1<i<C
where C' is an absolute constant, and for each i,
Di={(a,b) |be I}, g1(b) <a < g2(b)} C D,

I! is an interval, g; and g» are suitable functions. Thus we can use Lemma 7
to estimate the sum over a in Sy(D)), and get

S,(D}) =O(Y(VFX3 + X/F)) = O(VFX3Y6 4+ {/F-2(XY)7),
and thus

S,(D) = O(VFX3Y6 4 {/F-2(XY)7 + X).
If F>Y3orY < LS then VFX3YS < L3($/F2(XY)3), and we have
(56) Sy(D) = O(L*(Y/F2(XY)3 + ¢/ F2(XY)" + X)).

Suppose (7). The estimate (55) is derived for ¢ > XL/Y (cf. (8)). For
0<t< XL/Y and F < Y3, we have

(XY)2t > XY3 L7t > (VEX3YS) L,

and thus from (55) and (56) we get for all ¢ satisfying 0 <t < XY L~* the
estimate

(57)  L7YS,(D)* < (XY)2 '+ VF2XYt + /F2(XY)%1
+ X2y + VF2X5Y 13 + VF2XTY 374
+ YFAXY)3 + Y F2(XY)".

Suppose also t < {/F2(XY)~L. Then {/F-2(XY)% ! <« (XY)%"!, and
from (66) we get

(58) L7%|Sy(D)> < (XYt~ + VF2XYt + X2Y + VF2X5Y 13
+ VE2XTY374 + Y/ F2(XY)3 + 3/F2(XY)T

for 0 < t < min({/F2(XY)~1, XYL™). By Lemma 6 we can choose t in
this range in (58) to get

(59) L79S,(D)|? < /F2(XY )3+ Y F2(XY)T
+VF2XIYT L VF2XIY5 4 ¢ X2Y
=B+ -+ Bs, say.
By Holder’s inequality we have
Bs = BY"BY" « B, + Bs,

and

1

Bs < BI’BY? < B+ By for X <Y?, Bs; < VXY < By for X > Y?
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(using (7)). Hence Theorem 1 follows from (59) in case X > Y. As X and
Y are symmetric in (54), for the case X < Y we can argue similarly. The
proof of Theorem 1 is finished.

4. Preliminaries to the proof of Theorem 2

(I) The polynomials F;(t), 3 <i < 7. Let (cf. (22))
(1) F(t) = 8(t,1) = aB2—a—B)ala—1)2+2a—1)(B—)t+B(B—1)].
To introduce the polynomials F;(t) for 3 < i < 7, which will be used in the

proof of Theorem 2, we use deeper arguments in the setting of (iii) of §3,
but with the choices (¢ and r are fixed)

g(a,b) = Aa®t’,  G(a,b) = Al(a+q)*(b+r)" —aV’),

and correspondingly, we take “A =& = 0” in (iii) (§3). Thus using (42) we
can differentiate the function (u is a fixed number)

K, = Ki(a,u) = G(a,b(a,u)) — ub(a,u) + 1/8,
using b, = —G1,1/Goz to get (Gij = Gy j(a,b(a,u)))
(2) (K1) = Gro. (K1) = (GaoGoa=Gi)Goh, (Kl = PG,
where 3 <1i <5, ¢(3) =4, ¢(4) =6, ¢(5) = 8, P; takes the form
(3") P, = Py(a,b(a,u)) ZC BTy ooy Thy U1y J1y v -5 0k, JE)GLL 5 o GF

11,J1 UsJk”
>~ means summation over lattice points (r1,..., 7k, 91,71, - -, ik, ji) satisfy-
ing the conditions
T1+"'+7’k=C(i), 1ry+ -+ =1,
Jiri+ 4 gkre = 2(c(d) = 1), i1+ g1, 0k + gk <
where T1y..., Tk Z 17 il?jl?’ . zk?]k > O C( ) > k > ]- (ilajl)w 7(“{?7.7/{?)
are different from each other, and C(i;7y,...,ji) is a suitable integer. We
note that for 3 < i <5, (2') and (3') can be proved by a direct computation
(a procedure which may be described as “taking the formal derivatives”)
with unspecified coefficients C(4; 71, ..., ji). Let P = G20Go2 — G%,p and
(4" Ps = PyP —3P%, P;= PsP?>—10PPsP; + 15P;.
Using (12) and (13), from (3') and (4’) we get (b = b(a,u))
(5') Pi(a,b) = ADaf@DpB) (B, (gb, ra) + O(XY 0)*Wp)), 3<i<T,
where e(a, 1) = (o — 1)e(i) — ¢, 6(8,1) = (8 —3)c(i) + 2 for 3 < i < 5,
¢(6) =8, ¢(7) = 12 and
e(a,6) = 8a — 14, 0(8,6) = 88 — 20,
ela,7) =120 — 21,  §(3,7) = 128 — 30,
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®;(&,n) is a homogeneous polynomial of degree ¢(i),

(6 i(&,m) = N 4, 3<i<,
Ai and p; are constants. Let the polynomials F;(t) be defined by
(7 Fi(t) = @;(t,1) = MtD 4 -4, 3<i<T.

We will use the real roots of the equations F;(t) = 0 to define summation
ranges. To estimate S; and S5 of (9), we will use \; # 0 for 3 < i < 7, and to
estimate So of (9), we will also require p; # 0 for 3 < i < 7 as a condition.
Stimulated by the proof of Lemma 7 in [C], we manage to obtain the values
of \; and u; for 3 <7 <5, and so for i = 6 and 7, in terms of o and 3. We
have

LEMMA 8. Let o, 8 #0,1,2. Then

Ai = (aB(B — 1) D a(a—1) (7“%) , 3<i<s5,
i—1

Ao = a®Fa—1)*2—a—-0)*3—a—26)2a+35-5),
A = al28%(2 - a - B)¥(a - DP(B - 1)*(3— a—20)
X (5 —2a—30)(7T—3a—40),

w=as(25250) wE-vE-20 s<iss
B-=2 )i,

e =a’B%(8 - 1)°(8 - 2)*(2 —a — B)*(4 — a - 26)(2a + 35 — 6),

pr=a’f22—a— 0B -1)°(8-2°(4 —a - 2p)

X (6 —2a —306)(8 — 3a —40),

where (s)i—1 = s(s—1)---(s—i+2) for a real s. Thus for af #0, a,3 <1,
we have \jp; # 0 for all 3 < i <7 (note that ma + nf3 # k for any positive
integers m,n and k with k > m +n).

Proof. Obviously, A; and u; are independent of ¢ and r. To calculate \;
for 3 <i <5, we choose the special values of ¢ and r, ¢ = [N] = [\/Xt/Y]
and r = 1, where t is the parameter given by (8). Thus for L = log(XY),

(8) g> L2 gV > XL'?, o~lql/X,
and from (2'), (5') and (6") we find for 3 <7 <5 that
@) Gy (K = AV IRED (y(gh) D + O((qY )0 X)
+O0((XY )" 0))
_ Ac(i)aa(a,i)bé(ﬁ,i)()\i<qb)c(i) + O((qY)c(i)L_1/2)).

Let
G(a,b) = Al(a+ ¢)*(b+1)" —a®’], a=~X,brY.
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The assumption Gg2 > 0 is equivalent to aAB(8 — 1) > 0, for by (12) and
(8") we have

Gua(a,b) = AB(3 — aa® " 2q(1 + O(L/2)),
which implies that
Goa(a,b)(AB(S — 1)aq) L ~ X1y P2,
Similarly, we have
(10°) Goi(a,b) = ABaa® 1 Lq(1 + O(L1/?)),
which implies that
Goa(a,b)(ABag) ™ ~ Xy 7L
We compare the function (a = X, b~ Y)
(11) é(a, b) = anaa—lbﬁ

with G(a,b). For a fixed number v satisfying u(ABaq)™' ~ X~ 1YB~1 and
a real variable a € I(u) for a suitable interval I(u) depending on u, I(u) C I}
(cf. (41)), let

K1 = K(a,u) = G(a,b(a,u)) — ub(a,u) + 1/8,
where b(a,u) is determined by ég,l(a,g(a,u)) = u. Then (2') is also valid
with K1, G, s and P; replaced by K1, G, and P;, where

Grs = Grs(a,ba,u)),
P; = Py(a,b(a, u)) ZCzrl, ..,]kG;lh G;’;M

For 3 <i <5, we can show that
(12) GGy (K

= Go T (R)Y + 0L Y2(Flg| X e x iy —2e0-D),
where G; ; = G j(a,b(a,u)), é” = éiyj(a,g(a,u)), and F = |A|X*Y". In
fact, from (10") and (11") we get

u - 1/(B-1)
a )
afBqA

(13 b(a,u) = bla,u)(1+OL?),  bla,u) = (
and thus by (12) (“A =0") and (8') we have
Gig = Gigla,b(a,u)) = A(@)i1(8);a°~ 10 g1+ O(L71/3)
= A(@)is1(8)ja% " (bla, ) q(1+ O(L?))
=Gi;(1+0(L7?).
Consequently, from (2') and (3') we get (using é” < F(lql/ X)Xty =)
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GSS;)_1<K1)(i) (a,b(a,u) ZC BTy ey Jk) GT1 LG

1,51 ik,Jk
_ZCZ 1y -y Jk G;l]l G::Jk(1+0( —1/2))
= Py(a,b(a,u)) + O(L~Y?(F|q| X 1)) x iy ~2c)-1)
= GXDY R D + O(L™2(F|g| X 1)) X~y —2(e)=1)),
and (12) follows. We can compute the value of 58(2) (Kl)() precisely in
terms of the value of E(a, u) of (13'). We have

(K1), = Grola,bla, v) = Aa(a — 1)ga® 2’

u N7 6oy
= Ao(a — 1)q<Aaﬂq> a ,
8/(6-1)
= \G) _ u —a-p (2—a—B)/(B—1)—i+1
(Fr)a” = dafa —1) q<Aaﬁ > ( 7o )i_la

2 —a— -
= Aga(a—1) a ) a1,
i—1

égg? = (Aaf (B — 1)qa°‘ 1bﬁ 2)0(Z
and thus
(14') 58(;)71 ( f(l)((f) — (A q)c(i) qla—De(i)—ip(B-2)c(i)+2

<(pe- 1) 0t - ) (252E)

From (12'), (13') and (14’) we get
(15) Gy (KD = (Ag)Walo DO b2 2 (o3 — 1))

x ala —1) <M) (1+O0(L~12)).
P=1 Jia
From (9’) and (15") we get
(16) A= (aB(B — 1) la(a —1) <w> . 3<i<s.
i1
To calculate p; for 3 < < 5, by taking ¢ = 1 and r = [/Yt/X], similarly
to (9), from (2'), (5') and (6') we get
A7) Goy KD = A0 ED (i (ra) D + O((ra) L),
where G(a,b) = A[(a +1)*(b+7)% —a®b’], a = X, b~ Y. Now we have
Goa(a,b) = AB(B — 1)a"b’2r(1 4+ O(L™1/?)),
Goa(a,b) = AB(F = 1)(5 = 2)a"b"*r(1+ O(L™/?)),
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and the assumption G2 > 0 of (ii) of §3 is equivalent to A3(3—1)(8—2) > 0.
In particular we have

Go,1(a,b)(AB(B — 1)r) !~ XV P2,
We compare G(a,b) with the function
G(a,b) = BrAa®b’.
For a fixed number u satisfying
uw(AB(B —1)r) ! = XY P2,
and a real variable a € I(u) for a suitable interval I(u) depending on wu,
I(u) C IL (ct. (41)), let
K1 = Ki(a,u) = G(a,b(a,u)) — ub(a,u) — 1/8,
where b(a, u) is determined by éoyl(a,g(a,u)) = u. For 3 <1 <5, similarly
to (12") we can deduce that
(18) G (E) = Gy~ KD + O(LT A (Flr|y ) O x iy,
We have (cf. (13'))

1/(B-2)
b(av ’LL) = - —a> )

<5(6 —Dra’
thus
(f(l)fl = él,o(a,g(a,u)) = aﬁrAao‘_lgﬁ_l

w (B-1)/(B—2) (2=} (5—2)
:aﬁTA<4ﬂ(ﬁ—l)rA> a ,
- " (8-1)/(3-2)
KW = Al ———
(Rl = aor (57
o (2 —a— 5) o (2—a—B)/(B—2)—i+1
=2 /i,
2—a— ﬁ) 781
=afrAl ———— a® P,
ra(35550).

G = (B(8 — 1)(8 - DrAaF D1,
(19) é(c)%)—l(f(l)gi) = (Ar)c(i)aoé(c(i)—1)+a—ig(ﬁ—3)(c(i)—l)_i_ﬁ_laﬁ

2-a-p _ _ oneli)—1
«<(35557) e-ne-2)

— (Ar)el) goel)=ip(B-3)c(i) 2 g (2= = 0
-2 )i,

x (B8 =1)(8-2)" D7 1+ 0(L7Y?).
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From (18') and (19’) we have
@) GG (R = (Ary ety (22020
i—1
X (B8 =1)(8 = 2)"7 (1 + O(L712).
From (17’) and (20") we obtain

@) = aﬂ(”j‘ff

) GE-DE-20" drssiss.
1—1
From (21') we get

P(a,b) = Ga0(a,b)Go2(a,b) — G 1 (a,b)

= A% (@(gb, ra) + O((XY 0)* (0 + A))),

D(qb,ra) = a*(a = 1)B(2 — a = B)(q0)* + 2a8(2 — a — B)(a = 1)(8 — 1)grab
+af*(B-1)(2 - a - p)(ra)?,
thus in view of (4)—(7"), (16’), and (21') we get

A6 = A\ — 32
— a83(a - 12(B— 122 - a— H)*3 — a— 20)(2a+ 36— 5),
16 = fujta — 3p13
=a’B%(B-1)°(8 -2’2~ a— B)*(4 — a —20)(2a+35 - 6),
A7 = AsAZ — 103\ + 1503
=a?F2—a=p)a-1)(8-1)’B3—a—-26)
x (b —2a —30)(7—3a —4p5),
pr = psp® — 10ppapa + 1543
=a’f22-a-0)°(B-1)°(8 -2’4~ a—20)
X (6 — 200 — 36)(8 — 3a — 48),
where
A=a}a-1)pR2-a-p), p=af*(B-1)2-a-Pp).
The proof of Lemma 8 is finished.
(IT) The polynomials F;(t), 8 < i < 12. In (iv) of §3, to estimate each
Sc(D;) of (22) similarly to the way we estimated Sg(Ds) in (iii) of §3,

we need to reverse the orders of a and b in the treatment. Consequently,
similarly to (41) we arrive at the exponential sum

S Y Felr)|

v1<v<vy bel(v)
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where v; = O(FoX '), Fo > X, I(v) is an interval depending on v, b € I(v)
implies that b =~ Y, and
Ky = Ky (b,v) = |Ga(a(b,v),b)| /2,
K3 = K3(b,v) = G(a(b,v),b) — va(b,v) + 1/8,
a(b, v) is the solution of G g(a(b,v),b) = v for given b and v, and
G(a,b) = Al(a+ )*(b+1)" — a®bF),

q and r satisfy (8). Then, for each fixed v, by partial summation we need to
estimate, similarly to (42) and (43), the sum

Z E(Kg(b,l/)),
beli (v)

for a suitable interval I;(v) C I(v). Our purpose here is to introduce a
number of additional polynomials, which will be used to define summation
ranges. Thus we can omit many detailed explanations, and we only need to
consider (formal) derivatives. We have

(a’(b7 V));) = _Gl,l(a(ba V)’ b)/G2,0(a(b7 V)v b)
Thus, for G; ; = G; j(a(b,v),b), we get, similarly to (2'),
(22') (K3), = Goa, (K3)j = (G2,0Goz2 — G1.1)/G2,, (K3)y) = Pz‘+5G§,?JC(i)v
where 3 <1i <5, ¢(3) =4, ¢(4) =6, ¢(5) =8, and
(23") Piy5 = Piys(a(b,v),b)
= Zl C<’L + 5;7"1, s Tk il:jl? ceey Zk?]k)G;l,‘]l U G::ka

>, means a suitable summation over lattice points (ri,...,7x,%1,J1,...,
ik, Ji) satisfying

rito+ g ZC(i), 1ury + -+ gk :2(C(i) —1),
Jart e e =0 it g Tk S0

Ty > 1, 91,91, 0k, J > 0, C(Z) >k > 1, (il,jl),...,(ik,jk) are
different from each other, and C(i+5;71,. .., ji) is a suitable integer. We can
obtain the expression (23') by a direct calculation. However, our argument
will not need a precise value of each coefficient C'(i 4 5;r1,...,jr). Asin (I),
let P = G270G072 — G%,l' Let

(24) Py = PyP —3P2, Py = PgP? — 10PPsPy + 15P3.
Then, similarly to (5’), using (12) and (13), from (22) and (24’) we obtain
(25)  Pivs = Piys(a(b, ), b)

= A°0) gE@i)p(B:) (Piy5(gb,ra) + O((XY )W), 3<i<T,
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where £(a, 1) = ¢(i)(a—3)+2, 8(3, i) =c(i)(B—1)—ifor3 <i <5, ¢(6) =8,

5(7) = 12 and £(a,6) = 8a — 20, 0(3,6) = 80 — 14, £(a, 7) = 120 — 30,
0(8,7) =128 — 12, ®;15(&,n) is a homogeneous polynomial of degree ¢(7),

(267) Bi5(€,m) = AigstD o sy, 3 <<,
Ai+s and p;y5 are constants. Let the polynomials Fj;5(¢) be defined by
(27') Fips(t) = Piys(t,1) = Aigst™@ + -+ piys, 3<i<T.

To estimate S; of (9) the condition A; # 0 for 8 < i < 12 is necessary. We
have

LEMMA 9. Let o, 3 #0,1,2. Then
2—a-—
Aits = 045(76

a—2
Mt = 0853 (a — 1)%(a — 222 — a — B)*(4 - 20 — B)(3a + 26— 6),
Az =B (@ - 1) (a = 2)°(2 - a - 8)*(4 - 2a — §)(6 — 3a — 2)
x (8 —4a — 30).
Thus “af # 0, a < 1 and B < 1”7 implies that \; # 0 for 8 < i < 12.

Proof. To calculate \;j45 for 3 < ¢ < 5, we can choose special values of
q and r as in (I) by letting ¢ = [\/Xt/Y], r = 1, where t is given by (8).
Then from (22'), (25') and (26") we get for a = a(b,v), similarly to (9'),

(28) G (k) = Piys(a.b)
= A EEDED (N, 5 (gb)® + O((qV)DL~V/2)), 3<i<5.
As in (I), (11")—(16"), we compare the two functions
G(a,b) = Al(a+q)*(b+1)° —a®b’],  G(a,b) = aqgAa® "’

Assume that a(a — 1)(a — 2)A > 0 (the contrary case can be treated simi-
larly). For a suitable number v, let

K3 = K3(b,v) = G(a(b,v),b) — va(b,v) + 1/8,

where a(b,v) is determined by él,o(a(b, v),b) = v for real variables b be-
longing to a suitable interval. For 3 < i < 5 we can deduce similarly to (12')

that (G, ; = Gy ;(a(b,v),b))
(29) G50 (k)

= Gy " (Ky)y) + O(L™ (| x ) O X220y ),
On the other hand, from

N 5 p\Ye
a(b’”):<Aa<a—1>qb ) ’

) (o — 1) (e —2))¥D71 3 <i<5,
1—1
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we get

(K3) = Go1(a(b,v),b) = afgAa® b7
>(a—1)/(a—2)

v
Aa(a—1)q
, (a=1)/(a=2)
(Aa(a - 1)Q>
X(M) p2—a—B)/(a—2)—i+1
i—1

a—2

- aﬁqA<72 - ﬂ) a P,
i—1

p2—a—p)/(a=2),

a—2

G5y = (ala — 1)(a — 2)gAa> 27O,
(30') ég%)*l(ffg),(f) _ (qA)c(i)a(a—?))c(i)—i-?bﬁc(i)—z’aﬁ

x (afa = 1)(a —2))" 0! <w>i—l

a—2

= (qA)c(z')a(a_3)c(z‘)+2bﬁc(z')—z’aﬁ(a(a —1)(a— 2))c(i)—1
X (M) (1 4 O(L71/2))7
1—1

oa—2
because we have, similarly to (13'),
a(b,v) =a(b,v)(1+O(L™?)).
From (29’) and (30") we get
(1) G0 (Ks)y)
= (qA)“ D qla=3)el)+2pe=10 5o (o — 1) (o — 2))D 1
< <72 o 5>i_1(1 o),
Thus it follows from (28') and (31’) that

2—a—0
oa—2

Aivs = af(afa— 1) (o — 2))C<i>—1< ) . 3<i<5.
i—1

Consequently, from (22'), (24), (25’) and similarly to the calculation of \g
and A7 of (I), we get

A1 = Mg — 3\
= o*#(a = 1)%a - 2)%(2 - a — §)*(4 - 20— B)(3a + 28 — 6),
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A2 = A2A0 — 10MAgAg + 15A3
=aF(a=1)"(a 22— a - B4 - 20 - p)
x (6 — 3a — 26)(8 — 4a — 303),
which proves Lemma 9.
Similarly, we can also calculate each pu; for 8 < ¢ < 12 in terms of «

and (. However, the condition “u; # 0 for 8 <+¢ < 12”7, which is indeed the
case in a lot of applications, is not imperative in the proof of Theorem 2 (cf.

§5).
(III) Additional lemmas for the proof of Theorem 2

LEMMA 10. Suppose the real function f(x) has continuous derivative
1" (x) on an interval [a,b], and it satisfies

F@I~ M, @)~ %,
where \; > 0. Then
3 e(f(@) < MA AT+ log(2 + M)
a<z<b
Proof. Suppose that
M < f'(@)] < O\

on [a,b], where C' is an absolute constant. If CA\; < 1/2, by Lemma 4.19 of
[T] we have

D e(f(x) < A
a<z<b
and if CA; > 1/2, then by Lemmas 4.7 and 4.4 of [T] we obtain
3 e(f(@) < (LA, 2 +log(2 + A1) < Ay 2+ log(2 + ).
a<z<b
Combining these two estimates gives the assertion of the lemma.

LEMMA 11. Let I = [ X, X'], X' > X > 1, let Q be a positive integer,
and Z, (X <n < X') be complex numbers. Then

(1+ X X)Q_l) Z (1_‘(1’@_1) Z ZnZn+fI'

nel lg|<@Q n,n+qel

Proof. This can be proved similarly to Lemma 5 of [HB]. If @ > 1 and @
is not an integer, to ensure the validity of the inequality we should replace

Q' by [Q!

In the next lemma, we extend the action of the exponent pair
(11/30,16/30) = BA2%(1/2,1/2) to a general class of functions.
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LEMMA 12. Let f(x) be a real function on [a,b] whose derivatives of
orders 1 to 5 are continuous and satisfy (for 1 < a <b < 2a)

(@) & X, 1" (@) = s, [fD ()] < A
MU MU 2 0<U < a,
[(F D (@) " (x) = 30" (@) (£ (2)°| = 1 >0,
[(FP (@) (f"(2))? = 10" (@) £ (2) £ D (@) + 15(F” ())*) (f"(2)) | = 72 > 0.
Then

|3 elrn] < e A+ eagagt?

a<z<b

T+ PR + ()2 + DL+ A5 U,
where n = b —a and L =log(2 + (b — a)Aq).
Proof. Assume nls > 1. By Lemma 4 we have

(32) Y elf(@)

a<z<b
=AY @) Pe(F(y) + 0052 + O(L) + O((b—a+ AHU ™),
y1<y<y2

where F(y) = f(xy) — yzy, x, is the solution of f'(z) =y for y € [y1, y2,
and y; = min(f’(a), f'(b)), y2 = max(f’'(a), f'(b)), A = 1 or —i according
as f"(x) > 0 or f’(x) < 0 on [a,b]. We can suppose A = 1 without loss
of generality in our treatment. Then y1 = f'(a), y2 = f'(b). Let Fy(y) =
(f"(wy)) /2. Then for y € [y1,y2] we have

Fj(y) = =5 (f" ()2 " () (2y)y = =5 (" ()2 f" (),

and thus F{j(y) keeps a constant sign. By partial summation we get

33) Y Foe(Fy)

y1<y<y2
——J (X etPo))R®d+ R Y. e(Fy)
y1 - y1<y<i y1<y<y2
< (IRl + 1R > etPe)|<2? 3 e(Fw)|,

y1<y<ys y1<y<ys

where y3 is some suitable number in [y, y2]. We assume the difficult case
that y3 > y1 + 100. Let y3 — y1 = 0, and I = [y1, y3]. By Lemma 11 we get

(34) |2|2—(Ze \ )| <@ +0Q7 Yz, Zi=) e(Fi(y),

vel 1<]¢|<Q vel,
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where I ={y |y l,y+qel}, Fi(y)=F(y+q) — F(y), Q € [1,d/log ]
is a parameter. Applying Lemma 11 repeatedly we get

(35) D <&M +0Qr > %l Zp= ) e(Fa(y),

1<|q1|<@1 y€elz
(36)) X < ?Qyt +6Qy" D |Zsl, Zs= D e(Fi(y)),
1<]g2|<Q2 y€El3

where o ={y |y h,y+q € L}, Is={y|y € I2, y+ q2 € I}, and

By)=Fy+a) - ), By =FRy+e) - By,
Q1 and Q2 are parameters which belong to [1,d/logd]. We suppose that
|I3| > 10, where |I3| is the length of I3. For a real variable y € I, we have
1
(37)) Fi(y) = ¢\ F'(y + tq) dt,
0
for y € Iy by (37") we have

1 11
(38') Fy(y) = a | Fl(y + tiq) dtr = qu || F"(y + tq + trqn) dt dty,
0 00

and for y € I3 by (38') we get
1

(39') Fy(y) = @2 | Fo(y + tago) dts
0
111

= g2 \\\ F”(y + tq + t1q1 + tago) dt dty dty.
000

For all y € I, from f'(zy) = y we get (zy) = 1/f"(zy). Thus, taking
derivatives of F(y) we get

(40")  F'(y) = —my, F'(y)=—=1/f"(xy), F"(y) = f"(2)(f"(xy)) ",
(41)  FO(y) = (fD (@) " (y) = 3(f"(2))*)(f" ()7,

(42)  FO(y)

IO ) )2 10 ) ) F O y) + 150 ()

(f"(2y))7
For y € I3, by (39'), (41"), (42") and our assumption we get
111
|F5(y)| = ‘QQ1Q2 W POy + tg + tigr + tage) dt dty dtz‘ ~ 11/qq192],
000
111

[F5 (y)| = ‘quz W FO (Y + tg + tigy + tage) dt dty dt2‘ ~ 12/qq192],
000
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thus by Lemma 7 we have
—1/2 _
|25 < iy P laqiae ]2 + (r1lgaqige]) T + 1.
Consequently, by (36") we get
- —1/2 1/2 1 - _
(43) 1D < 82Qy" + iy Plan|26Qy" + 6Q5 v Vaar| L.
If 62 > 6r Yqq1| 'L, from (43") we get
157 < 6%Q5 " + 11y P g |V26QY .

Let Qo = min(6/L, {/02r%ra|qqi|~1). We get (for Q2 < 1, (43') holds triv-

ially)

(44") ]22\2 <L SL + 4/ 54r%7“2_1]qq1\.

If 62 < 6(r1]qq1|) 1L, from (38'), (40'), (41") and our assumption we get (for
Y € IQ)

11
|F3(y)| = ’qqlSSF”’(y+tq+t1q1)dtdt1‘ ~ lqq1|AsAs
00
11
175 (y)| = ‘qcn POy +tg+tq) dt dtl‘ ~ lqqr1.
00
Hence by Lemma 10 we get the estimate
-3 —1/2 3\ —
(45') o] < lgan 22232 4 (lgan Aarg®) ! +1

< 5TV 4 (g | AsAg ) T+ 1
From (44’) and (45") we always have

(46) | Xo| < \6/ 54T%T51|QQ1| + 5_1/2)\3)\537{1L1/2
+ (Jgq|AsAy®) 7+ o212,
From (35’) and (46") we get

’El|2 < 52Q1_1 + 6/610T%T2—1Q1|q| +51/2)\3)\2_37"1_1L1/2
+0A5 Al 7' Qy L + 6¥/2L1 2
If 62 > 631 \3|q| 'L, then

(47/) ’21’2 < 62Q1—1+ 6/6107“%7“2_1621‘(]‘+61/2)\3)\2_37”1_1L1/2+(53/2L1/2.

Let Q1 = min(6L Y2,/ 62r1_2r2|q|—1) in (47"). We get

(48") 12112 < /0120205 g 4 0V 2 A BT L LY 4 632012,
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If 62 < A3 A\3|q| 'L, by (37’), (40’) and our assumption we get
1
|Fi(y ‘qSF” y +tq) dt’ ~ lglAs T,
0
1
‘ SF”’ y+1q) dt‘ ~ g A3y,

where y € I;. Hence by Lemma 10 we have
(49) |21 < (lalAs A2 + 1gl e + 1

< (A2 4 Nglg) Tt 41
From (48') and (49’) we always have the estimate

(50") || < W/ or2rdrytql
\/5)\2/\26 —2+\/)\4)\ 25-1 4 SN L2 4 Mg
It follows from (34") and (50) that
(51) |Z) < &*Q "+ (§/8*0riry'Q
NGO oM + 6LV 4 008Q L.

For 62 > 6XoL, 0°Q7" > XdQ7 'L, let Q = min(6L~Y2, ¥/62r*ry) in
(51"). We obtain

D2 < §fo%rryt 4 ({/5AN 2\ JoMg Y+ 6T L2
For 62 < §)\2L, |X| = O(X2L), and thus

(52) | 2] < N/ 6%rirgt 4 ({5/65>\§)\2_6r1_2 + {‘/M;‘Ag? + 078 4 Xo)L.

As § < 1+ nhe, if g > 1, the conclusion of Lemma 12 follows from (32'),
(33") and (52'). In case nAg < 1, it follows from Lemma 3, for we have

‘ Z ‘ (b— a)A 1/2+/\ 1/2 77)\1/2+/\2—1/2<<)\2—1/2_

a<z<b

The proof of Lemma 12 is finished.

REMARK. In §2.3 of A. Ivié’s book The Riemann Zeta-Function, it is
claimed that if f(z) is a real function, having continuous derivatives of any
order on the interval [N,2N], N > 1, and satisfying

1F® (@) ~ ANYE D k> 1, 0> 0,
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then for any exponent pair (p, q), we have the estimate

(*) ‘ > e(f(:n))‘ <K NPNT 4 2L,

n<x<2n

However, taking f(z) = Cz3/2, C = 2(27)~'/2, and using Lemma 4 of
the present paper to calculate the exponential sum of (x), it is easy to
observe that the estimate of (%) does not hold for (p,q) = (2/7,4/7) and
(11/53,33/53). The mistake comes from relying heavily on a famous paper
of E. Phillips (published in Quart. J. Math. in 1933), simplifying van der
Corput’s method, in which the proof of a key result of van der Corput
(Lemma 7 of the reference [C] of the present paper) was not given. However,
using induction and Lemmas 10 and 11 of our paper, we find that (x) does
hold for (p,q) = A"B(0,1), where r is any non-negative integer.

5. Proof of Theorem 2. A polynomial with real coefficients can be
factorized as the product of positive definite quadratic polynomials with real
coefficients and linear polynomials with real coeflicients. Let the real roots
of the equation (cf. §4, (I) and (II)) F;(¢t) = 0 be 6;1,...,0:,, where |0;1| <
-+ < |0ik,|, multiple roots are counted with multiplicity, ¢ = 3,6,7,8, 11,
and 12 and k3 < 4, kg < 8, ky <12, kg < 4, k11 <8, k12 < 12. Here we note
that, by the condition of Theorem 2 and Lemmas 8 and 9, F;(t) # 0 for
these ¢. In case k; = 0 for some i, the argument below will be simpler. Thus
we assume the difficult case that k; > 1 for all these i. As at the beginning
of §3, assume that 011 and 6012 (|611] < |012]) are the real roots of F(t) =0
(cf. §4, (I)), and 021 = (2 — B)/a, 022 = B/(a — 2). Assume (7) and (8). As
at the beginning of §3, by (18), to estimate the exponential sum Sy(D), we
need to estimate the exponential sum Sg(D1). As at the beginning of §3 (of
course, we consider the difficult case that 611 and 6,2 are real), let

Dy = {(a,b) | |bqg — b;5ar| < o for some (i, )},
D3 = {(a, b) ’ (a, b) € Dy, (CL, b) € DQ}.

As at the beginning of §3 we get Sg(D2) = O(Y). Thus

(53) 1Sa(D1)| < |Sa(Ds)| + Y.
As is (15) we have, for some particular Dy (note that ky + - - - + k1o < 52),
(54') 1Sa(Ds)| < L°%|Sa(Dy)| + L% X,

where (note that for (¢,7) € I, 0;; is real, and vice versa)

Dy = {(a, b) ’ Eij)\|q7"Aij < bg— Qijar < 5ij)\]qr|Aij, (Z,j) € F} N Dy,

F:{(Z’])|Z:1’2’3a65758511712’ 1§]§k17 k1:k2:2}a
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Aij, i and 6;; are numbers satisfying 1/(XY) < Ay < 2(1+32; jer 1035]),
(¢ij,0i5) = (=2,—1) or (1,2). Suppose ¢ > 0. Let

Ry = max (¢ YeijM|qr|Aij+0i5ar)), Ry = min (¢ (6i;\|qr| Ay +0iar)).
1 (i,j)eF(q (gijAlgr|Aij+bsar)) 2 (i,j)ef(q (dijAlgr|Aij+6s5ar))

Then as at the beginning of §3 we have
Dy ={(a,b) | a € I, Bi(a) < b < By(a)},
where I ={a €| (a+q)€ I}, and
Bi(a) = max(fi(a+q)—r, fi(a), R1), Ba(a) = min(fa(a+q)—r, fa(a), Ry).
Using the method of showing (16), by taking derivatives to discuss mono-
tonicity we get
(55) |Sa(Da)| <) |Sa(Ds)| +Y,
Ds
where the summation is taken over O(1) disjoint ranges D5 of the shape
Ds ={(a,b) |a eI, Bi(a) <b< Bs(a)} C Dy,

I’ is a suitable interval contained in I;, Bj(a) has one of the three forms
fila+q)—r,  fila), Fka+ka, (k1,k2) = (r0i;q " ciA\r|Ai),
for some (4,7) € I', and similarly, Ba(a) has one of the following three forms

on I
f2(a),  falat+q)—r, Ka+ky, (K.ky) = (r0q " 6y Alr|Airyr),
for some (', j') € I'. Note that A;; and Ajg correspond to A; and Ag in §3,

and Ag; and Agy correspond to As and Ay in §3 (see the beginning of §3).
Thus, as in (17), we have

(56") Aps+ Apyy >25 forp,ps,s =1or2, (ps)#@,s),

where ¢ is a suitably small positive constant which depends only on « and g,
which, as at the beginning of §3, enables us to carry out the argument
below. Let A = ming; jyep A;j. We distinguish several cases to estimate the
exponential sum Sg(Ds).

CAsE (i): A < Lo and Ag; > . In this case, we reason as in (i) of §3.
Thus, similarly to (20), we get
(57) Sa(Ds) = O(X (Fo*)?Lox + XY (Fo)~'/%),
where, as in (11), o = |g|/X + |r|/Y and X = oXY/|qr|.

CASE (ii): A< Lo and Az < 4. In this case, we argue similarly to (ii)
of §3 (if A = A;; and 6;; = 0 for some (7,j) € I', the treatment is simpler).
Thus, similarly to (24), we deduce the estimate

(58) Sa(Ds) = O(Y (Fo*)Y?Lox + XY (Fo) V2 + X +Y).
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CASE (iii): A > Lo and Ay, > 6. This case is similar to (iii) of §3. Thus,
as in (40), (41) and (42), for Fo > Y we get (with “A =& =07)
(59 [Sc(Ds)]

< ‘ > > Ke(Kl)‘ + XY(Fo) Y2+ X(Fo*)Y? + XL,
aclf Xi(a)<u<lXa(a)

(60") >y Ke(Kl)‘ 3 ‘ Z Ke(K) (
a€lf X1(a)<u<lXa(a) u1<u<uz a€l(u

and

(61) | Y Ke(g)| < Y(Fo) 2 Y e(Kaa, ),
a€l(u) a€li(u)

where If, I(u) and I;(u) are suitable intervals,
I(u) € I(u) € S(u) ={a € I5 | X1(a) < u < Xa(a)},

a € Il implies that Bi(a) < Ba(a) — 10, Xi(a) and Xa(a) are suitable
functions, [Xj(a), X2(a)] C [a1(a),az(a)] in case Xi(a) < Xa(a), ui,us =
O(FoY 1), and, without losing the generality, assuming that Goa > 0
on Ds,

K = K(a,u) = (Goz(a,ba,u)))""/?,

K, = Ki(a,u) = G(a,b(a,u)) — ubla,u),
b(a,u) is the solution of Go1(a,b(a,u)) = u for given a and u, and for a
number u, u; < u < ug, if I1(u) # 0 and I;(u) is an interval of length > 0
then for all a € I;(u), we have (a,b(a,u)) € Ds. As in (iii) of §3 we have

(62") (b(a,u)), = —G11(a,b(a,u))/Go2(a,b(a,u)).

We take derivatives in a € I1(u) based on (62') and use the notations of (I)
of §4 to get (cf. (2/), (4))

(K1), = Gro,  (K1)y = (G20Go2 — GT1)Gyh = PGy,
(K1) = PGy, 3<i<s,
(K1)i(K1)SY = 3((K1)W)? = (PP — 3P Go§ = PeGy s,
(K1)P(K1)0)? — 10(K1)a (K0 (K1) + 15((K1)w)?
= (PsP? — 10PP3Py + 15P5)Gy 3 = PrGy3,

where G;; = G;j(a,b(a,u)), ¢(3) =4, c(4) =6, ¢(5) = 8, ¢(6) = 8, ¢(7)
=12, and P, satisfies (5), that is,

Py = AW g5 @) pdB (@, (gb, ra) + O(XY 0)Wp)), 3<i<T,
where

e(a,i) = (a—1)c(i) —i, 6(B,i) =(B—3)c(i)+2, 3<i<5h,
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(o, 6) = 8a—14, §(8,6) =83—20, e(a,7) =12a—21, §(B,7) = 123—30,

®;(&,n) is a homogeneous polynomial for 3 < ¢ < 7, which, by the assump-
tions of Theorem 2 on « and 3 and Lemma 8, has the form

Bi(&,m) = M€+ @, N # 0.
For each 3 < i < 7, since the complex roots appear in conjugate pairs, we
know that 2| (¢(i) — k;). Thus from |gb|+ |ra| = XY o0 = |qr|\, for (a,b) € D5
we get

|Bi(gb, ra)| ~ (XY 0)2Dk)/2(Ay XV ) -+ (A, XY 0) = Ai(XY )V,
Ap = A Ay, € 1.

Consequently, if A2 > Lo and X is sufficiently large, then by the definition
of the summation range Dj in (III) of §4, we get (cf. the beginning of §3,
(26), and (I) of §4)

@i(qb, ra)] > A(XY )" > Lo(XY 0)",

|Pj| ~ AC(Z')XE(OM')nyﬁJ)(XYQ)C(i)AZ.7
(K)ol = Xa, (KDY= A5, (KDY < Ay,
(K5 (KDY = 3((K1)e)*) (E)e) ™| ~ i,
(K0P (F))? = 10(K )5 (K)o (DS + 15((K))?) (D)) 77| &,

where

Ao =A(1)FoX %, A(1) = min(Ayy, Ara),

A3 = FoX 3As, A\ = FoX™4,
r=(Fo) XU (A1) A6, 12 = (Fo) "X (A(1)) " Ar.
Note that Lemma 11 holds also for 0 < U < 1. Let
U =min(Ao)3 1, QoA HY?), 5= |L(u)] >10, L=log(2+ FXY).

For every real number a € I1(u), we have (a,b(a,u)) € Ds. Thus by Lem-
ma 11 we get (for some terms, using simply the estimate n < X)

63) | Y elKia,w)

acl(u)

< RS FQUX-BAT 1 (Fop X452

+ (\VFoX1A3% 4 ¥/(F0)3X +/FoX-1 + 1)L
+VX2(FoA(1) 1 4 (A1)

Hence, from (59')—(61), (63'), u; = O(FoY ') and Fp > Y we get the
estimate
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(64)  L~'Sg(Ds)
< 3@/ (Fo)=4X~2Y30 A1 . 5(28/30) + {*/ (Fo)"1X—4Y8A5% . 5(5/8)

+ 1/ (Fo)3X—1A32 + ¥/ (Fo) X + FoX V2 4 X(A(1))"/?
+ (Fo) 2(AQ) ™ + XY (Fo) /2 + XFY/2¢%/2,
where, for 0 < c < 1,

u1 <u<ug

and | (u)| is the length of the interval I(u). By Holder’s inequality we get

@)  So<( X 1) (X W)

u1 <u<ugz w1 <u<ug

< (Foy™! ( S5 Y 14 Foye )

ur <uluz a€l(u)

( D ) (FoY™))=¢ 4 Fov L.

ur<u<uz acl(u)

C

Similarly to the arguments between (40) and (41), we have

@ Y Yie Y Yo

u1<u<uz a€l(u) u1<u<uz a€S(u)
<22 1=y > %
a€ll X1(a)<u<lXa(a) a€ll ai(a)<uaz(a)

where «j(a) = Go1(a, Bj(a)) for a given (Bj(a), B2(a)). Without loss of
generality, we have assumed that Go2 > 0 on Ds. As a € IL implies that
Bi(a) < Ba(a), thus aj(a) < az(a). For every pair of real numbers (a,u),
with a € I} and u € [o1(a), az(a)], we have

(67" |b(a,u)q — O;jar| < )\|q?"|A~

for some pair (¢, j) € I', because the condition on (@, u) implies that (a, b(a,u))
€ Ds. From

PA1) (G bla, ),
(27) and (67'), we know that for each given real number a € If, the number
of integers u satisfying a(a) < u < ag(a) is < 1+ |[r|]AFoY 2A < 1 +
AAF@?Y ! (0= |q|/X +|r|/Y, cf. (11)), that is,

(68) Y 1K1+ AFPY A
a1(a)<u<Lasz(a)
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Therefore, in view of (64')-(66"), A7 > A2 Ag > A8 and Ay > A% we
obtain (using oA > 1 and XA > L)
S(e) < FoY (XY (Fo) ™) + (AAX),
(69) L7'Sg(Ds) < 3@/ (Fo)~2X5Y28A—12 4 {/F2651)\38 X5
- {‘/ (Fo)2XY5A~16 4 f/ (Fo)T P> X A—11
+ (FoPXTTAT8 4+ {/(Fo)TX + FoX /7

+ X (A1) 2+ (Fo) 2(am)
+ XY (Fo) ™% + X (Fo*)'/?.

Recall that |(K1)"| ~ A(1)FoX 2, and A > Lo. Thus similarly to (43), by
using Lemma 3 we get

‘ 3 e(Kl)‘ < (3 1)(FoxX )2+ (A FoX )72
a€li(u) a€l(u)
Consequently, from (59')—(61'), and u; = O(FoY™!), Fo > Y, we get
L7'Sq(Ds)
< X—1Y( > ) A(D))V2 4 XY (Fo)™V/2 + X (Fo?)V/2

wp <u<ug ae]l )

From (66’) and (68') we have

> Z 1< Y D 1K X +AFPXY A,

u1 <uLug a€lq(u w1 <u<ug a€l(u)

thus

(70') L7'Sq(Ds) < FOPAA+Y + X(A(1))~1/?
+ XY (Fo)~ Y2 4+ X (Fo*)Y2

If A'2 < Lg, by (70') we have

(71') L728G(Ds) < FAQ®/1? +Y + X (A1)
+ XY (Fo) ' + X (Fo*)'/*.

Suppose A2 > Lo. Then the estimate (69) can be derived. From (69’) and
(70") we obtain

(72) L7'Sa(Ds) < Ri+ Ry + Ry + Ry + N/ F®g )05 X5
+ V/(Fo)TX + FoX V2 4+ X(A(1)7/?
+(Fo)'2(AQ) ™" + XY (Fo) ™12 + X(Fo*)'2,
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where

R; = min( 3{)/ (Fo) —2 x5y 28 A—12 F,_OQ)\A < R/F1092 X5y 2812,
Ry = min(Y/ (Fo)2XY5A-16, Fg?AA) < %/FTSgn XYoAG,

R3 = min( i/(Fg)7g5)\5XA~_11,F92)\A~) < R/F18g34X\I6,

Ry = min({/(Fo)* X A-5, F*AA) < %/(Fo) (0VF X,

From (71’) and (72') we get the estimate

(73) L‘ZSG(D5) < 4\2/F10Q22X5y28)\12+ 2<1/F18034Xy5/\16
+ W/ F1834 X \16 4 %/ [126 554 \28 X5
+ X/(Fo)''(oA3X + FAg®™/? + {/(Fo)'X
L XY(Fo) V2 4 X(Fo®)Y2? 4 Fox—1/2
+ X(AW) 2+ Y + (Fo) 2(A) 7

To diminish the terms involving A(1) in (73'), similarly to the estimate
between (44) and (45) of (iii) of §3, we have

(74)  Sa(Ds) = O((Fo)Y?oY?r| P A(1) + XY (Fo) Y2+ X +Y).

The estimate (73') is derived for Flo > Y. Assume also Fo > X. Then, as
oA > 1 (cf. (11)), we have

/18 034X \16 = FQ 18 0)\ 16X > R FQ 11 Q/\
Thus by (73') and (74), for Fp > Y and Fp > X we have the estimate

(75) L‘zs(;(D5) < 4€/F10Q22x5y28)\12+ 2<1/F18Q34Xy5/\16
+ W34 X \6 4 2/ F26 554 \28 X5
1 FAe?/12 4 W—i—XY(Fg)_l/Q
+ X(FA)Y?2 + FoX V24 X +Y + Rs + Rs,
where
Rs = min(X (A(1) "2, (Fo®)V2Y2[r| L A1) < YFAXY A2,
Rg = min((Fo)'/2(A(1)) ™", (Fo®)'?Y?|r[ 1 A1) < /Fo?Y2[r| 1,

If Fo <Y or Fp < X, then similarly to (36) or as in (iv) of §3 (using (22))
we deduce that
Sa(Ds) < XY (Fo) "2+ X +Y,

and thus (75’) holds as well.
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CASE (iv): A > Lo and Ag; < 8. In this case, from (56') we have
AH, A12, AQQ > 9. Similarly to (22) we have

Sq(Ds) = Z Sq(D) +O(X +Y),
1<i<C

where D! has a similar form to D5, but with the roles of a and b exchanged.
Hence, in view of (iv) of §3 and (ii) of §5, we can estimate Sg(D}) sim-
ilarly to the estimation of Sg(Ds) in (iii) of §5, but with the roles of a
and b exchanged. In case A= A;; and 0;; = 0, the treatment is simpler.
Correspondingly, similarly to (75") we obtain

L728¢(D}) <« R/F10p2X28Y5)\12 4 X/ 18,34 X5y \16
4 R/ FISBIY IS - R/ F2650N\BY5 4 ) 25/12
+ W + XY(FQ)_1/2 4 Y(FQ3)1/2
+ FQY_1/2 + X +Y + SFLob XAy —1|¢| -2
+ Y Fo3X4Y4q|~2 + \/F 02 X2|q|~ 1.

Thus
(76) L™254(Ds) < R/F10022X28Y5\12 4 J/F18 34 X5y \16
+ R/F18g34y \I6 4 3/F26554)\28Y'5 4 ) 25/12
+V(Fo)Y + XY (Fo) '? +Y(Fo*)'/?
+FoY V24 X 4V FAb XY g2
+ VFPXY g2 + /Fo?X?q| L.
CASE (v): Final estimate. From (57'), (58'), (75') and (76"), we get (note
that oA > 1)
(T7) L72Sq(Ds) < Z(Fo®) Y20\ + XY (Fo)~V2 4+ R/F10022X5y5 723 \12
+ 7+ 2€/F18Q34Xyz4)\16 + 1%\)/F18Q34Z)\16
+ Y F26054)\2875 1 F*/12 4 {/(Fo)7Z
+ Fo(X Y2 4y =Y2) 4 Figirzx -1y -173
+ VFo3\2X2Y272 + \/F?)\Z,

where Z = X +Y. As o\ > 1, we have Fp®/12) > FQ(X_1/2 + Y_1/2).
Thus from (53')—(55") and (77") we get the estimate

(78') L™ Sq(Dy)| < Z(Fo*) 2o\ + XY (Fo)~'/?
+ 4€/F10922X5Y5ZQ3)\12 + 2<1/F18Q34Xyz4)\16
+ N/F1834Z)\16 4 %/ F26 55428 75 4. F /12
+ Y/ (Fo)"Z + YFPN(XY Z)2+ /F?\Z.
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If F(£) =0 or one of the equations F;(§) =0 (i = 3,6,7,8,11,12) does not
have real roots, then F(&) or F;(§) is positive or negative definite, and we
can derive (78') similarly and relatively simply. For 0 < a <1, as (cf. (11))

M N 1/2 X
|q’+| ’ L =+=K (XY) , Q)\:Q2XY‘(]T” 1<<m+‘r|

X'y SXxy X gy T
- t a/2
Q XY )

we have
(79 ZZ oA < ( )

< MNL = tL,

1)

where 1 < |¢| < M, 1 < |r| < N, and t is a suitable parameter. Distinguish-
ing the cases |r| < Y|q|X ! or |r| > Y|q|X !, we obtain

Y XY (Fo) ' < /FRAXY)B.

From (79’) we also have

Z Z N/ F26054)\28 75 « N/F26 75¢43( XY )~ 13L.

q T

We can use a similar method to handle other terms of (78) and obtain

XY
(80 L% —— S < VF2XY Z4%3 + Y/ F2(XY)%1

+ 4\2/F10t5 (Xy)42z23

+ 2<1/F18t9(Xy) 16 74 1€/F18t9 (XY)lOZ
+ 3{)/F26t13(XY)17Z5 + 2{1/F24t13(XY)11
+ WVFWI(XY)Z2 + §/F2(XY)524
+ XY Z + /F*(XY)322

Z A;,  say.

1<i<11

Then, as in the proof of Theorem 1, we need to estimate Sy and S of (9).
For 1 < r < N we estimate Sg(D}), where G(a,b) = g(a,b+r) — g(a,b),
and

Di={(a,b) |a€l, fi(a) <b< fola) —7}.

We can use directly the method of (iii) of §5 (cf. also (iv) of §3) for estimating
Sc(Ds) to deal with Sg(D]). Let F|r|/Y > max(X,Y’). Then corresponding
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o (75") we obtain the estimate (note that o = |r|/Y)

26
' -1 / 30 m 5 . 8 4 4 1/2
(81") L™ Sq(D)) < \/(Fy> X —|—\/<FY X—I—FyX
3/2
+XY< ||> +XF1/2<’;—|> + Z,

as the corresponding Ay, Ag, Az and A(1) are all = 1 in (63'), by the
assumptions on « and [ (corresponding to the homogeneous polynomials
&(&,n) and D;(&,n) of (I) of §4 and (iii) of §5, now we have the polynomials
A2 and \;&°0). As in (iii) of §5 (cf. (36)), we find that (81') is also true if
F|r|/Y < max(X,Y). The estimate (81") holds also if —N < r < —1 and
D} is replaced by {(a,b) | a € I, fi(a) — 7 < b < fa(a)}. Similarly to (81),
using the method of (I) of §4 and (iii) of §5 (but the details are simpler), we
deduce that

26 7
/ -1 / 30 M 54 8 M M -1/2
(82") L™ Sqg(Ds) <« \/(FX> A +\/<FX Z-I-FXZ

3/2
+XY< |q’> +ZF1/2<@> +Z

X X
From (81’) and (82') we get respectively (cf. (9))
XY
(83) L2228, « VF21-2X7y32 4 VFUX3Y1T-1 4 Fy X~ 1/?

+ VF2XTY 114=3 4 VF2X3Y 3t 4 VX3Y 31

and

XY
(84') L2 — Sy < WEHXITYy2—2 4 N/FlAX10y2-2 4 px1/?

+ VF2XUYT=3 4 VF2XTY -1t 4 VX5V 1.
Ast > max(XL/Y,YL/X) (cf. (8)), we can compare similar terms of (80'),
(83) and (84’). We have
VF261-2X7y32 YV F261-2X37y2 « Ag,
VFUX3y1i—1 VFUXDOY -1 < Ag,
FYX 12 FX'1? « A7, VF2XTY1=3 VF2X11YT1-3 < A,
VE2X3Y3t VF2XTY 1t <« A1,  VX3Y3t—1 VXY 11 <« Ayp.

Consequently, by (9) we get the estimate

(85') L™|Sy(D)? < (XYt + > A,
1<5<11
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provided that ¢ > max(XL/Y,YL/X). For 1 < ¢t < max(XL/Y,YL/X)
and F < min(X3,Y?), we have
(LXY)% ! > min(XY3, X3Y) > ¢/FX3Y3min(X3,Y3).
By the method of proving the estimate (56), we get
S,(D) = O(VFX3Y6 + XY/F) = O(VFX3Y®),

and, by exchanging the roles of a and b handling Sy(D) directly as we did
for Sy(D}), we obtain the estimate

S,(D) = O(VFX6Y3).

Thus we have

(36 15,(D)] = O(Y/FX3V T min(X3,V9)),

which implies, for 1 < ¢t < max(XL/Y,YL/X) and F < min(X?,Y3), the
estimate

(87) Sg(D)]? = O((LXY)*t ™).

By (85') and (87'), assuming 0 < t < XY L~* and (7), we always have the

estimate

(88) L™|Sy(D)? < (XYt + > A
1<i<11

Suppose X2 >Y and Y? > X. Then
Az < APHBTAIIBT o py 4 Ag, Ay < ATVFADE Ay + 4,
Ag < AVPA0 « Ay 4 Ag, A < AVPAY? < A+ A,
Ay < AYPAP < Ag v Any, An < APV AR < Ay 4,
and it follows from (88') that
(89) L7%|S,(D))? <(XY)2t™ ' + VF2XY Z43 + {/F2(XY)%~!
+ \/F18t9 (XY)10Z7 + 3\/F26t13 (XY)17Z5
+ 24 F24t13(XY)11
for all 0 <t < XY L% By Lemma 3, we can choose t in the range 0 < t <
XYL in (89) to get
(90") L™9S,(D)|? < X/ FB(XY)28Z + ¥/F26(XY)8BZ5 + ¥/F24(XY)37
+ N/ F-YXY)4 4 {/F-1XY)TZ + J/F2(XY)"Z4
+ V(XY)NZ + R/(XY)13425 + (XY)2F~1/2

+XYIL*= ) B say.
1<i<10
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By (7), F > max(X,Y) and Z > (XY)Y2, we deduce that
B3 < Bi, By < Bs, Big<Bi, Bgy< Bs.
Consequently, by assuming X2 > Y, Y2 > X, and (7) we obtain
(917 L™281S,(D)| < N/FB(XY)BZ + ¥/F*(XY)375
+ VFYXY)4 + Y F-UXY)Z
L YFIXYY 2 4 (XY,
If (7) holds, but X > Y2 or Y > X2 then from
VFX3Y6 <« VFX6 < \/Bs, or VFX%Y3 <« VFYS < /B
and (86') (note that (86') is derived without assuming X < Y2 or Y < X?),

we find that (91’) still holds. Assume that (7) is not true, that is, F' >
min(X3,Y3) or min(X,Y) < L8. If F > Y3, then by Lemma 7 we get

(92/) 1S,(D)| < YVFX10 « YVFITX30 « N/ F17730,
If L6 > Y, then similarly we have (cf. (90))
(93') 1S,(D)| < Y VFX10 « L5/Bg.

The cases of F > X2 or X < L5 can be treated similarly. Theorem 2 follows
from (91), (92") and (93').
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