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The equation n(n +d)--- (n+ (k — 1)d) = by?
with w(d) <6 or d < 10"

by

SHANTA LAISHRAM and T. N. SHOREY (Mumbai)

1. Introduction. For an integer z > 1, we denote by P(z) and w(x)
the greatest prime factor of x and the number of distinct prime divisors of =,
respectively. Further we put P(1) = 1 and w(1) = 0. The letter p always
denotes a prime number and p; the ith prime number. Let n, d, k, b, y be
positive integers such that b is squarefree, k > 2, P(b) < k and ged(n,d) = 1.
We consider the equation

(1.1) nn+d)---(n+(k—1)d) =by* inn,d k,b,y.

If d = 1, then (1.1) has been completely solved for P(b) < k by Erdés and
Selfridge [ErSe75] and for P(b) = k by Saradha [Sar97|. Therefore we always
suppose that d > 1. We observe that (1.1) has infinitely many solutions if
k =2,3 and b = 1. Also, (1.1) with k£ = 4 implies that b = 6. Therefore we
always suppose that k£ > 5 if we consider (1.1) and k > 4 if we consider (1.1)
with b = 1. It has been conjectured that (1.1) with & > 5 does not hold.
A weaker version due to Erdds states that (1.1) implies that k is bounded by
an absolute constant. This has been confirmed by Marszalek [Mar85] when
d is fixed and by Shorey and Tijdeman [ShTi90] when w(d) is fixed. In fact,
Shorey and Tijdeman [ShTi90] proved that (1.1) implies

1.2 ow(d)
(1.2) > 1 Tog i’

which gives

d > ke loglog k

where ¢; > 0 and ¢o > 0 are absolute constants. Laishram [Lai06] gave an
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explicit version of (1.2) by showing

(1.3) k< 1w(d)4“ @D if w(d) > 12
and we improve this to
(1.4) k < 2w(d)2°( ),

see Corollary 8.7 when w(d) > 5 and Theorem 3 when w(d) < 5 for a
precise formulation. Equation (1.1) has been completely solved in Saradha

and Shorey [SaSh03a| for d < 104 and k£ > 4. We prove
THEOREM 1. Equation (1.1) with k > 6 implies that
d > max(10'0, glosloek)

For a given value of d, we observe that (1.1) with k£ € {4,5} can be
solved via finding all the integral points on elliptic curves by MAGMA or
SIMATH as in [FiHa01] and [SaSh03a]. Analogous results on higher powers
for (1.1) with k£ > 4 and y? replaced by y* where £ > 2 is prime are proved in
Saradha and Shorey [SaSh05]; they showed that d > 30, 5-10%,10% and 10'°
according as ¢ = 3, 5, 7 and > 11, respectively. For Theorem 1, we prove
several results on (1.1) which are of independent interest. For example, we
solve (1.1) when w(d) <5, b =1 or w(d) < 4. We prove

THEOREM 2. Equation (1.1) with b =1 and w(d) <5 does not hold.

Theorem 2 contains the case w(d) = 1 already proved by Saradha and
Shorey [SaSh03a]. In fact, they proved it without the assumption ged(n, d)
= 1. We show that this is also not required when w(d) = 2 and k > 8 (see
Section 12). We derive Theorem 2 from a more general result and we turn
to introducing some notation for it.

From (1.1), we have

(1.5) n+id = ax? for0<i<k
where a;’s are squarefree such that P(a;) < max(P(b),k—1) < k. Thus (1.1)
with b as the squarefree part of aga; - --ap_1 is determined by the k-tuple

(ag,aq,...,ax_1). We rewrite (1.1) as

(1.6) N(N—=d)---(N—(k—1)d) =by?>, N=n+(k—1)d.
We call (1.6) the mirror image of (1.1). It is completely determined by
(ag—_1,--.,ap), which we call the mirror image of (ag,...,ar_1). Let &1 be

the set of tuples (ag,...,ar_1) given by
k=8: (2,3,1,5,6,7,2,1),(3,1,5,6,7,2,1,10);
k=9: (2,3,1,5,6,7,2,1,10);
k=13:(3,1,5,6,7,2,1,10,11,3,13, 14,15),
(1,5,6,7,2,1,10,11,3,13, 14,15, 1)
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and their mirror images. Further, let G2 be the set of tuples (ag, a1, ..., ax_1)
given by
k=14:(3,1,5,6,7,2,1,10,11,3,13, 14,15, 1);

(
k=19:(1,5,6,7,2,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22);
k=23:(56,7,2,1,10,11,3,13,14,15,1,17,2, 19, 5,21, 22, 23,6, 1, 26, 3),
(6,7,2,1,10,11,3,13,14,15,1,17,2,19,5,21,22,23,6,1,26,3,7);
(

=24:(5,6,7,2,1,10,11,3,13,14,15,1,17,2, 19, 5,21, 22, 23,6, 1,26, 3,7)

and their mirror images.

Equation (1.1) with & = 6 is not possible by Bennett, Bruin, Gyéry
and Hajdu [BBGHO06]. Also, (1.1) with & € {5,7} and P(b) < k does not
hold by Mukhopadhyay and Shorey [MuSh03| for £ = 5 and Hirata-Kohno,
Laishram, Shorey and Tijdeman [HLSTO07| for £ = 7. We do not have any
contribution for the cases k € {5, 7} and P(b) = k in the next result where we
solve all the equations (1.1) other than the ones given by &1 U &2 whenever
w(d) < 4 and therefore we assume k& > 8 in Theorem 3(a). More precisely,
we prove

THEOREM 3.

(a) Equation (1.1) with k > 8 and w(d) < 4 implies that either w(d) = 2,
k =38, (ao,a1,...,a7) € {(3,1,5,6,7,2,1,10),(10,1,2,7,6,5,1,3) }
or w(d) = 3, (ag,a1,...,ax-1) € 61 or w(d) =4, (ap,a1,...,a,-1)
€ 61U 6Gs.

(b) Equation (1.1) with w(d) € {5,6} and d even does not hold.

Theorem 3 contains the already proved case w(d) = 1, where it has been
shown in [SaSh03a| for £ > 29 and [MuSh03] for 4 < k < 29 that (1.1) implies
that either k = 4, (n,d,b,y) = (75,23,6,140) or k = 5, P(b) = k. The next
result shows that it suffices to prove our Theorems 1 and 3 for £ > 101 unless
(1.1) is given by & which is the union of &1, G2 and the set of tuples given by
k = 77 (CL[), aty ..., ak—l) € {(27 37 17 57 67 77 2)5 (3) 1) 5) 6> 7> 2> 1)7 (17 57 67 77 27
1,10)} and their mirror images.

THEOREM A.

(a) Equation (1.1) with 7 < k < 100 is not possible unless (ag, a1, . ..
. ak_l) € 6.
(b) Equation (1.1) with 4 <k <109 and b =1 does not hold.

This is due to Hirata-Kohno, Laishram, Shorey and Tijdeman [HLSTO07].
For a survey of related results, see [Sho02].
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2. Notations and preliminaries. Let £ > 4 and 11 < -+ < v be
integers with 0 < ~; < k for 1 <4 <t¢. We consider a more general equation

(2.1) (n+md)- - (n+d) = by?

in positive integers n,d, k,b,y,t with b squarefree, P(b) < k and ged(n, d)
= 1. If t = k, we observe that ; =i — 1 and (2.1) coincides with (1.1). It
is of interest to consider the more general equation (2.1) because of possible
applications. Assume that (2.1) holds. Then we have

(2.2) n+vid = a%xgﬁ for 1 <i<t
with a,, squarefree such that P(a,,) < k. Also,
(2.3) n+yid=A,X> forl1<i<t,
P(Ay,) <k and ged(Xy,, [[,<; p) = 1. Further, we write
bi=ay, Bi=Ay, yi=2zy, Yi=X,.
Since ged(n,d) = 1, we see from (2.2) and (2.3) that
(2.4) (bi,d) = (Bj,d) = (yi,d) = (Yi,d) =1 for 1 <i<t.
Let
R={b;:1<i<t}.

For b; € R, let v(b;) =[{j: 1 <j <t bj =b;}| and

vo(bi) = [{j:1<j <t bj=0bi 2ty;}|,

Ve(bi) = [{j: 1 <Jj <t by =1b;, 2|y;}.
We define

Bu= (e Rivlb) =i}y 1= Ruls  ©=1{(0d): b = bysi > ).

Let
T={1<i<t:V;=1}, T1={1<i<t:Y;i>1}, Si={B;:iecTi}.

Note that Y; > k for i € T1. For i € T, we set v(B;) = [{j € T : B; = B;}|.
Let

(2.5) § = min(3,o0rd2(d)), ¢ = min(1,ords(d))
and
1 if orda(d) <1,
2.6 =
(2:6) K {2 if orda(d) > 2,

2 _ {3 if 3|d,

1 if 3td.
Let d'|d and d” = d/d’ be such that ged(d’,d”) = 1. We write
1 if orda(d") < 1,

4’ = dyd A(dy, dy) =
1z, ged(d, ) {2 if orda(d") > 2,
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and we always suppose that dj is odd if ordy(d”) = 1. We call such pairs
(d1,ds) partitions of d”. We observe that the number of partitions of d” is
2w(d")=01 where

1 ifordg(d”) =1,2,

01 := 0.(d" :{
! i) 0 otherwise,

and we write 0 for 6;(d). In particular, by taking d’ = 1 and d”’ = d, the
number of partitions of d is 2¢(4)~?,
Let b; = bj,i > j. Then from (2.2) and (2.4), we have

2 2
Vi g Y Y (i )i+ )

(2.8) . -

d"’ d" ’
so that ged(d”,y; — yj,vi +y;) is 1 if d” is odd and 2 if d” is even. Thus a
pair (¢,j) with ¢ > j and b; = b; corresponds to a partition (di,ds) of d”
such that di | (y; — y;), d2 | (yi + ;) and it is unique. Similarly, we have a
unique partition of d” corresponding to every pair (i, j) whenever B; = B;,
1,7 € 11.

Let p; <p2 < --- be the odd primes dividing d. Let

204 - - ., ifé=1,2,
d= qr - qu(d)-1 1 .
q1 - du(d) otherwise,

where ¢ < -+ < qy(4)—¢ are prime powers dividing d/ 299 By induction, we
have

d \ /(@)=
(2.9) Pl"'PhSCh"'%S(W)
for any h with 1 < h < w(d) — 6. Further, we define

(2.10) Ay ={B; €Ti:B; <qi---dn}, Ap=|Ap
for any h with 1 < h < w(d) — 6.

3. Upper bound for n+ (k—1)d. In this section, we assume that (2.1)
holds. Let ¢ > 7, g > h, 0 <1,7,9,h < k be such that
(3.1) bi="bj, byg="0bn, Yty =7+
32) wi—yj=dir, yity =dors, Yg—yn=d151, Yg+yn=d252

where (dj, d) is a partition of d. We write V (i, j, g, h, d1, d2) for such double
pairs. We call V (3, 4, g, h,d1,d2) degenerate if

(3.3) b =bg, 1 =351 or b;=by, r2 = 52.
Otherwise we call it non-degenerate. Let g1 and g2 be given by
(3.4) bir? — bgst| = qida  and  |br3 — bys3| = gods.

We shall also write V (4,4, g, h,d1,d2) = V (i, 4,9, h,d1,d2,q1,q2).
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Let {2 be a set of pairs (7,7) with ¢ > j such that b; = b;. Then we say
that (2 has Property ND if the following holds: For any two distinct pairs
(i,7) and (g,h) in 2 corresponding to a partition (dy,dz) of d, the double
pair V (i, j, g, h,d1,d2) is non-degenerate.

In this section, we give an upper bound for n + (k — 1)d whenever it
is possible to find a non-degenerate double pair. The next section gives a
lower bound for n + (k — 1)d. As in [ShTi90|, the proofs of our theorems
depend on showing that the upper bound and lower bound for n + (k — 1)d
are not consistent whenever it is possible to find a non-degenerate double
pair. Further, we show in this section that this is always the case whenever
k — |R| > 2@~ If we do not have this, we use Lemmas 5.4 and 7.6
depending on an idea of Erdés to give an upper bound for k. Thus there are
only finitely many possibilities for £ and we use counting arguments given in
Section 6 to exclude these possibilities. For example, we show in Lemma 7.5
that k is large whenever d is divisible by two small primes. This is very useful
in our proofs and increases considerably the lower bound for d in Theorem 1.
The computations in this paper were carried out using MATHEMATICA.

We begin with the following result.

LEMMA 3.1. Let d = 01(k —1)%, n = 03(k — 1) with 6; > 0 and 6 > 0.
Let V (i,4,9,h,d1,d2,q1,q2) be a non-degenerate double pair. Then

1( 1 1 0, }
3.5 Oy < =4 — — 01 + | —— + ——
(3:5) ? 2{(11(12 ! (192)®>  q1q2
and
61k — 1) Ak —1)
3.6 d < ——————, do < ———=.
(3.6) Y0+ 0) %

Proof. From (3.2) we have y; = (d171 + dar2)/2 and y,=(d151 + das2)/2.
Further, from (2.2) and (3.1), we get
(Vi —vg)d = biyz'Z - bg?/ﬁ

o 1g(p2 24 12 2 24,72 ,

= {(bir] — bgs1)di + (biry — byss)ds + 2d(bir1ra — bgsis2)}.
We observe from (3.2), (3.1) and (2.2) that b;r172 = v, —7;, bgS152 = Vg — Vh-
Therefore
(3.7) 2%+ — Y9 — W)d = (birf — bgsT)di + (birh — bys3)d3.
Then reading modulo dy, ds separately in (3.7), we have

da | (bir? —byst), dy|(birs —bys3) if ordy(d) <1,

(3.8) ds

d .
- | (bir? — bys?), 51 | (bir3 — bys3)  if orda(d) > 2.
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Hence 2q1, 2¢2 are non-negative integers. We see that q; # 0 and g2 # 0 since
V(i 4,9, h,di,da,q1,q2) is non-degenerate. Further, we see from (2.2) that

(3.9) biy; — baya = (Vi —Yg)d, by — bpyp = (v — ).

Therefore, by (3.2), we have

(3.10) 0 # Fy i= (bir] — bgsT)ds = bi(yi — y5)? — by(yg — yn)?
= (Vi +75 — Y9 — n)d — 2(biyiy; — bgygyn),

(3.11) 0 # Fy == (bir — bgs3)ds = bi(yi +yj)* — bg(yg + yn)?

= (i + % — 79 — )+ 2(biviy; — bgygyn)-
We note here that F; < 0, F5 < 0 is not possible since v; +7; > 74 + Va-

Let a and b be positive real numbers with a # b. We have

2V/ab — (a+b)<1— (Z;lb’f)m.

By using 1 —2 < (1—2)Y/2 <1 —x/2for 0 <z <1, we get

(a—0)° <2Vab<a+b— (a - b)°

b— .
ot a+b 2(a+0)

We use it with a = n + ;d and b = n + 7;d so that Vab = biyiy; by (2.2)
and (3.1). We obtain
(i)

2n+ (i +;)d

(3.12)  2n+ (i +;)d

(i)
dn +2(yi +)d

< 2biyiy; < 2n+ (v +;)d

Similarly, we get

(7g - 'Yh)2d2

(3.13)  2n+ (g +yn)d —

_ (g — m)*d®
4n + 2(yg + yn)d’

< 2bgygyn < 2n+ (g +n)d

Therefore (3.4), (3.10), (3.12) and (3.13) yield

(i — ;) d?
2n 4 (i +v5)d

quddy < (i +75 — g — W) — (2n + (v +v5)d) +

. ('79 - '7h)2d2

+ (2n + (vg +7)d) if F1 >0
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and

(i — ;) 2d?

dd; < 2n+ (v +v;)d) —
('Yg _’Yh)2d2

— @20+ (7 + m)d)

—(vi+7 = —m)d if Fy <O.

Thus
i —;)%d Oy (v — ;)2
(vi =) _ 1(vi —5) T
(3.14) qudy < 2T (i )d - 26a(k 1) +61(3 + )
(’Yg —yn)%d _ 91(79 — V) £ 7 <0,

2n+ (vg+yn)d  202(k — 1) + 01(vg + 1)
Similarly from (3.4), (3.11), (3.12) and (3.13), we have

91(’79 — ’Yh)z
202(k — 1) + 01(7g + 1)

=20+ — v — ) if F2<0.

2(/Yi+7j_’}’g_’7h)+ ifF2>O,

3.15 da <
(319) a2z (i =)

205(k — 1) + 01 (7i + 7))

Let

12 B O1(vi+7) 03 (vi — ;)*

mig = (k=) {92(’“ D+ 2<2eg<k—1>+91<%+m>}
e (1 1)\2 _ 01(’79“"7’1)_ 9%(7’9_’}%)2

ngn = (k= 1) {92(’“ D+ 2(292(k¢—1)+91(’79+%))}

Then we see from (3.12) and (3.13) that n;; < biyiy; < ibi(yi + yj)2 and
ngn < bgygyn < tbg(yy + yn)?. Assume Fy > 0. Then from (3.4), (3.11)
and (3.2), we have

ni jqidedt < Lb;(yi + ;)20 (yi — y;)? = (v — 75)2d?,
which implies

(3.16) Oy + 0y = —2

(k—1)3
L 2
L0 (k_l_%+% N 01(vi — 7)) >
E—1 2 2(202(k — 1) + 01 (vi +75))
(%‘ ) do .
<7d +0_7+9 fF; >0
by estimating
01 (i — ;)? ~ i) e ke

2(202(k — 1) + 01(vi +v5)) — 2(% + 71) 2
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Similarly

da
4Q1 (k — 1)
We separate the possible cases:

Case I F1 >0, F» > 0. From (3.14) and (3.15), we have
q1q201 (k — 1)
01(vi — ;)

< 2(vi+v—v9—
202(k_1)+91(7i+’}’j){ (vi+vi =9 =)+

01(vi — 75)*
292(k — 1) + 91(’}/@' + 5
201 (i — 73)°(vi ) 2017} < 201 (k — 1)°
292(143 - 1) + 01(% +’Yj) B 292(143 - 1) + 017y — 2(92(](5 - 1) + 91(]{: — 1)
since 20173 /(202(k — 1) + 6173) is an increasing function of +;. Therefore

205 + 61 < 2/q1q2, which gives (3.5). Further, from (3.14) and (3.15), we
have

(3.17) 01+ 05 < +6, if F1 <O.

01(7g — 1)? }
202(k — 1) + 01(vg + )

){2(% +75) = 2(vg + ) + 79 — W}

01(vi —;)* < 0177 < O1(k —1)
q1(202(k = 1) + 01(vi +5))  @1(202(k — 1) + 61v) — qu(202 4+ 61)’
(v +75) < 4(k—1)

di <

)

1 2
dy < g {207 +7v5) = 2(vg + ) + 99 — W} <

a2 a2
hence (3.6).
Casg II: F; >0, F5 < 0. From (3.14), we have
01(vi —;)* 01(k—1
. 1 =) _ k-
q1(292<k — 1) + (91(%' + ")/j)) q1 (292 + 91)
Similarly

1 01(k—1) k-1
a2 202+ 01 q2
from (3.15) and 7; + 7; > 74 + Y. Therefore (3.6) follows. Further,
02— 1)?
q1q2(202 + 61)?
implying (202 + 01)? < 61/q1g2. Hence (3.5) follows.
Casg III: F; <0, F» > 0. From (3.14) and (3.15), we have

01<k:—1)2< 9173 {2(%+7- —Yg)+ 9173 }
0192(202(k — 1) + 017,) T 205(k — 1) + 01

d2<

01(k —1)*=d =didy <

Let
205(k — 1)

292(]{: — 1) + 91’}/9

X(g) =1—
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so that
017, O1(k — 1)
= <
16X00) = 55T+ 017y = 205+ 0,

and both x(v4) and v4x(74) are increasing functions of ~,. Since v; + v; <
2(k — 1), we have

YoX (Vg)

Or(k —1)% < L2 £2(2(k — 1) — v9) + Y9x(79)}
41492
< % 29920k — 1) — ) + 22x ().

We see that v,4(2(k — 1) —v4) is an increasing function of -, since v, < k—1.
Therefore the right hand side of the above inequality is an increasing function
of 74. Hence we obtain

01/(k —1)2

< ——
! q192(262 + 601)

61 (k — 1)2}

{Q(k —1)%+ 6T 0,

91 { 01 }
=24+ — /.
q192(202 + 01) 205 + 0,
Thus (205 + 61)? < (361 + 462)/q1g2. Then we derive

1 \? 1 0
<292+91——> <72+—1.
q142 (Q1CI2) q192

Thus we get either

1 1 1 0
205 +0, < — or 20,46 — < -+ —,
q1492 q1q2 (C.I1Q2) q1492

giving (3.5). Further, from (3.14), we have

01(vg — 1)’ 01(k —1)
q1(202(k — 1) + 91(’}/9 + ’Yh)) q1 (292 + 91) )
As in Case I, we have do < 4(k — 1)/q2. Thus (3.6) follows. =

di <

Let 01,02 be as in the statement of Lemma 3.1.
COROLLARY 3.2. We have

3 3
(3.18) 0 < —, 01+ 05 < 01+ 205 < —.
q192 4192

Proof. Since 62 > 0, we see from (3.5) that either

1 1\?2 1 0
IR A S
Q192 7192 (192)*>  qiq2
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giving 61 < 3/q1g2. Hence we deduce from (3.5) that

1 1 9 3
01 + 2605 < + 5 + ! < .
q1q2 (192)? a2 Q@

Thus (3.18) is valid. =

LEMMA 3.3. Let b; = b;, by = by, and (di,d2) # (n,d/n) be a partition
of d. Suppose that (i,j) and (g,h) correspond to the partitions (dy,dz2) and
(da, dy), respectively. Then

(3.19) dy <n(k—1)%  dy <nk—1)"

Proof. We write

yi—yj=dirt, yi+yj=dora, Yy —yn=dasz, Yg+yn=disi
with
(3.20) birira =i — 75, bgsis2 =g — Vn-

Then as in the proof of Lemma 3.1, we get (3.7) and (3.8). If both b;r? —
bgs? # 0 and bir3 — bys3 # 0, we obtain max(dy,d2) < nmax(b;r?,bys?,
bir3,bys3) < n(k —1)? by (3.20). Thus we may assume that either b;r —
bgs? = 0 or b;r3 — byss = 0. Note that b;r? — bys? = br3 — bys3 = 0 is not
possible. Suppose bir% — bgs% = bﬂ’% — bgs% = 0. Then b; = by, 71 = s1,
re = S2, implying y; = yg, y; = yn. Hence we get v; = 74,7 = 7y from
(2.2), whence (4, j) = (g, h), which is a contradiction. Now we consider the
case bjr? — bys? = 0; the proof for the other is similar. From b;r3 — bys3 # 0
and (3.7), we obtain 2(v; +7j — 75 — yn)d1 = (b7 — bys3)da, which implies
di | n(bir3 —bgs3) and da | 2n(vi+7;—vg—7n). Hence by (3.20), d1 < n(k—1)?,
de <2n(k —1+k—2—1) <n(k—1)2, implying (3.19). =

For two pairs (a, b), (¢, d) with positive rationals a, b, ¢, d, we write (a, b) >
(c,d)ifa>c, b>d.

LEMMA 3.4. Let (dyi,d2) be a partition of d. Suppose that there is a set
& of at least zy distinct pairs corresponding to the partition (di,ds) such
that V (i, 4,9, h,d1,ds) is non-degenerate for any (i,7) and (g,h) in &. Then

(3.5), (3.6) and (3.18) hold with (q1,q2) > (Q1,Q2) where (Q1,Q2) is given
by Table 1.

Table 1
zo dodd 2| d 4| d 8|d
(1,1) (2,1) (1/2,1/2) (1,1/2) if 2| d1, (1/2,1) if 2| d2
(2,2)  (4,4) or (8,2) (2,2) (2,2)

(4,4) (8,4) (2,8) or (8,2)  (2,8)if 2| dy, (8,2) if 2| da
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For example, (Q1,Q2) = (1,1) if zo = 2, d odd, and (Q1,Q2) = (2,2) if
20 = 3, 4] d. If there exists a non-degenerate double pair V' (i, j, g, h, d1, d2),
then we can apply Lemma 3.4 with zg = 2.

Proof of Lemma 3.4. For any pair (i,7) € &, we write
(3.21) yi —y; = r1(i,j)d1 and y; +y; = ra(i, j)d2

where r = r1(4,7) and r9 = r2(i, j) are integers.

Let d be odd. Then r1 = r9 (mod2) for any pair (i,7) by (3.21) and we
shall use it in this paragraph without reference. We observe that ¢ > 1,
g2 > 1 by (3.8), (3.4) and the assertion follows for zyp = 2. Let zp = 3. If
there are two distinct pairs (4, j) with b;r; even, then ¢1 > 2,2 > 2 by (3.8).
Thus we may assume that there is at most one pair (4, j) for which b;r; is
even. Therefore, for the remaining two pairs, we see that both b;r1’s are odd
and the assertion follows again by (3.8). Let zp = 5. We may suppose that
there is at most one (4, 7) for which r; is even, otherwise the result follows
from (3.8). Now we consider the remaining four pairs (7, j) for which r{ =
(mod 4). Among these pairs, there are (i1, j1) and (iz, j2) such that b;, = b;,
(mod4) since b’s are squarefree. Now the assertion follows from (3.8).

Let d be even. We observe that

(3.22) 8| (y7 —y?) and ged(yi — yj, i + yj) =2
for any pair (7, j). Let 2 || d. Then d; is odd and ds is even, implying 7] is even
by (3.22). Further, from (3.22), we have either 4|ri, 2trq or 2|71, 2|re.
Therefore (q1,q2) > (2,1) by (3.8) since 71 is even and the assertion follows
for zo = 2. Let zp = 3. Then there are two pairs (i1, 1) and (i, j2) such
that r9(i1, j1) = r2(i2, j2) (mod 2). Assume that r9 is odd. Then 4|71, which
implies 8| ¢; and 2| g2 by (3.8). Now we suppose that 2 is even. Then 2 || 1.
We write 1 = 2r] and

biyri(in, j1) — biyri(ia, j2) = 4(biy P (in, 1) — it (i2, j2)) = 0 (mod8).
Hence 4| q1, 4| g2 by (3.8). Let z9 = 5. We choose three pairs (i, j) for which
all b; = 1 (mod4) or all b; = 3 (mod4). From these, we choose two pairs
both of which satisfy either 4|r;, 2{re or 2|/ ry, 2|re. Now we argue as
above and use b;; = b;, (mod4) to get the result.

Let 4] d. Then both dy and dy are even. From (3.22), we have either
2|71, 2479 or 217y, 2|re. Since (¢1,¢2) > (1/2,1/2) by (3.8), the assertion
follows for zp = 2. Let zp = 3. Then there are two pairs (i1,71) and (i2, j2)
such that 71(i1,71) = r1(i2,j2) (mod2) and ra(i1,j1) = ra(ie, jo) (mod?2).
Since b; = n (mod4) for each i, we deduce from (3.8) and (3.4) that 2| ¢
and 2| g2. Thus (q1,¢2) > (2,2). Let zg = 5. Then we get three pairs (i, j) for
which 2| r1(i,j),24r2(i, j) or three pairs (¢, j) for which 2{ry(i, ), 2| ra2(i, 5).
Assume the first case. Then there are two pairs (i1, j1) and (2, j2) such that
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r1(i1,j1) = r1(i2, j2) (mod4). This, with b; = n (mod4) and (3.4), implies
that 16| q1d2 and 4 |gad;. Hence (q1,q2) > (8,2). In the latter case, we get
(q1,92) > (2,8) similarly.

Let 8|d. Then we see from (3.21) and (3.22) that either 2| d;, implying
all r1’s are odd, or 2| d2, implying all r9’s are odd. Also, b; = n (mod38) for
all i. We prove the result for 2 || d;; the proof for the other case is similar.
From (3.7), we derive

dy do
(3.23)  2(iy + Vi — Yia — Vi) 33

dl d2
= (b’ilrl b1251)< 9 ) (bilr% bl252)< 2 >

where T = Tl(il,jl) S1 = Tl(ig jg) T = Tg(il,jl) and S9 = Tg(ig,jg)
Noting that 4ds | d3 and taking modulo da, we get (q1,g2) > (1,1/2), whence
the assertion for zyg = 2. Let zp = 3. Then there are two pairs (zl, j1) and
(i2, j2) such that ro(i1,j1) = r2(i2, j2) (mod2). Using this and (3.4), we get
4] qod;. Further, from bjriry = 7 — 5, we see that vi, — v, = Vi, — Vo
(mod2), hence v, + 75, = Vi, + 7j» (mod2). Now we see from (3.23) that
4(da/2) | 1d2. Thus (g1, q2) > (2,2). Let zo = 5. We see that b; = n or n+ 8
modulo 16, so that b;r2 (mod 16) is equal to 0 if 4|7y, 4n if 2|72, and n
or n + 8 if 2¢ry. Now we can find two pairs (i1,71) and (ig,72) such that
bi,m3(i1,41) = biyr3(iz, j2) (mod16). This gives 16|qad; by (3.4). Further,
again 2| (v, +7j, —Vi. —7j») and hence 4(d2/2) | q1dp from (3.23). Therefore
(q1,42) > (2.8).

LEMMA 3.5.
(i) Assume that

(3.24) n+yd >y}

Then for any pair (i,7) with b; = b;, the partition (dn~',n) is not
possible.

(i) Let d = d'd" with ged(d',d") = 1. Then for any pair (i,j) with
B; = B; > d,i,j € T, the partition (d"n~1,n) is not possible. In
particular, the partition (dn~',n) is not possible.

Proof. (i) Suppose the pair (4, j) with b; = b; corresponds to the partition
(dn=t,m). From (n+d)/(n+vd) > vi/y and (3.24), we get n + v;d >
n%7y;v:- Then from (2.8), we have

bilyi +9;) (biy?)'/? + (bjy?)l/Q n(vA + ,/%%)
n o n n
a contradiction.

v

Yi — Y Yi + Vs
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(ii) Suppose the pair (¢, j) with B; = B;j > d’ corresponds to the partition
(d"n~t,n). As in (2.8), we have
d _Yi+Y, 2k
%% 2 =) g 7 5
since Y; > Y; > k. This is a contradiction. The last assertion follows by
takingd' =1, d" =d. =
LEMMA 3.6.
(i) Assume (3.24). Let 1 < ig <t and v(b;,) = p. Let (di,dz2) be an
partition of d. Then the number of pairs (i, ]) with b; = b; b
i > j, corresponding to (dy,ds) is at most [u/2].
(i) Let d=d'd" with ged(d',d")=1. Let ig €T, Bi,>d' and v(B;,)=p.
Let (dy,da) be any partition of d”. Then the number of pairs (i,7)
with B; = Bj = By, i > j, corresponding to (di, dz) is at most [p/2].

209

Proof. (i) Suppose there are y' = [u/2] + 1 pairs (if,j;) with 4, > 7,
0 <! <y and b;, = bj, = bj, corresponding to (d,d2). We consider the sets
I={i:0<l<p}and J={5;: 0<l<p}. I |I| <y orl|J| <p or
INJ #0, then there are [ # m such that
Ay Wi = Yjm)> 2| (Wi = Yj) i = i,
di | (Yiy = Yin)s A2 (Wir = Yin) 1 J1 = Jm,
di (Y = Yim)>  d2| (Wi = ¥ir) it = Jm.
We exclude the first possibility; the proofs for the others are similar. Without
loss of generality, we may assume that j; > j,,. Then lem(dy, d2) | (v, — yj.)
so that the pair (j;, jm) corresponds to the partition (dn~!,7). This is not
possible by Lemma 3.5(i). Thus |I| = ¢/, |J| = ¢/ and I N J = (. Now we
see that [[U J| = |I| + |J| = 24/ > p and b; = b;, for every ¢ € I U J. This
contradicts v(b;,) = p.
(ii) The proof is similar to that of (i); we use Lemma 3.5(ii). m
As a corollary, we have
COROLLARY 3.7.
(i) Assume (3.24). For 1 <i <t, we have v(b;) < 29()=0,
(i) Let d = d'd" with gcd(d’,d") = 1. For B; > d', we have v(B;) <
2@(d") =01 " I particular, v(B;) < 2w(d)-0
Proof. (i) Let v(b;) = . Then there are u(u — 1)/2 pairs (g, h) with g>h
and by = b, = b;. Since there are at most 2% (@)=0 _ 1 permissible partitions
of d, we see from Lemma 3.6(i) that pu(u —1)/2 < (1/2)(2¢(9~% —1). Hence

the assertion follows.
(ii) The proof is similar; we use Lemma 3.6(ii). =
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COROLLARY 3.8. Let Try1={i€Ti:B;>q1---qr} and s,41 = |{B; :
i € Tr11}|. Then

’T ’ r—1
1 _
S 2 ey~ 22 e 2
p=1

where \’s are as defined in (2.10).

Proof. We apply Corollary 3.7(ii) with &’ = q1---q, to derive that
v(B;) < ow(d)=n=0 for B, > qi- - qu, i > 1 since 61 > 6. Therefore
|Tr+1|

> ’Tl‘ o 2w(d)79)\1 N 2w(d)7179()\2 N )\1) L 2w(d)fr+179()\r _ )\7"—1).
Since v(B;) < 2¢@="=0 for i € T,,1, we have 5,41 > |[T)41]/2°@ =% and
the assertion follows. m

LEMMA 3.9. Assume (3.24). There exists a set §2 of at least

t—|Rl+ > ry>t—|R|

pn>1
podd

pairs (i,j) having Property ND.
Proof. We have

tzz,uru and \R]:Zr#.
u 1

Each b;, € R, gives rise to pu(p —1)/2 pairs (4,7) with ¢ > j such that
b; = bj = b;, and each pair corresponds to a partition of d. By Lemma 3.6,
we know that there are at most [11/2] pairs corresponding to any partition
of d. For each 1 < j < [u/2] = p1, let vj be the number of partitions of d for
which there are j pairs out of the ones given by b;, € R, corresponding to
that partition. Then

plp—1)

(3.25) — = Z]Uj.
j=1
For each partition having J pairs with v; > 0, we remove j — 1 pairs. Thus
we remove in all ( j — 1)v; pairs. Rewriting (3.25) as
—1) )
= —mzvj Z — j)vj,
7j=1

we see that we are left with at least

w(p —1) w—1 if p is even,
E:]_ +§( )3—4:{ oo
ZM 201 1 if pis odd
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pairs. Let {2 be the union of all such pairs taken over all b;, € R, and for all
p > 2. Since |R,| =, we have

91> Y (-t Y wra =t~ R+ Y

peven pu>1 pu>1
podd podd
Further, we see from the construction of the set (2 that 2 has Property
ND. =

(z— 1)(2¥D=0 — 1) + 1. Let zg € {2,3,5}. Suppose that t — |R| > h(z).
Then there exists a partition (di,d2) of d such that (3.5), (3.6) and (3.18)
hold with (q1,q2) > (Q1,Q2) where (Q1,Q2) is given by Table 1.

COROLLARY 3.10. Assume (3.24). Let z be a positive integer and h(z)
1

Proof. By Lemma 3.9, there exists a set {2 with at least h(zp) pairs having
Property ND. Since there are at most 2¢(9=% — 1 permissible partitions
of d by Lemma 3.5(i), we can find a partition (d;,d2) of d and a subset
& C 2 of at least zp pairs corresponding to (dj,dz2). Now the result follows
by Lemma 3.4. =

COROLLARY 3.11. Assume (3.24). Suppose that t — |R| > 2@()=0-1 41,
Then there exists a partition (dy,ds2) of d such that (3.19) holds.

Proof. By Lemma 3.9, there exists a set 2 with at least 2¢(@—0-1 4 1
pairs (7,j) having Property ND. We may assume that for each partition
(d1,dg) of d, there is at most one pair corresponding to (di,ds), otherwise
the assertion follows by taking zp = 2 in Lemma 3.4. We see that there
are 29()=0-1 _ 1 partitions (dy,ds) with dy > do, 2¢(D=0=1 _ 1 partitions
(d1,ds) with n < di < dy and the partition (1, dn~!). Since there are at least
2@(d)=0-1 4 1 pairs, we can find two pairs (i,7) and (g, h) corresponding to
the partitions (dy,d2) and (da,d;), respectively. Now the assertion follows
by Lemma 3.3. =

LEMMA 3.12. Assume (3.24).

(i) Let |S1| < |T1| — 6(3). Then (3.18) is valid with

144071 if 24d,
(3.26) q1q2 > { 16 if 2| d,
4 if 4]d.
(ii) Let d be even and |S1| < |Th| — b(5). Then (3.18) is valid with
144071 if 2] d,
(3.27) q1g2 > { 36 if 4|d and 31d,
16 if 4|d and 3|d.
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Proof. Let B; = B;j with ¢ > j and 4,j € T1. Then there is a partition
(di,d2) of d such that Y; —Y; = dir}, Yi +Y; = dory with r],r) even,
24071 | rirh if d is odd and 1] even, 1201 |rirh if 2||d and 3p~!|rir} if
4|d. Since BZ-Yi2 = biyl-2 and b; is squarefree, we see that p|b; if and only if
p| B; with ord,(B;) odd. Therefore b; = b; implying b* = B;/b; = B;/b; and
y; = bY;, y; = bY;. Hence

yi — y; = dibry = dir1(i, §) = diry,  yi +y; = dabrhy = dara(i, §) = dara

with 71 = brf, 1o = br even, 2407 ! |riry if d is odd, and with 71 even,
1207 | ryreif2||d and 307t | ryra if 4| d. Let 2 € {3,5} and |S1| < |T1]|—h(2).
We argue as in Lemma 3.9 and Corollary 3.10 with ¢ and |R| replaced by
|T1| and |S1|. There exists a partition (di,d2) of d and z pairs corresponding
to (di,d2) such that V(i,j,g,h,di,ds) is non-degenerate for any two such
distinct pairs (i,75) and (g, h). Let z = 3. By Lemma 3.4 with zp = 3, we
may suppose that d is odd. Let 3td. Then we can find two distinct pairs
(i1,41) and (i2,j2) both of which satisfy either 3|ri(i1,j1), 3|ri(i2,j2) or
3| ra(i1, j1), 3| ra(iz, j2). Now (3.26) follows from (3.8) and (3.4) since ri, 72
are even. Assume that 3|d. Let 3|d;. Then we can find two distinct pairs
(i1,41) and (ig,j2) both of which satisfy either 3|ri(i1,j1), 3|ri(ie,j2) or
3tr1(i1, j1), 317r1(i2, j2). Since b; = n (mod 3) and r? = 1 (mod3) for 347,
the assertion follows from (3.8) and (3.4) since 71,r2 are even. The same
assertion holds for 3|ds, in which case 7 is replaced by re. This proves
(3.26).

Now we turn to the proof of (3.27). Let d be even and z = 5. Let 3td.
Out of these five pairs, we can find three distinct pairs (4, j) for which either
r1(4,7)’s are all divisible by 3 or 72(4,7)’s are all divisible by 3. As in the
proof of Lemma 3.4 with d even and zp = 3, we find two distinct pairs (i1, j1)
and (2, j2) such that 16| q1q2 if 2|| d and 4 | g1¢2 if 4| d. Further, 9| ¢1¢2 since
either r1(7,7)’s are all divisible by 3 or 72(7,j)’s are all divisible by 3 and
hence the assertion. Assume now that 3|d. By Lemma 3.4 with 2o = 5, we
may suppose that 2 || d. Let 3| d;. Then we can find three pairs (i, j) for which
either 3 divides all 71(4,7)’s or 3 does not divide any 71(4,j). Then for any
two such pairs (i1, 1) and (iz, j2), we have 3 (biyr3 (i1, j1) — biyri(ia, j2))-
Therefore, by the proof of Lemma 3.4 with d even and zg = 3, we get
3-16|g1g2. The other case 3|dy is similar. =

4. Lower bound for n + (k — 1)d. We observe that |S;| > |T}|/2+(®~?

and n + (k — 1)d > |S1|k%. We give a lower bound for |T;|. We have
LEMMA 4.1. Let k > 4. Then
(k= 1)log(k — 1) = Y, 4. pey max(0, ELZBIEP _jog () — 2))

log(n + (k — 1)d)

(4.1) Ty >t—

— ﬂd(k) — 1.
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Proof. The proof depends on an idea of Sylvester and Erd&s and is similar
to [SaSh03a, Lemma 3|. Since |T}| = t—|T'|, we may assume that |T'| > 74(k).
For a prime ¢ with ¢ < &k and g+td, let iy be a term such that ord,(B;,) is
maximal. Let 77 = T'\ {i : ¢ < k, ¢fd}. Thus |T"| > |T| — mq(k). Let i € T".
Then n 4 v;d = B; and ordg(n + v;d) < ordg(v; — 7i,) since ged(n,d) = 1.
Therefore

ordq(H (n+ %d)) < ordy (i, !k — 1= 7i,)!) < ordg(k — 1)L.
€T’

This, with n + id > 5 (n+ (k — 1)d) for i > 0, gives

1T"|—1
| — 1)1 w A < (k — 1)1
(- (5 < T tn ) < (6= 1)t
€T’
where ¢ =[] 4 qda(k=D! Therefore
(IT| = ma(k) — 1) log(n + (k — 1)d)

< (I7'] = 1)log(k — 1) + log((k — 1) - -+ |T"|) — log 1)
< (k—1)log(k —1) —log.

Now the assertion (4.1) follows from Lemma 5.1(iv) below. m

The following result is an immediate consequence of Laishram and Shorey
[LaSh06, Theorem 1].

LEMMA 4.2. Letn>1,d>2 and k > 5. Then
(4.2) Pn(n+d)---(n+ (k—1)d)) > 2k
unless (n,d, k) = (1,3, 10).

LEMMA 4.3. Lett = k. Then
(4.3) |T1| > ak  for k> K,

where o and K, are given by

o} 03 035 04 0.42
K., 101 203 710 1639

Proof. Let k > K,. Thus k > 101. By Lemma 4.2, n + (k — 1)d > 4k>.
We see from (4.1) that

(k—1Dlogk k 1((k—1)log2 k
T By>k—1-w _J08% 8, JJWWT)0es 41 &
ITil + ma(k) > 2log 2k 2 T2\ log2k ~ 3

Therefore n + (k — 1)d > (4 log 5)2 by Lemma 5.1(ii).
For 0 < B8 <1, let

(4.4) n+ (k—1)d > (Bklog Bk)>.
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We may assume that § > 1/2. Put Xg = X3(k) = Blog k. Then log(n +
(k—1)d) > 2log Xg + 2log k. From (4.1), we see that

(4.5)  |Ta| +ma(k)
S k_1— (k—1)logk _k 1_1 1+ log X
2log X5+ 2logk 2 k log X + log k

k 1 1

log X

By using 74(k) < m(k) and Lemma 5.1(i), from (4.5) we get

1.2762
log log k)

(4.6) ‘Tl‘ > ggk —

Let 5 = 1/2. We observe that

log k 1.2762
_1 k—
e () (0 )
14 1.2762  1.2762
= logk — + -
13 log Xg log k log Xz
is an increasing function of k and it is positive at k = 2500. Therefore

1 < 13 1 ( 1.2762
1+ _lé‘;g)?ﬁ 14 log k log k

) for k > 2500,

which, together with (4.6) and (4.5), implies

11 1 1.2762 13
[T 142202 (50 B8Y S 049 for & > 2500
k2 2k 28logk\" | Tlogk T or k=

since the middle expression is an increasing function of k. Thus we may
suppose that k < 2500. From (4.5), we get |T1| + mq(k) > g1/0k =: Bik.
Then (4.4) is valid with § replaced by (1 and we deduce from (4.5) that
|T1| + mq(k) > g,k =: B2k. We iterate this process with (3 replaced by 32 to
get gg, =: 3 and further with g3 to get |T1| 4+ m4(k) > gg,k =: B4k. Finally
we see that |T1| > fak — w(k) > ak for k > K,. =

LEMMA 4.4. Let SC{B;:1<i<t}. Leth>1and P <---< P, bea
subset of odd primes dividing d. For |S| > (P —1)/2)--- ((P, —1)/2), we
have
1218 i 31d,

92005 if 3|d.

Proof. The assertion (4.7) for 31d is [Lai06, Corollary 2| with A; replaced

by B; and s = |S|. Let 3|d. As in [Lai06, Corollary 2|, let @5, > 1 and

(4.7) max B; > {
B;eS
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1 < f < (Py —1)/2 be integers such that

gen(T) (P <si- e (P5) - (P
(o) ()

Then we continue the proof as in [Lai06, Corollary 2| to get

max B; > XQuP - P4+ 2°(f —1)P--- Pp_y.
LES

Since P, = 3, it suffices to show
QnPo- Py +(f —1)P2-+- Pr
3
ZZ{Qh(P2_1)"'(Ph_1)+2f(P2_1)“’(Ph—1_1)}

to get the assertion (4.7). For h = 2, we see from
f 1 P-1
z _1_-L> _Z_
Qh(P2+3) 1 2_4P2 1 1
that the above inequality is valid. For h > 3, by observing that
Qn(Po—1)--(Ph—1) < QnpP2 P, — QnPo- - Pp1,
2f(P2=1) (Ph1 = 1) <2fPp-+- Py —2fPa--- Pya,
it suffices to show that
3 —1)—(2f+1 6
Qh+(Qh ) — (2f )+ f >0,
P, PyPp1
which is true since @), > land 1 < f < (P, —1)/2. =
COROLLARY 4.5. We have Ay < 2q1 if 24d, 31d and A\ < q1/02° + 1
otherwise. For r > 2, we have

=0

qi1---9r .

= if 2td, 3td,

qi---qr .

5 33 if 2td. 3]d,
>\7"< qi---4qr i 90d. 3+d

3.9017-3 if 2|d, 31d,

. ql...qr ql...qT .

m1n< 3 50 —|—1,9.2T_2> if 6|d.

Proof. Let 2td and 3td. If A\, > q1---q,./(3-2"2), then
qg—1 q-—1 >P1—1H_Pr—1
2 2 = 2 2
giving q1---q, > maxpgea, B; > 32"\, by (4.7) with S = A,. This is a
contradiction.

A >
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Let 2|d or 3|d. Then we derive from the Chinese remainder theorem
that A\, < q1-- -qr/g2‘S + 1. Thus we may suppose that » > 2. Further, we
may also assume that » > § + 1 when 6 | d.

Let 2¢d and 3|d. Suppose A\, > q1---q,/(9-2"73). Then q; > p; = 3,
implying

g—1 g1 >Pl—1._'Pr—1
2 2 - 2 2
Therefore q; - - - g, > %-ZT_I)\T by (4.7) with S = A,. This is a contradiction.
Let 2|d and 3td. Suppose A\ > q1---4q,/(3 - 25”*3). Then g, > 7 since
r > 2, implying q' := max(q,,2°) > 7 and hence

277lq pi—1 pa—1_dp—-1 poi-1
A > oo > L e
T 32003 2 2 T 6 2 2
p1— 1 Pr—1— 1
> “es .
2 2
Now we apply (4.7) with S = A, to get a contradiction.
Let 6|d. Suppose A\, > q1---q,/(9-2"72). Let 2||d or 4] d. Then
-1 gq1—1 N pr—1 pro—1
2 2 - 2 2
since q1q, > 9 and p; = 3, and (4.7) with S = A, yields a contradiction.
Thus it remains to consider 8|d. Then
q2_1.”qr71_1 > pl_l.”prfl_l
2 2 - 2 2

Ap >

Ap >

Ar >

since

i [ TR U IS T S T P S
9 . 27‘72 2 9 9 2
where ¢’ := max(q,,8), and (4.7) with S = A, yields a contradiction. =

5. Results from other sources. We now state some lemmas. We begin
with some estimates from prime number theory.

LEMMA 5.1. We have

x 1.2762
) <
(i) m(z) < Tog (1

(i) p; > ilogi fori > 2;
(iii) J]p < 2718517 for z > 0;
p<z
(iv) ) logp > i(logi + loglogi — 1.076868) for i > 2;

p<pi

)forx>1;

log x

kE—p log(k—1)
dp(k!) > -
(v) ordp(k!) > p—1 log p

forp < k.
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(i) is due to Dusart [Dus98, p. 14], [Dus99] and (ii) is proved by Rosser
and Schoenfeld [RoSc62]. For estimate (iii) see [Dus98, Prop. 1.7], [Dus99].
Estimate (iv) is [Rob83, Theorem 6|. For a proof of (iv), see [LaSh04, Lem-
ma 2(i)]. =

The next lemma is Stirling’s formula (see Robbins [Rob55]).

LEMMA 5.2. For a positive integer v, we have
VvV 27TV67VI/V61/(12V+1) <l < V2rve VY 1/ 121/)

The following lemma is contained in [Lai06, Lemma 8|.

LEMMA 5.3. Let s; denote the ith squarefree positive integer. Then
(5.1) Hsl > (1.6)1!  for 1 > 286.
Further, let t; be ith odd squarefree positive integer. Then

(5.2) Htl_ 2.0 for 1> 200.

The next result depends on an idea of Erdés and Rigge.

LEMMA 5.4. Let z > 1 be a real number, hg > ig > 0 be integers such
that [[;,cpbi > z|1R‘710(|R] —ig)! for |R| > ho. Suppose that t — |R| < g and
letgn=k—t+g—1+1. For k> ho+ g1 and for any real number m > 1,

we have
T—l( n(k p) ) 91
Flo (2718511_[ ) <k+ )10g(1 k)
5.3
(33) o> log(k —g1) — 1+ log
(0.50 + 1) log k — log (nl_l 11 pl-fm(k,p))
+ p<m
log(k —g1) — 1+ log 2
and
110 2/(p*—1) g1
1 log(1—- 2L
g Og<2.71851 1179 ’H og(1-7%
(54) g1> P=

log(k —g1) — 1+ log z1
(1.5m(m) — 0.5¢ — 1) log k + 10g<n1_1n2 H D 2

p<m
log(k — g1) — 1 + log z1
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where
log(k —1 log
[7ogl(ogp )] if [ logp } is even,
n(k,p) = {=|{p<m:p|d},
log(k —1) log :
if is odd,
logp logp
1/6
L7, m=][p%, m-= {2 /% i 24d,
bld ol 1 otherwise.
p<m p<m

Proof. Since |R| >t —g+ 1=k — g1 + io, we get
(5.5) I b =2 (k- g0)!.
bieR
Let
9, = ordp< I1 b) 9, =1+ ord,((k — 1))).
b;ER

Let h be the positive integer such that p < k—1 < p*!, and e =1 or 0
according as h is even or odd, respectively. Then

k—1 k—1 k—1
5.6 19’—1:[ }+[ }+ +[ ]
(5.6) g’ p pe P

Let ptd. We show that
, 2k 1
(5.7) vp — 10, < 1 1-— ) + 1.5n(k, p)
2k 1.5logk 2

(58) < —p2 1 + logp + 0.5+ pz——l +n3

where ng = 1/6 if p = 2 and 0 otherwise. We see that ¥, is the number of
elements in {n+vy1d,n+72d,...,n+~d} divisible by p to an odd power. For
a positive integer s with s < h, let 0 < ips < p® be such that p* | (n + i,sd).
Then we observe that p® divides exactly 1 + [(k — 1 —ips)/p®] elements in
{n,n+d,...,n + (k — 1)d}. After removing a term in which p appears
to a maximal power, the number of remaining elements in {n,n +d,...,
n + (k — 1)d} divisible by p to an odd power is at most

k‘—l—ip] [k:—l—z'pz] |:k‘—1—ip3:| E[k—l—z’ph]
— + (1) P
[ P p? p3 (=1 ph

ps ps ps
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we obtain

k—1 k k—1 k—14¢e] h—1+¢
<l = | = — .. —1)¢ .
Ur 1_[29} [pQ}Jr[pi*} T 1){ ph }Jr 2

This with (5.6) implies

(5.9  W,—v, < —(h_iaqu _.1} + [ﬁD + #

p%

Since [i] > [ﬂ] > k—?—l%—% = z% — 1, we obtain

p* p* g P
(h—1+€)/2
Op =0 < =2k Y P+1.5(h—1+e),
j=1

giving (5.7) since n(k,p) = h — 1 + e. Further, from (5.7), k& < p"*! and
h < logk/log p, we get

2k 1.5logk  2p*~¢

9, — —
P < p?—1 log p p?—1

+1.5(c — 1),

proving (5.8). For p|d, we get ¥, — ¥, = —1 — ord,(k — 1)!, which together
with Lemma 5.1(v) gives

k log k 1

1 9, — 9, < —
(5.10) p— U, < 1 logp+p—1
< 2k +1.5logk:
p*—1  logp
k 0.5log k -1
+0.5 + et _ P

pPP—1 p+1  logp 20p+1)
For m > 1, we have
[T ol e = 0r(TT») IT#" "
bR p<k  p<m
Therefore from Lemma 5.1(iii), (5.10), (5.7) and (5.8), we have
(5.11) [T b < k=051 (np T ptonce)

b;eR pém

—k
"o p;j(l_ n(}c,p))
8 (2.71851 117 ’
p<m
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and
2
G [ne e (e T
b;ER p<m
—k
%o 2/(p? 1)
% (2.71851 1I» :
p<
Comparing (5.11) and (5.12) with (5.5), we get
Z?lkf' 0.5¢+1 —1 15n(kp) -1
(5.13) R RIS
g1): o
k
Zl—no ﬁ(lfm)
% <2.71851 1I» ’
psm
and
g —
(5.14) % > f—1.5m(m)+0.50+1 (nflng 1—[ po,5+17227_1) 1
(k—g1)! 1L
k
110 2/(p*-1)
% (2.71851 II» :

psm
By Lemma 5.2, we have

911, k+1/2
2 k! P < k )
— < z7 € k— 91
R T L e

() )

This together with (5.13) and (5.14) implies the assertions (5.3) and (5.4),
respectively. m

Inequality (5.8) corrects the corresponding inequality in [Lai06, p. 466,
line 3 from the bottom| used in [Lai06, Lemma 13| but the proof of [Lai06,
Lemma 13| remains unaffected.

We end this section with a lemma which follows immediately from [Lai06,
Lemma 10].

LEMMA 5.5. Lett = k. Let ¢ > 0 be such that ¢2*(D=3 > 248 11 > 2 and

DA N . 02%
¢, = {AZ e T v(A) =, A > W}
Then
(5 15) ¢ = Z M ’@ ‘ < % 4w(d)(log Czw(d)fi’,)
) ’ 9 pl = 32 .

n>2
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6. Some counting functions. Let p be a prime < k and coprime to d.
Then the number of ¢’s for which b; are divisible by ¢ is at most

oq = [k/q].

Let » > 5 be any positive integer. Define F(k,r) and F'(k,r) as

(k)
F(k,r)={i: P(b;) > p,}| and F'(k,r)= Y oy,
i=r+1
Then
{bi - P(bi) > po}| < Flkor) S F'(kr) = Y oy
pld, p>pr
Let
B, = {bz : P<bz) < p'r}a I, = {Z 1b; € BT}7 fr = ’Ir‘
We have
(6.1) &> t—Flkr)>t—Flhn+ 3 o
pld, p>pr
and

(6.2) t—|R| >t —[{bi : P(bi) > pr}| = [{bi: P(bi) < pr}]

(6.3) >t—F(k,r)— |{bi : P(b;) < pr}|

(6.4) >t—F(kr)+ Y. op—[{bi: P(b) < p}
p|d7p>pr

(6.5) >t—F'(kr)+ Y, op—2".
pld, p>pr

We write S := S(r) for the set of positive squarefree integers composed
of primes < p,. Let § = min{3,ordy(d)}. Let p = ¢ = 2°, or let p < ¢ be
odd primes dividing d. Let p = ¢ = 2°. Then b; = n (mod 2%). Considering
elements of S(r) modulo 2°, we see by induction on 7 that

(6.6) {b;: P(b;) <pr}| < Q=0 =1 g95 25 =1 ggs-

For any odd prime p dividing d, all b;’s are either quadratic residues mod p
or non-quadratic residues mod p. For odd primes p, g dividing d with p < g,
we consider four sets:
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Sl(nla T’) - 81(57 n/7p7 q, T’)

= {SES:SEn’ (mod 29), s :1,<f
p q

SQ(nla T’) = 82(57 n/7p7 q, T’)

(
={seS:s=n' (mod2%),
(6.7) Sy(n!, ) = i(@ n',p,q,r) <

(

= {s €S:s5=n' (mod?2°), ; =1, (2) = 1}7
Sa(n',r) = S4(8,n,p,q,7)

= {s €S:s=n' (mod?2?), <2§?) =1, (2) = —1}.

Wetake n’ =1if6=0,1;n' =1,3if§=2;and n' =1,3,5,7if § = 3. Let
(6:8)  Gpg = pg(r) = max(|Si(n', )], [Sa(n', 7], |Sa(n', r)], [Sa(n', 7))
and write g, = gp . Then

(6.9) {bi - P(bi) < pr}| < gpg-
In view of (6.6) and (6.9), inequality (6.4) is improved as

(6.10) t—|R| Zt—F(kr)+ > op— l‘qdanfd{ Ipa}-
pld, p>pr
We observe that ged(s,pq) =1 for s € §;, 1 <1 < 4. Hence we see that

S(n',r+1)=8(n',r) if p=pr41 or ¢ = pr41, implying

(6.11) Ipg(T+1) = Ggpg(r) i p=pry10r ¢=pri1.

Assume that p.11 € {p,q}. Let 1 <1 < 4. We write Sj(n’,r +1) = {s :
s € S(n';r+1), pry1|s}. Then s = pry18 with P(s’) < p, whenever
s €S8](n/,r+1). Let | = 1. Then s' = n'p,}; = n” (mod?2°) where n” =1 if
§=0,1;n" =1,3if 6 = 2;and 0" = 1,3,5,7if § = 3. Further, (£) = (2=)
and (%) = (p“’l) for s € S/(r+1). This implies S} (n/, 7+1) = pr41Sm(n”,r)
for some m, 1 < m < 4. Therefore |S](n/,r+1)| < gpq4(r) by (6.8). Similarly
|S/(n',7+1)| < gpq(r) foreach I, 1 <1 < 4. Hence we see from S;(n/, r+1) =
Si(n',r) US/(n', 7+ 1) that

(6.12) Gpg(r+1) < 2g,4(7).

We now use the above assertions to calculate g, 4.
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(i) Let 5 <r <7, p <547 when 6 = 0,1; 5 < r < 7, p < 547 when
6=2;and 5 <r <7, p<89 when § = 3. Then
max(1,2"702) if p < p,,
(6.13) i) = { )
max(1,2 ) if p>py,
except when

e y=0,r=25, p=479, where g, = 2";
e 0=1,7=5,pe {131,421,479} or r = 6,p = 131, where g, = 2" ;
e ) =2 r =5 p € {41,101,131,331,379,421,461,479,499}, where
g =2""%
d=2,r=06,pe {101,131} or r =7, p = 101, where g, = or=90.

e =23,r=>5p=3, where g, = 2r=0=1 or r = 5, p = 41, where

9p = or =9,

(ii) Let 5 <r <7, p<19, ¢ <193,23 <p < q <97 when 6 =0, and

r=2>5,6, p<q<37whend>1. Then

max(1,2"7°71) if p < ¢ <p,,
(6.14) Ipq(r) = ¢ max(1,277973) if p <p, <q,
max(1,2"7972) if p, < p < gq,

except when

=75, gpq=2""2for (p,q) € {(5,43), (5,167),(7,113),
(7,127),(7,137), (11,61), (11,179), (11, 181)};

§=0and{ r=5, g,, =2""" for (p,q) € {(19,139), (23,73), (37,83)};

r=06, gpg=2"" 2 for (p,q) = (7,137);

r=6, gpq=2"""for (p,q) = (37,83);

r=5, gpg=2"""for (p,q) € {(5,7),(5,11)};
51 and r=05, gpq=2""3for (p,q) = (5,37);

r=5, gpq=2""2for (p,q) € {(13,23),(29,31)};

r =6, gpq=2"""for (p,q) = (5,7);

(1 =5, gpg=2"""for (p,q) € {(3,19), (5,17), (5,37), (7, 13),

(7,23),(7,29), (7,31), (11,19), (11,29), (11, 31)};

§=2and{ r=>5, g, =2""3 for (p,q) € {(13,23),(17,37),(29,31)};
r=06, gpg=2""7for (p,q) € {(5,7),(7,13)};

(7 =6, gy, =2"""for (p,q) € {(7,29), (11,31), (13,23)}.

Now we combine (6.13), (6.14), (6.12) and (6.11). We obtain (6.13) with =

replaced by < for r > 7 and p <89, and we shall refer to it as (6.13, <). Further,

we obtain (6.14) with = replaced by < for r > 7 and either p < ¢ < 97 when
0=0,or p=3, ¢ =5 when § > 1, and we shall refer to it as (6.14, <).
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7. Computational lemmas. From now on, we take ¢ = k. Thus b; =
Aj—1, Bj = Ajfl, Yj = Tj—1 and Y} = Xjfl for 1 < ] < k. Let f(ZL‘) =
[2] — [[*]/4] for x > 0 and K, = k/a23? for a € R. We now state a result
which generalises [HLST07, Lemma 1].

LEMMA 7.1. Let a € R and p be a positive integer. Let p,q be distinct
odd primes.

(i) Let
fO(k7a75) f( )
p

- Kq - Kq
filk,a,p,p,0) = 21 f( 2l+1)+f(—u>,

—~\p P
p—1/qg-1-/ K K K
fQ(k:vaapa q, 1, 6) = T s (T f<p2l+1q> +f<pQT1q2>> +f<ﬁ)
Then
fo(k,a,d),
(7.1) {f (k,a p,ﬂ,é if ptd,
Ja(k,a,p,q,1t,0) if ptd, qtd.

(ii) Let d be odd. Let

p— 2 /(g-1-/ K (K
92(k,a,p,q, 1) = 9 Z( 2 f(ijqu) +f(2jp2l+1q2)>
=0 j=1

Then
go(kv a, M)7

(7.2) ve(a) < § g1(k,a,p, ) if pid,
g2k, a,p,q; 1) if ptd, qtd.

Proof. Let T C {i : a; = a} and 7| (i — j) whenever i,j € Z. Let 7/
be the lcm of all 71 such that 71 | (i — j) whenever i,j € Z. Then 7|7 and
a| 7’ since a| (i — j) whenever i,j € Z. Let ig = minezi, N = (n +iod)/a
and D = (7//a)d. Then we see that ax? with i € Z come from the squares
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in the set {N,N +D,...,N + ([(k —ip)/7] — 1)D}. Dividing this set into
consecutive intervals of length 4 and using Euler’s result, we see that there

are at most
_ k—io k _
k-io] IR (] (1B ok
7! 4 d 4 7!
of them which can be squares. Hence |Z| < f(k/7') < f(k/T) since 7| 7'.
Let Z° = {i: a; = a, 2{x;} and Z° = {i : a; = a, 2| x;}. Then v,(a) =
|Z°| and ve(a) = |Z¢|.
First we prove (7.1). For i, j € Z°, we observe from 2?2, ac2 =1 (mod8) and
(i—j)d = a(a:2—:n ) that 2379 | (i —j). Therefore |Z°| < f( o) = fo(k,a,?).
For a prime p/, let

Qp/:{m:1§m<p/, <@,) :1}.
p
Let ptd. Let

Iy ={icI’:p o} for0<l<p, I5={icI®:p"|x}.

Then a23~°p?*| (i — j) whenever i,j € 7}, giving |Z5] < f(Kqo/p*). For
each [, 0 <1 < pu, and for each m € Qp, let

I, ={iel}: (xi/pl)2 =m (modp)}.

Then a2/=0p?41[(i — j) whenever i,j € Ty, giving |T5,| < F(Ka/p*).
Therefore
_ K:a
Tl =D 1Tl < <W>
me,

Hence [7°| = 25| + Y155 [Z7] < fu(k,a,p, i1, ).
Thus we may assume that ptd and gfd. For each [ with 0 < | < p,
m € 9, and for each u € Qg let

tu = {1 € Iy caf =w (modq)}, I ={i € I, : qf 2}
Then a23~%p?*1q| (z —4) fori,j € T2 . and a230p*1¢? | (i — j) for i,j €

TP o, implying |Zp | < f(Kq/p?t1q) for ueQq and I, | < f(Ka/p? T g?).
Now the assertion v,(a) < fo(k,a,p,q, p, o) follows from

pn—1
Tl < |Timol + D 1Towals 1TRI= D 1T0al, 1T =120+ D 1T,
uENy mey =0

Now we turn to the proof of (7.2). Let
T ={ieT®: 22} for1<l<p and ZI°={icZ®:2"|x;}.

Since z;/2! is odd, we get a2?*3|(i — j) whenever i, j € 7%, implying |Z¢| <
f(Ka/2%) for 0 < I < p. Further, a22“ | (i — j) for i,j € I, giving |Z°|
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< f(k/a2?"). Now the assertion ve(a) < go(k, a, i) follows from |Z¢| = ||+
Diu 177
For the remaining parts of (7.2), we consider Z¢* = {i € Z¢ : 2| ;},
2 = {i € I° : 4|x;} so that |T¢| = |Z°'| + |Z°%|. Then 32a| (i — j) for
i,j € I° and 16a| (i — j) for i,j € 2. We now continue the proof as in
that of (7.1) with Z¢',Z°? in place of Z° to get ve(a) < g1(k,a,p, 1) when
ptd and ve(a) < go(k,a,p,q, ) when ptd, gtd. =

LEMMA 7.2. Fora € R, let

(1 if k < a2%79,

F(K,) if k> a2°7% 3|d,5|d,
f(Ka/3) + fF(Ka/9) if k> a237°, 34d, 5]d,

F(KC,) if a2°70 < k < 2a2%79,3|d, 51d,

Ka/3) + F(Ka/9) if a2°70 < k < 24a237°, 34d, 54d,
2(f(Ka/15) + f(Ka/135))
+ [(Ka/T5) + f(Ka/675) + f(Ka/81)
if 24a2°70 < k < 324a2°79, 34d, 51d,
2(F(Ka/15) + F(Ka/135) + F(Ka/1215))
+ F(Ka/75) + F(Ka/675) + F(Ka/6075) + F(Ka/729)
if k> 324a237%, 34d, 5+1d

(
2f(Ka/5) + [(Ka/25) if k> 2a237°, 3|d, 51d,
fg(k:,a,é): ((

and

(1 if k < 4a,

k,a) =
g3(k; a) Ka if k> 32a,3|d, 5|d,

Zf(—j) if 4a < k < 32a,

2/ K, K |
<f<2.3j>+f<4,3j>> if k > 32a, 3d, 5|d,
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if 32a < k < 64a, 3|d, 51d,

]
~
VR
gk

o Ko\, |
f<2j.5> Zf( 25) if k> 64a, 3|d, 51d,

]:1 ]:
2 2 K
ZZf(2j “31) if 32a <k < 576a, 31d, 51d,
gs(k,a) = ¢ =111 ’
2 2
_ Ko
2> 1 (s
j=11=1
2 2 2
. K. [ Ka
23 rwtrs) - 2w

if k > 576a, 31d, 5td.
Then for a € R, we have

Vo(a) < f3(kva75)7 Ve(a) < 93(k7a)

and
1 if k <a,
v(a) < Fy(k,a,6) := { fa(k,a,0) if k > a and d is even,
f3(k,a,0) + gs(k,a) ifk > a and d is odd.

Proof. Since a | (i — j) whenever a; = aj = a, we get v(a) < 1, v5(a) < 1,
Ve(a) < 1for k < a.Infact, vo(a) < 1fork < a237% and Ve(a) < 1for k < 4a.
Thus we suppose that k& > a. We have v(a) = vo(a) + ve(a). It suffices to
show v,(a) < f3(k,a,0) for k > a2379 and ve(a) < g3(k,a) for k > 4a since
ve(a) = 0 for d even. From (7.1), we get the assertion v,(a) < f3(k,a,d) for
k> a239 since

fo(k,a,0) if 15]d,
fi(k,a,3,1,6) if 31d, 5|d,
Vo(a) < ¢ min(fo(k, a,9), fi(k,a,5,1,0)) if 3|d, 51d,

min(fl(k’ a? 37 17 5)7 f?(kj7 a’ 3’ 5’ 2’ 6)’
fo(k,a,3,5,3,8)) if 3td, 5td.
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The assertion ve(a) < g3(k,a) for k > 4a follows from (7.2) since ve(a) <
go(k, a,2) for 4a < k < 32a and

go(k,a,2) if 15| d,
gl(k7a7371) 1f31’d,5’d,
Ve(a) < . .
mln(QO(k7a7 2),91(1{3,61,,5,1)) 1f3|d’ 5+da
min(gl(kva) 3’ 1),92(]{?,0,,3,5,2)) 1f3+da 5+d
for k > 32a. =

By applying the fact that there are (p — 1)/2 distinct quadratic residues
and (p — 1)/2 distinct quadratic non-residues modulo a prime p, we have

LEMMA 7.3. Assume (1.1) holds with ktd. Then v(a) < (k—1)/2 for
any a € R.

LEMMA 7.4. Suppose that (1.1) with P(b) < k and k = p,, has no solu-
tion. Then (1.1) with P(b) < k and pp, < k < pm+1 has no solution.

Proof. Let py, <k < pm+1. Suppose (n,d, b,y) is a solution of
n(n+d)---(n+ (k—1)d) = by*
with P(b) < k. Then P(b) < py,, and by (1.5),
nn+d)---(n+ (pm — 1)d) = 'y

for some b with P(V') < py,, giving a solution of (1.1) at & = p,,. This is a
contradiction. =

LEMMA 7.5. Let k > 101. Assume (1.1).

(a) Letd be odd and p < q be primes such that pq|d with p < 19, q < 47.
Then k > 1733.

(b) Let d be odd and p < q be primes such that pq|d with 23 < p < q
<43, (p.q) # (31,41). Then k > 1087.

(c) Let d be even such that p|d with 3 < p < 47. Then k > 1801.

Proof. We shall use the notation and results of Section 6 without refer-
ence. By Lemma 7.4, it suffices to prove Lemma 7.5 when k is a prime. Let
Py be the largest prime < k such that Pytd. Then (1.1) holds at k = P.
Therefore Py > 101 by Theorem A with k = 97. Thus there is no loss of
generality in assuming that ktd for the proof of Lemma 7.5.

(a) Let d be odd and p,q be as in (a). Assume k < 1733. It suffices to
consider four cases, viz. (i) 5 < p < q, 3td, 51d; (ii) p = 3, ¢ > b5, 5td;
(iii) p =5, ¢ > 5, 31d, and (iv) p = 3, ¢ = 5. We take r > 7. We see that
B, is contained in one of the four sets S, = S,(1,r) with 1 < p < 4. Let
S, ={s €8, s <2000} with 1 < p < 4. We have v(s) < Fy(k,s,0) by
Lemma 7.2. Further, v(s) <1 for s > k and hence for s € S, \ §},. Observe
that 1 € Si cC S,
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Assume that 1 ¢ R in case (iv). For case (i), we take r = 7 for 101 < k <
1087 and r = 8 for 1087 < k < 1733. For all other cases, we take r = 7 for
101 < k<941, r =8 for 941 < k < 1297 and r = 9 for 1297 < k < 1733.
Then

¢ < max Z v(s) < max(gp,q — |8, + Z F(k:,s,O))

seS, SES),

< gp,g + max Z (Fo(k,s,0) —1) =: §~,~
SES,,
where the maximum is taken over 1 < p < 4 and we remove 1 from §] C &;
when case (iv) holds. We now check that
0 ifp<qg< Pr,
(7.3) k—F'(k,7)—§& > < —[k/q] if p<p, <y,
—[k/pl = Tk/q] ifp, <p<q.

This contradicts (6.1) by using the estimates for g, , and & > &,.

Thus it remains to consider (iv) with 1 € R. Then (%) = (%) =1 for
all a; € R. Suppose that p’{d for some prime p’ € P = {7,11,13}. We take
r =9. We have B, C &;. Further, |S1| = 32 and S = {1, 19, 34,46, 91, 154,
286,391, 646, 874, 1309, 1729, 1771}. We deduce from (7.1) that

Vo(a’) S min(fo(k7 a? O)? fl(k7 a7p/’ 1’0))
< min(f0<k>a70)7g,1§‘7}§{f1<k7a7p,7 170)}) = Gl(kva)'

Similarly we infer from (7.2) that
Ve(a) < min(go(k, a, 2),ma7>9({gl(k:,a,p’, 1,0)}) =: Ga(k,a).
p'e

Let G(k,a) = 1if k < a and G(k,a) = G1(k,a) + Ga(k,a) if k¥ > a. Then

v(a) < G(k,a) implying &, < 32 + Zsesi(G(k:,s) —1) =: & as above. We
check that

(7.4) k—F'(k,r)—& > 0.

This contradicts (6.1). Thus p’ | d for each prime p € P. Now we take r = 14.
Since 1 € R, we have (%) =1 for all a; € R and for each p with 3 < p < 13.

Therefore B, C {s € S(r) : (%) =1,3 < p <13} = {1,1054} US” where
|S”| = 14 and s > 2000 for each s € §”. Hence &, < v(1) + v(1054) + 14 <
v(1) + 16 since v(1054) < 2 by Lemma 7.2. From (7.1) and (7.2) with u = 3,
we get v(1) < fo(k,1,0)+go(k,1,3). Therefore & < fo(k,1,0)+go(k,1,3)+
16 =: &, and we compute that (7.4) holds, contradicting (6.1).

(b) Let d be odd and p,q be as in (b). Assume k£ < 1013. By (a), we

may assume that 31d, 5d. We continue the proof as above in case (i) of (a).
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We take 7 = 7 and check that k — F'(k,7) — & + [k/p] + [k/q] > 0. This
contradicts (6.1).

(c) Let d be even and p be as in (c). Assume k& < 1801. For any set
W of squarefree integers, let W/ = W'(§) = {s € W : s < 2000/2379}. We
consider four cases, viz. (i) p > 5, 3td, 5td; (ii) p = 5, 31d; (iii) p = 3, 51d;
and (iv) 15|d. We take r > 7. Assume that (i), (ii) or (iii) holds. Then from
(6.7) with p = q, we get 2% sets Uy, 1 < u < 2%, given by S1(n/,7),Ss(n’, 7).
Without loss of generality, we put Si(1,7) = Uj. Further, |U,| < g, for
1 < p <29 Assume (iv). We take p = 3,¢ = 5 in (6.7). We get 2°F! sets
Vi, 1 < p < 227! given by S;(n/,r), 1 < j < 4, and we put Si(1,7) = V4.
Further, |V,| < 277974 for 1 < p < 29+, We define ¢’ by ¢’ = 2" 9% if (iv)
holds and ¢’ = g, otherwise. Further, let W, with 1 <y < 29+1 be given by
W, =V, if (iv) holds, and W,, = U, for 1 < u < 29, W, = ) for p > 2°
if (i), (ii) or (iii) holds. We see from Lemma 7.2 that v(s) < Fy(k, s,d) and
v(s) <1 for s € W, \ W/. Observe that 1 € W] C Wj.

Assume that 1 ¢ R in cases (ii), (iii) or (iv). We take r = 8 for 101 <
k<941, r =9 for 941 < k < 1373 and r = 10 for 1373 < k£ < 1801 in
case (i) with 8|d. For all other cases, we take r = 7 for 101 < k < 941,
r = 8 for 941 < k < 1373 and r = 9 for 1373 < k < 1801. Then §, <
max ) ey, F(k,s,0) < g + maxzsewl,t(Fo(k,s,é) — 1) =: &, where the
maximum is taken over 1 < py < 29+ and we remove 1 from W{ C Wi when
(ii), (iii) or (iv) holds. We check that

k—Fl(kr)—& > { —[k/p] if (i) holds with p > p,,
0 otherwise.

This contradicts (6.1).

Thus it remains to consider cases (ii), (iii) or (iv) and 1 € R. Then a; = 1
(mod 2°) and (%) =1 for all p|d whenever a; € R. Let Py = {5}, {3},{3,5}

when (ii), (iii), (iv) holds, respectively. Then (%) =1forpe P.

Assume that 7{d when 8|d, 15|d. Let P = {7} if 8|d, 3|d, 5td;
P = {7,11,13,17,19} if 4||d, 15|d; P = {11,13,17,19} if 8|d, 15|d;
P ={7,11,13} in all other cases. Suppose that p’t{d for some prime p’ € P.
Let r be given by the following table:

(i), (i), 2||d, 4[ld (i), (i), 8[d  (iv), 2[|d  (iv), 4| d, 8[d
{8fork§941, {10 for k <941,

11
9 for k > 941 11 for k > 941

We get B, C Wj. For s € W], we infer from (7.1) that v(s) = vo(s) <
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G(k,s,d) := min(fo(k, s, ), Gy, G2) where

(fi(k,s,3,2,0), maxycp fo(k,s,3,p',2,6)) for (ii), 81d,
(G e ) _ (fl(k73757175)7maxp’€73 fQ(k 8,9 p 175)) for (lll)a 8dea
b (fl(kvsvgv173)amaxp’€79f2(k S, 3 p 2 )) for (11)’ 8|d7
(fl(kasv57173)vma'xp’€79 fZ(k 8,9,p 5253)) for (111)a 8|d7
0

and when (iv) holds, Gi = G2 = maxycp fi(k,s,p',1,9) if 2| d or 4| d,
G1 = Gy = maxyep fo(k,s,7,0/,1,3) if 8| d. Hence

&<g+ > (Glhs,0)—1)=¢&.

sewy

Now we check that (7.4) holds, contradicting (6.1). Thus p’ | d for each prime
p € P.
Let 7 and g; be given by the following table:

Cases (i), (iii), 2| d (i), (iii), 4[|d (i), 8|d (iv), 2||d (iv), 8|d
(r,g1) (12,8) (12,4) (15,16) (13,4) (17,4)

Suppose that one of the above cases holds. Then B, C {s € S(r) : s = 1
(mod2°), (&) =1, p € PUP} = {1} UW” with [W"| = g1 — 1 and
s > 2000/237° for s € W”. Thus & < v(1) + g1 — 1. From (7.1), we get
v(1) < G(k) where G(k) = fi1(k,1,3,2,0) if (ii) holds; G(k) = fi(k,1,5,2,9)
if (iii) holds with 8td; G(k) = fo(k,1,1) if (iv) holds with 2| d; G(k) =
f1(k,1,7,2,3) if (iv) holds with 8| d. Therefore &, < G(k)+g1 —1 =: & and
we compute that (7.4) holds. This contradicts (6.1). Thus either (A): (iv)
holds with 4 || d, or (B): (iii) holds with 8| d. Assume that p’{d with p’ € Py
where P; = {23,29,31,37},{11,13,17,19} when (A), (B) holds, respectively.
In the remaining part of this paragraph, by “respectively” we mean “when
(A), (B) holds, respectively”. We take r = 18,11, respectively. Then B, C
{s€8(r):s=1(mod2’), (5) =1,p € PUPy} C {1,1705} UW" with
|W”| = g1 and s > 2000/237% for s € W” where g; = 3,14, respectively.
Hence & < v(1) + v(1705) + g1 < G(k) + 2+ g1 =: &, where v(1) <
G(k) = MaXyep, fl(kv 17p/) L, 2)7 maXy ep, f2(kv L, 5ap/7 1, 3)7 respectively, by
(7.1). We check that (7.4) holds, contradicting (6.1). Thus p’ | d with p’ < 37
if (A) holds and p'|d with p’ < 19, p’ # 5 if (B) holds. Now we take r =
22, 16, respectively, to get B, C {1}UW" with |IW”| = g, and s > 2000,/2379
for s € W” where go = 0, 3, respectively. From (7.1), we get v(1) < G(k) with
G(k) = fo(k,1,2), f1(k,1,5,2,3), respectively. Hence & < G(k) + g2 =: Er
and we compute that (7.4) holds. This contradicts (6.1).
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Thus it remains to consider case (iv) with 8 |d and 7 |d. Then

(7.5) a; =1 (mod8) and <%> =1 forp=357

whenever a; € R. Let k < 263. By taking r = 12, we find that B, C {s S
S(r):s =1 (mod8), (pij) =1, 2 <j <4} = {1,6409,9361,12121, 214489,
268801, 4756609, 59994649} . Then by Lemma 7.3, v(1) < (k — 1)/2 since ktd
by our assumption. Further, v(6409)+v(268801) 4 v(4756609)+1/(59994649)
< [k/13-29] < 1, 1(9361) + (214489) < [k/11-37] < 1 and v(12121) < 1.
Therefore &, < (k —1)/2 4 3 =: .. We check that (7.4) holds contradicting
(6.1). Thus k > 263. By (7.5), we see that a; is not a prime < 89. Hence
for a; € R with P(a;) < 89, we have w(a;) > 2. Further, by (7.5), a; = p'q’
with 11 < p’ < 37 and 41 < ¢’ < 89 is not possible. For integers Py, P, with
P, < P, let

I(P,P)={i:pq |ai, P, <p' < ¢ < P}

Then [Z(P1, P)| < 3" p <py<q<p, [k/P'q']. Suppose that p; {d for some prime
j € {5,6}. Then v(1) < Go(k) := maxj—s¢ fi(k, 1,p;,2,3) by (7.1). We take
r = 23. For Py € {11,13}, let A(Py) = {a; : a; = Pyp’ with Py < p' < 37
or a; = Pyp'q’ with Py < p’ < 37, 41 < ¢’ < 83}. Then from (7.5), we get
A(11) C {6721,8569,25201} and A(13) C {17320, 17641, 27001}. Therefore

we deduce from
I. C{i:a; =1} UZ(17,37) UZ(41,83)
U{i:a; € AQ1)UA3)YU{i:11-13p |a;, 17 < p/ <37}

k k ~

. < | 454 — &,

&<Gok)+ > {p,q,}+{41'43W+5 +3+3+6=¢
17<p’'<q' <37

since p'q’ > k for 41 < p’ < ¢’ < 83 except when p’ = 41, ¢ = 43. Now
we compute that (7.4) holds, contradicting (6.1). Thus p;|d for j < 6.
Assume that p;td for some j with 7 < j < 9. Then v(1) < Gi(k) =
maxy<;<g f1(k,1,p;,1,3) by (7.1). We take r = 24. Then I, C {i : a; = 1}
UZ(17,37) UZ(41,89). It follows that & < G1(k) + D 17« cp<37[k/P'¢ | +

[k/41-43] + 65 =: &, and we check that (7.4) holds. This contradicts (6.1).
Thus p; | d for j < 9. Suppose that p;td for some j with 10 < j < 14. Then
v(1) < Ga(k) := maxio<j<i4 f1(k,1,p;,1,3) by (7.1). We take r = 21. Then
B, C{s€8(r):s=1(mod8) and () = 1,7 < 9} = {1,241754041},
giving &, < Ga(k) +1 =: Er Now we check that (7.4) holds, contradicting
(6.1). Hence p; | d for j < 14. Suppose that p; {d for some j with 15 < j < 22.
Then v(1) < G3(k) := maxis<;j<22 f1 (k, 1,pj, 1,3) by (7.1). We take r = 26.
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Then B, C {1} as above, giving &, < Ga(k) =: &.. We compute that (7.4)
holds, contradicting (6.1). Thus p; |d for j < 22. Finally, we take r = 32.

Then B, C {1} as above, giving §, < v(1) < @ =: Er by Lemma 7.3. We
check that (7.4) holds. This contradicts (6.1). =

LEMMA 7.6. We have

(7.6) k—|Rl>g fork > ko(g),
where g and ko(g) are given by
(i)
g 9 14 17 29 33 61 65 129 256 2° withs>9,s€Z
ko(g) 101 299 308 489 556 996 1057 2100 4252 s25t1
(ii) d even:

g 18 29 33 61 64 128 256 512 1024
ko(g) 101 223 232 409 430 900 1895 4010 8500

(iif) 4 d:

g 26 32 33 61 64 128 256 512 1024
ko(g) 101 126 129 286 303 640 1345 2860 6100

(iv) 8| d:

g 33 61 64 128 256 512 1024
ko(g) 101 209 220 466 990 2110 4480

(v) 3| d:

g 26 32 33 64 125 128 256 512
ko(g) 101 126 129 351 720 735 1550 3300

(vi) p|d with p € {5,7}:

g 33 64 128 256
ko(g) 240 460 930 1940

Further, we have ko(128) = 1200 if p|d with p < 19 and ko(256) =
2870 if p| d with p < 47.
(vii) Further, ko(256) = 1115 if pq | d with p € {5,7,11}; ko(256) = 1040
if 2p|d with p € {3,5); ko(512) = 1400 if 105 | d; ko(512) = 1440 if
30| d; and ko(512) = 1480 if 8p|d with p € {3,5}.
Proof. (i) Let g be given as in (i). Assume that & > ko(g) and k—|R| < g.
We shall arrive at a contradiction.
Let g #9. From (5.1), we have [[, cpa; > (1.6)El(|R|)! whenever |R| >
286. We observe that (5.3) and (5.4) hold with ig = 0, hg = 286, z; = 1.6,
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g1 =¢g—1, m = min(89,\/ko(g)), { =0, np =1, n; =1 and ny = 21/6 for
k > g1 + 286 and thus for k > ko(g).

Let g = 2° with s > 9. Then gy /k < 2°/52°%! < 1/18 and from (5.4) we
get
cik —cplogh —c3 1k —c3 +calogey

(77) 2 —1> P

log c4k B log cak
where

1
- ) 4 log1— — —1. 1
“ <2 71851 pr > * Og( 18> ¢ = Lom(m) — 1,
_ 1/6 0.5+ —2— 1 _ i B E
03—log(2 Hp »? 1) 2log(l 5) 4=

p<m
Here we check that cik — cologk —c3 > 0 at k = 9 - 210 and hence (7.7) is
valid. Further, we observe that the right hand side of (7.7) is an increasing

function of k. Putting k = ko(g) = s2°*1, we deduce from (7.7) that

25 261_%—@_1—1 <o.
log2+ og(ic;;s) 2s
The expression inside the braces is an increasing function of s and it is
positive at s = 9. Hence (7.7) does not hold for all & > kg(g). Therefore
—|R| > g = 2° whenever s > 9 and k > 52571

Let g € {14,17,29,33,61,65,129,256} and ki1(g) = 299,316, 500, 569,
1014, 1076, 2126, 4295 according as g = 14,17, 29, 33,61, 65, 129, 256. We see
that the right hand side of (5.4) is an increasing function of k£ and we check
that it exceeds g1 at k = k1(g). Therefore (5.4) is not possible for k£ > k1(g).
Thus g # 14 and k < ki(g). For every k with ko(g) < k < ki(g), we
compute the right hand side of (5.3) and we find it greater than ¢;. This is
not possible.

Thus we may assume that ¢ = 9 and k£ < 299. By taking r = 4 for
101 < k <181 and r = 5 for 181 < k < 299 in (6.3) and (6.5), we get
k—|R| > k—F'(k,r) —2" > 9 for kK > 101 except when 103 < k < 120,
k # 106 where k—|R| > k—F (k,r)—2" > k—F'(k,r)—2" = 8. Let 103 < k <
120, k # 106. We may assume that k¥ —|R| = 8 and hence F(k,r) = F'(k,r).
Thus for each prime 11 < p < k, there are exactly o, many 4’s for which p| a;
and, for any i, pgta; whenever 11 < g < k, g # p. Now we get a contradiction
by considering the ¢’s for which a;’s are divisible by primes 17,101;103,17;
13,103; 53,13; 107,53; 11,109; 37,11; 19,113; 23,19; 29, 23; 13,29; 59, 13;
17,59 when k = 103,104, 105,107,108, 111,112, 115,116,117, 118, 119, 120,
respectively; 107,53,13,103,17 when k& = 109; 109, 107,53 when k = 110;
37,11,109,107 when k = 113; and 113,37,11 when k£ = 114. For instance,
let k = 113. Then 37|a; for i € {0,37,74,111} or i € {1,38,75,112}. We
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consider the first case; the other case follows similarly. Then 11 |a; for i €
{24115 : 0 < j < 10} and 109 |a; for ¢ € {1,110}. Now o197 = 2 implies
that 107 | a;ai+107 for i € {j : 0 < j < 5}, a contradiction. The other cases
are excluded similarly.

(ii) Let d be even and g be given as in (ii). Assume that k& > ko(g) and
k —|R| < g. From (5.2), we have [[, cpa; > (2.4)IBl(|R|)! whenever |R| >
200. By taking ig = 0, hg = 200, m = \/ko(g), z1 = 2.4, £ = 1, ng = 2/3,
n; = 2Y/6 and ny = 1, we observe that (5.3) and (5.4) are valid for k >
g—14200. Let g € {33,61, 64, 128,256,512,1024}. Thus (5.3) and (5.4) are
valid for k& > ko(g). Let k1(g) = 232,414, 435,904, 1907, 4024, 8521 according
as g = 33,61, 64, 128,256,512, 1024. We see that (5.4) is not possible for k£ >
k1(g). Therefore g # 33 and k < ki(g). For every k with ko(g) < k < ki1(g),
we check that (5.3) is contradicted. Therefore g € {18,29} and we may
assume that k& < 232. We take » = 5 for 101 < k < 200 and » = 6 for
200 < k < 232. From (6.10) and (6.6), we get k — |R| > k — F'(k,r) — 2L,
We compute that k — F'(k,r) —2"~1 > 18,29 for k > 101,217, respectively.
Hence (ii) follows.

(iii), (iv) Let g be given as in (iii), (iv). Suppose that k > ko(g) and
k—|R| < g. We have [[, cpai > (2)EI=1(|R| — 1)! since a; = n (mod 29).
We take z; = 4 if 4| d and z; = 8 if 8|d. We observe that (5.3) and (5.4)
are valid for k > ko(g) with ig = 1, hg = 1, m = \/ko(g), z1 = 2, £ = 1,
Ny = 21/3, n = 21/6 and Ny = 1.

Let 4]/ d and g € {61,64, 128,256,512, 1024}. Let k1 (g) = 288, 306, 640,
1350, 2870,6100 according as g = 61,64,128,256,512,1024. We see that
(5.4) is not possible for k > ki(g). Therefore g # 128,1024 and k < ki(g).
For every k with ko(g) < k < k1(g), we check that (5.3) is contradicted.

Let 8|d and g € {61,64,128,256,512,1024}. Let ki(g) = 210,221, 468,
994, 2111, 4485 according as g = 61,64, 128,256,512, 1024. We see that (5.4)
is not possible for k& > k1(g). Therefore k < k1(g). For every k with ko(g) <
k < k1(g), we check that (5.3) is contradicted.

Thus we may assume that g € {26,32,33}, k < 286 if 4||d and g = 33,
k < 209 if 8| d. By taking r = 6 for 101 < k < 286, we deduce from (6.10)
and (6.6) that k — |R| > k — F'(k,r) — 2"=% > g for k > ko(g). Hence the
assertions (iii) and (iv) follow.

(v) Let 3 |d. Suppose that k > ko(g) and k—|R| < g. We have [, cra; >
3IEI=1(|R| — 1)! since a; = n (mod3). We observe that (5.3) and (5.4) are
valid with ig = 1, hg = 1, m = /ko(g), z1 = 3, £ = 1, ng = 34,
n; = 34 and ny = 2Y6. Let g € {64,125,128,256,512}, and k;(g) =
354,720,737,1556, 3300 according as g = 64,125,128,256,512. We see that
(5.4) is not possible for k > ki(g). Therefore g # 125,512 and k < ki(g).
For every k with ko(g) < k < ki1(g), we check that (5.3) is contradicted.
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Thus it remains to consider g € {26,32,33} and k < 351. We take
r =6 for 101 < k < 351. We see from (6.10) and (6.13) with p = 3 that
k—|R| >k—F'(k,r)—2"72 > g for k > ko(g).

(vi) Suppose g € {33,64,128,256}, k > ko(g) and k — |R| < g. By (ii)
and (v), we may assume that 2{d and 3{d. We observe that

op \ IRI-(-1)/2 b1
[]a> (-2 _Pm )
"= (p— 1) =

a;€ER
since the number of quadratic residues or quadratic non-residues mod p is
(p—1)/2. Let p|d with p < p’. Then

[R|—(p—1)/2 _ 1o\ IRI=('-1)/2 I
Gr) o (mer)eGh) ()
p—1 2 p—1 2

We take p’ = 7, 19 and 47 in the first, second and third case, respectively.
Then (5.3) and (5.4) are valid with z; = 2p'/(p/ — 1), i0 = ho = (p' — 1)/2,
m = /ko(g), £ =1,1n9 = (p')/®+D n; =53 and ny = 21/6. We find that
(5.4) is not possible for k£ > ko(g) + 24 and (5.3) is not possible for each k
with ko(g) < k < ko(g) + 24. This is a contradiction.

(vil) Let (21,10, ¢, ng, n},n5) be given by

pq|d 29p|d 105|d 30|d
pge {5711} pe{3,5} 5€{1,3}
(z1,10) (77/15,15) (29-15,2) (35/2,6) (15,2)
A 2 2 3 3
ng 22(7)z2(11) 22(2)22(5) 22(3)22(5)22(7)  22(2)22(3)22(5)
nj 23(5)z3(7) 23(2)23(3) 23(3)23(5)23(7)  23(2)23(3)23(5)
nj 21/6 1 21/6 1

where zy(p) = p'/®+D | z3(p) = pP~D/2+D) We observe that [locrai >
z‘lRl_Zo(]R\ —10)! with (z1,70) given above. Suppose g € {256,512}, k > ko(g)
and k — |R| < g. We see that (5.3) and (5.4) are valid for & > ko(g) with
ho = ip, m = \/ko(g), £ = V', ng = nj, ny = n} and ny = n}. We find that
(5.4) is not possible for k > ko(g) + 2 and (5.3) is not possible for each &
with ko(g) < k < ko(g) + 2. This is a contradiction. m

8. Further lemmas. We observe that (3.24) is satisfied when k£ > 11
by Lemma 4.2. We shall use it without reference in this section.

LEMMA 8.1. Let d be odd and p,q be primes dividing d. Let w(d) < 4
and k < 821. Assume that g, q(r) < 27D for r = 5.6. Then (1.1) with
k > 101 has no solution.

Proof. Suppose equation (1.1) has a solution. Let r = 5 if 101 < k < 257
and r = 6 if 257 < k < 821. From (6.9), v(a;) < 2¢4 and (6.1), we get
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k—F'(k,r) <& <29g, <27 We find k— F'(k,r) > 2" by computation.
This is a contradiction. =

LEMMA 8.2. Equation (1.1) with k > 101 and w(d) < 4 is not possible.

Proof. We may assume that k is prime by Lemma 7.4. Let d be even. For
k—|R| > h(5) = 4(2¥(D=0_1)41, we see from Corollary 3.10 with zy = 5 that
n+(k—1)d < (3/Q)k® with Q = 32if 2|/ d and 16 if 4| d. Let w(d) < 3. Since
k —|R| > b(5) by Lemma 7.6(ii)~(iv) and |Sy| > |T1|/2¢®H~¢ > 0.3k /230
by Lemma 4.3, we get (3/Q)k®> > n + (k — 1)d > 2°(0.3k/237% — 1)k?,
a contradiction. Thus w(d) = 4. Let k > 710. Then k — |R| > h(5) by
Lemma 7.6 and |S;| > |T1 /2940 > 0.4k /2*~% by Lemma 4.3. Hence we get
3/Q >n+ (k—1)d > 2%(0.4k/2*~% — 1)k?, a contradiction again. Therefore
k < 710. By Lemma 7.6, we get k — |R| > b(3), implying d < 2k* if 2|/ d
and d < 3k? if 4| d by Corollary 3.10 with zy = 3. However, d > 2°-53-59-61
by Lemma 7.5(c). This is a contradiction.

Thus d is odd. Suppose |S1| < |T1]| — b(3). By Lemma 3.12, we have

£ 42 _ Q3
(8.1) d<48k, n+ (k 1)d<48k.

Let k > 710. Since v(a;) < 2¢@, we derive from Lemma 4.3 that |S;| >
ITy|/2¢D > 0.4k/16 = 0.025k. Therefore maxa,cs, A; > 0(0.025k — 1),
giving n + (k — 1)d > 0(0.025k — 1)k2, which contradicts (8.1). Thus we
have k < 710. We see from Lemma 4.3 that |T1| > 0.3k. For w(d) < 3, we
have max,es, A; > 0(0.3k/8—1), giving n + (k — 1)d > 0(0.3k/8 — 1)k?,
which contradicts (8.1). Let w(d) = 4. By Lemma 7.5(a), we see that d >
min(3 - 5359 61,2329 - 31 -37) > &2, contradicting (8.1).
Hence |Si| > |T1| — h(3) + 1. Therefore

(5.2) 0t (k- 1)d > ol|Ti] — b(3)K

Let k—|R| > h(5). By Corollary 3.10 with zg = 5, we get n+(k—1)d < 15k,
which, together with |77 > 0.3k, by Lemma 4.3, contradicts (8.2) when
w(d) < 2. Further, k < 133,275 when w(d) = 3,4, respectively. Thus either
(5.3 kIRl < b(5)

or

(8.4) wid)>2 k<131 fw(d) =3 k<271 if w(d) =4

We now apply Lemma 7.6(i) to get w(d) > 2 and k < 293,487,991 for
w(d) = 2,3, 4, respectively.

Let 3| d. Then we find from Lemma 7.6(v) that w(d) > 2 and k£ < 131,350
when w(d) = 3,4, respectively. By Lemma 7.5, we get po > 53 and hence
53 < py < (d/3)/ @@= By Corollary 3.10 with zg = 3 if w(d) = 3, 2o = 2
if w(d) = 4 and Lemma 7.6(v), we get d < 2k if w(d) = 3 and < 3k? if
w(d) = 4. Therefore 53 < py < k/2 < 67 if w(d) = 3 and 53 < py < k?/3 <
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350%/3 < 53 if w(d) = 4. Therefore w(d) = 3 and 53 < py < 61. Now we get
a contradiction from Lemma 8.1 with (p,q) = (3,p2) and (6.14).

Thus we may assume that 31d. Therefore & < 293,487,991 for w(d) =
2,3, 4, respectively, as stated above. Let w(d) = 4 and k£ < 308. From k —
|R| > 9 by Lemma 7.6(i) and by Corollary 3.11, there exists a partition
(dl,dg) of d such that max(dl,dg) < (k — 1)2. Thus p1ps < max(dl,dg) <
(k — 1)2, giving p; < k — 1. By taking » = 5 for 101 < k < 251, r = 6 for
251 < k < 308, we see from (6.10) and gy, < 2""! by (6.13) with p = p;
that k — |R| > k — F'(k,r) —2"~! > 16. Now we return to w(d) = 2, 3,4. By
Lemma 7.6(i), we get k — |R| > 2¢(9), Then we see from Corollary 3.10 with
zo = 2 that there is a partition (dq,d2) of d with di < k —1, da < 4(k —1).
Thus p; < k. We take r =5 for 101 < k < 211 and r = 6 for 211 < k < 556
for the next computation and we use Lemma 7.6(i) for £ > 556. From (6.10)
with p = ¢ = p; and (6.13) with p = p;, and since Zp\d,p>pr Op — Gp1 >
2 —or—1if p1 > pr and > —or—2 if p1 < p,, we get

20 for k > 101,
(8.5) k—I|R| >k—F'(k,r)+2—-2"1>29 for k> 211,
33 for k > 251.

Therefore we find from (8.3) and (8.4) that w(d) > 2 and k£ < 199,991 when
w(d) = 3,4, respectively.

Let w(d) = 3. By Corollary 3.10 with zp = 3, there is a partition (di, d2)
with d; < (k — 1)/2 and dy < Q(k — 1). Thus p1p2 < max(dl, dg) < Q(kt — 1),
giving p1 < /2(k — 1) < v/2- 198 and hence p; < 19. Further, the possibility
p1 = 19 is excluded since 19 - 23 > 2(k — 1). Also, py < 79,53, 31,29, 23 for
p1 =5,7,11,13,17, respectively. Now we apply Lemma 7.5(a) to derive that
either p; = 5,53 < py < 79orp; = 7, p2 = 53. Further, from 5-53 < 2(k—1),
we get k > 134. Thus k — |R| < 28 by (8.3) and (8.4). Now we take r = 6
for 134 < k < 199 in the next computation. We see from (6.10) and (6.14)
with (p,q) = (p1,p2) that k — |R| > k — F'(k,r) — 2"=2 > 29. This is a
contradiction.

Let w(d) = 4. By Lemma 7.5(a), (b), we get d > min(5-53-59 - 61,23 -
47-53-59,31-41-47-53) = 953735. Further, by Corollary 3.10 with zp = 2
if k < 251, 29 = 3 if k > 251 and by (8.5), we obtain d < 3&2 if k < 251 and
d < %kQ for k£ > 251. This is a contradiction since k£ < 991. =

LEMMA 8.3. Assume (1.1) with w(d) > 12. Suppose that

3 2 3 3
(8.6) A<k et (k=1d < 2k

Then k < w(d)4*@,
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Proof. Assume that k > w(d)4“(9). Then from 40- (%)2/11 < 127/11936/11
and w(d) > 12, we get (3k2/16)%/11 < k/(40-2¢(d). This together with
qige < (d/200)2/(@(d)=0) < (3k2/16)%/! by (2.9) and (8.6) gives qiq2 <
k/(40 - 2¢(4)). Hence we derive from Corollary 3.7(ii) with d’ = g2 that

k

, w(d)—2—6 S

(8.7) v(4;) <2 whenever A; > 0. 2@
Let
. 20 ok

(88) T(l) = {l € T1 : Az > m}, T(2) = Tl \T(l)
and
(8.9) S =(A;:ieTW}, S ={4:ieT?}

Then considering residue classes modulo 2°p, we derive that

2ok > max A; >2°0(]S?@|-1)+1
6-29(d) = 4e5@ T
so that [S®)| < k/(6-294D) +1 < k/(6-2¢@D) + 1. We deduce from (8.8),
(8.9) and (8.7), together with v(A4;) < 294 by Corollary 3.7(ii), that
k k k
@)« " 9w _ w(d)—2
T < 40 - 2w(d) 2 (6 cow(d) 40 . 2w(d) * 1>2
_k 1<k k)+2w(d)2 ko 3k k k

AT < X Ty
_40+4 6 40 _24+160+480 16

since k > w(d)4“@ and w(d) > 12. By Lemma 4.3 and k > 1639, we have

k
T0] > |13 = |7?)] = 042k — — = 0.3575k.
Let €, €, be as in Lemma 5.5 with ¢ = 2. Then

0.3575k < [TW| = [SW]+) (u—1)|e,| < |SV|+ ¢
n>2

log 2
1082 (d)4+@
16
by Lemma 5.5. Now we use (3log2)/16 < 1/7.6 to get 0.3575k < [S(V)| +
k/7.6, implying |S™M)| > 0.2259k. Therefore n+ (k—1)d > (max 4 ga) A;)k?
> 0.2259k3, contradicting (8.6). =

LEMMA 8.4. Assume (1.1) with w(d) > 5. Then there is no non-degene-
rate double pair.

§!5(1)|+

Proof. Assume (1.1) with w(d) > 5. Further, we suppose that there exists
a non-degenerate double pair. Then we derive from Lemma 3.4 with zp = 2
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that
(8.10) d < Xok? n4(k—1)d < Xk?,
where
(8.11) Xo=3,3/2,12,6 if 21d, 2|/ d, 4]/ d, 8|d, respectively.
This with d > 20 H:):(‘;)H_é/ p; implies k2 > %Hf:(?) p;. Therefore we see
from Lemma 5.1(ii), (iv) that
log<7k )
w(d)2w(d)
> w(d){lOg w(d) + log logQw(d) —1.076868 log 2 — loi?;()d) } B logﬁ

The right side of the above inequality is an increasing function of w(d)
and hence k > 9w(d)2¥@ for w(d) > 12. We deduce from Xpk? > d

> 29 H;J:(L;Hl*é/pi that k& > 3.20w(d)2*@ if w(d) = 10,11. Further, k >
2.97w(d)2¢@ if w(d) = 8,9 when d is odd. Also, k > 2542,12195 when
w(d) = 8,9, respectively, if 2 || d or 8| d and k > 1271,6097 when w(d) = 8,9,
respectively, if 4 || d.

Suppose k < 1733. Then w(d) < 8 if 4||d and w(d) < 8 otherwise. By
Lemma 7.5(a), (c), we get d > min(3-53-59 - 61 -67,23-29-31-37-41) if
d is odd and d > 2°-53-59 - 61 - 67 if d is even. This is not possible since
d< Xok:z. Hence k£ > 1733.

Let d be even and w(d) = 8,9. Since k > 1733, we get k — |R| > h(3)
by Lemma 7.6(ii)—(iv), implying d < %k:g, %k:2 if 21| d, 4|d, respectively,
by Corollary 3.10 with zp = 3. Therefore k > 2.48w(d)2%?® if 4| d and
k> 3.2w(d)2¢@ otherwise.

Therefore for w(d) > 8, we have

2.48w(d)2% D if 4| d,
(8.12) k> ¢ 2.970(d)2¥D if dis odd, w(d) = 8,9,
3.2w(d)2¢@  otherwise.

Suppose that |S1| < |Th| — H(3) if d is odd and |S1| < |Th| — b(5) if d is
even. We put

0/48 if ords(d)

<1,
X =4 1/12 if orda(d) > 2, 31d,
3/16 if ordy(d) > 2, 3| d.
Then
(8.13) d<Xk* n+((k—1)d< Xk

by Lemma 3.12. Therefore k < w(d)4*@ for w(d) > 12 by Lemma 8.3.
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Let w(d) > 19. Then
(25Hp) 299 D=8 < g « x}?

R { 3 0(d)?16°D if ordy(d) < 1
. > 2.

2w(d)?16*@  if ordy(d)

<<64sz) 2990w ( >1Md).

We see that the right hand side of the above inequality is a non-increasing
function of w(d) and the inequality does not hold at w(d) = 26. Thus w(d) <

Therefore

25. Further, we get a contradiction from 2° Hl—(g)—H - pi < d < W since
w(d) > 19.
Thus w(d) < 18. We deduce from (2.9) and d < X'k? that
(/o hjw(d)
(4—8) f2h/w(d) if d is odd,
0 h/(w(d)—1)
(_) RM@@D-D g
h 96
T < A= L\ oty
2h/(w(d)— if 4
(12.4e> k if 4|d, 31d,
3 h/(w(d)—0) 2h ) (o(d)—6)
— wie)= if 4
(16-49> k if4|d, 3|d

for 1 < h < w(d) — 6. Further, from Xk% > d > 2%p; - - “Pu(d)—s'> We get
V@O Ty, i3],
V@720 [T b i 34a.

k> k=

Thus
(8.14) k > kg := max(1733, k1).
Further, we derive from (8.13) that

1 [ xk2\ D/ e@d-1-5)
pl_l,,,ph_1<Xh,_ 2h1(3 26) if 3|d,
2 2 2 A E2\ M (w(@d)=8") _
2h< 95 ) if 31d

for 1 <h<w(d)—4d"
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We take r = [(w(d) — 1)/2] if d is odd and r = [w(d)/2] — 1 if d is even.
By Corollary 3.8 and |71| > 0.42k by Lemma 4.3, we have

r—1
0.42k _ —
(8.15) Sr41 2 o — 2\ — 271N\ — Zz W
H=2

This with Corollary 4.5 and q1 - - q, < X by (8.13) gives

0.42k P e _
ow(d)—r o 3.97-3 o 3 QT,U if 24d, 31d,
pn=1
0.42k xr (X o 2rt3=d yH
ow(d)—6—r  3.or—4+s » T 3 22u
n=2
if 2|d, 31d,
0.42k xr (A 2 orHs=d pH
u(d)—6—r 9. or—i+d 32 )7 <9 2%
Spp1 2> X3:i= o
if 3| d, 84d,

0.42k Xr = o [
W‘2<ﬂ“> A CTEE

if 8|d, 3|d, r <3,
3 r—1
0.42k Xy e 2r+2 xf
Qw(d)—r_g.Qr—3_Z2 <ﬁ+1 _Z 9 QTM

if 8|d, 3|d, r> 4.

Observe that (X3 — &X3)/k is an increasing function of k and is positive at
k = kg except when w(d) =7, dis odd and 3|d, in which case it is positive
at k = 11500. Let k£ > 25500 when w(d) =7, d is odd and 3 |d. Then
p1— 1 . pr — 1

2 2
Therefore by Lemma 4.4 with S = {A; : i € T,11}, |S| = $p4+1, h = r and
by (8.13), we get

Sr41 2 Xg > X; >

SO E?if 344,
STl A2 if 3 d.

[© |

XES > n+ (k—1)d > X4k? ::{
4

This is a contradiction by checking that X;/k — X > 0 except when d is
odd, 3|d and w(d) = 6,8,9. Thus we may assume that d is odd, 3|d, 6 <
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w(d) <9 and k < 25500 if w(d) = 7. Also, we check that Xy/k — X > 0 for
kE = 5000, 62000, 350000 according as w(d) = 6,8,9, respectively. Thus we
may assume that k& < 5000, 25500, 62000, 350000 whenever w(d) = 6,7,8,9,
respectively. If q; > 7, then we get a contradiction from d < Xk? = 1 k2
and d/7-9-11-13-17-19 > 1,23,23 - 25,23 - 25 - 29 for w(d) = 6, 7,8 9
respectively. Thus q; € {3,5}. Further we get q1 < 5, q2 < 7if w(d) =
C|1§5 CI2§7 q3§111fw(d)—7 8 andq1—3 q2—5 q3—71fw( )
Thus p; = 3 and py € {5,7} if w(d) = 6, and pa2,p3 € {5,7,11} if w(d) > 6.
Since (%) = (%) for p| d, we consider Legendre symbols modulo 3, q1, g2 for
all squarefree positive integers < q; and < g2 to obtain A\ < 1, A < 3.
Further, for w(d) > 6, we consider Legendre symbols modulo 3, qi,q2 and
qs if q3 # 9 for all squarefree positive integers < qiq2q3 to get Az < 17.
Therefore we deduce from (8.15) and Corollary 4.5 that

0.42k
or -8 if w(d) = 6,
0.42k .
Sr4+1 Z Xg, = W — 44 lfW(d) = 7,8,
42k 1/ 1\Y?
025 — §<1—6> kS — 54 if w(d) = 9.

We check that

p1— 1 . pr — 1

2 2
by observing that (X5 — X3 )/k is an increasing function of k and is positive
at k = max(1733,k;). Therefore by Lemma 4.4 with h = r and (8.13),
we get k% > n+ (k—1)d > £ - 2"X5k% This is a contradiction since
Xs/k—1/(18-2") > 0.

Thus |S1| > X using |T1] > 0.42k by Lemma 4.3, where Xy = 0.42k —
h(3)+1if d is odd and X = 0.42k — h(5) + 1 if d is even. Since there exists
a non-degenerate double pair, we apply Lemma 3.4 with zp = 2 to get a
partition (di,d2) of d with

Sr41 2 X5 > XQT >

P1 Plw(d)+1)/2) < max(dy, da) < 4k if 24d,
P1 Py < max(dy, dz) < 4k if 21| d,
2p1 - Plu(a)/2) < max(dy, da) < 8k if 4]d.

Let w(d) > 7+ ¢’. Then we see from (8.12) that
k_pi—1 pa—1
> X > o .
il = %o > 3> 5 2
We now apply Lemma 4.4 with h = 4 to get Xk > n+ (kK — 1)d >
3. 2M0X6k? > 3. 29k since Ay > k/4. This contradicts (8.11). Thus
w(d) <6+ and k > 1733 by (8.12).
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Assume that k& — |R| > h(3). Then from Corollary 3.10 with zp = 3, we
get n+ (k—1)d < X7k where X7 = 3/16 if 2|| d and 3/4 otherwise. If 2| d or
3|d, then n+ (k—1)d > 3(Xs — 1)k? if 3|d and n+ (k —1)d > 20(X — 1)k?
if 2|d, contradicting n + (k — 1)d < X7k3. Thus d is odd, 3{d and w(d) =
5,6. By Corollary 3.10 with zg = 3, there is a partition (dj,ds2) of d with
p1p2ps < max(dy,d2) < 2(k — 1). Now we get

ﬁ>131—1132—1p3—1
4 2 2 2

Further, we check X5 > k/4, implying
pr—1ps—1pz—1

2 2 2
Therefore we derive from Lemma 4.4 with h = 3 that %k3 = X7k3 > n+
(k —1)d > 6Xsk* > 3k3, a contradiction. Hence k — |R| < h(3). By Lemma
7.6(1)—(iv), we see that d is odd, w(d) = 6 and 1733 < k < 2082. Further,
from Lemma 7.6(v), (vi), we get p; > 11. Now 11-13-17-19-23-29 < d < 3k?
by (8.10) and (8.11). This is a contradiction. m

COROLLARY 8.5. Equation (1.1) with w(d) > 5 implies k—|R| < 2<()=0,

Proof. Assume (1.1) with w(d) > 5 and k—|R| > 2¥(9=% By Lemma 3.9,
there exists a set 2 with at least 2¢(9~% pairs having Property ND. Since
there are at most 2¢(9—¢ — 1 permissible partitions of d by Lemma 3.5(1),
we can find a partition (dy,ds) of d and a non-degenerate double pair with
respect to (di,dz). This contradicts Lemma 8.4. m

LEMMA 8.6. Equation (1.1) with d odd, k > 101 and 5 < w(d) < 7
implies that k — |R| < 2941,

Proof. Let d be odd. Assume (1.1) with 5 < w(d) < 7 and k — |R| >
2¢(d)=1 1 1. By Corollary 8.5, we may suppose that k — |R| < 2¢(9)_ Further,
by Lemma 7.6(i), we obtain k£ < 555, 1056,2099 when w(d) = 5,6, 7, respec-
tively. Since k — |R| > 2¢(M~1 4 1, we derive from Corollary 3.11 that there
exists a partition (dy,ds) of d such that D15 := max(dy,ds) < (k —1)%.

Let w(d) = 5. Then p1paps < D12 < (k — 1)2, implying p; < 61 since
67-71-73 > 5552. Also, ps < (k — 1)/\/p1. By taking r = 6 for 208 < k < 547,
we see from (6.10) and (6.13) with p = py that k — |R| > k — F'(k,r) +
min(—2""2 061 — 2"!) > 32 if k£ > 208. Thus k < 208. Further, p; < 29
since 31-37-41 > 2082, If p; > 17, then we deduce from Lemma 7.5(a), (b)
that 2072 > D15 > min(17 - 53 - 59,23 - 47 - 53), a contradiction. Therefore
p1 < 13 and hence 53 < py < k by Lemma 7.5(a). By taking r = 6, we
see from (6.14) with (p,q) = (p1,p2) that gy, p, = 2773 if £ < 127 and
gy, = 272 if k > 127 by (6.13) with p = p1. From (6.10) and oy, > 2, we have
k—|R| > k—F'(k,r)+2-2""3if k <127 and k—|R| > k—F'(k,r)+2—2""2
if k> 127, which gives k — |R| > 32, a contradiction.

|S1] > X >
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Let w(d) = 6. Then pop3py < D12 < (k — 1)?, implying p; < pa < 97
since 101-103-107 > 10552. By taking r = 7 for 384 < k < 1039, we get from
(6.10) and (6.14) with (p,q) = (p1,p2) that k—|R| > k—F'(k,7)—2""2 > 64
if k£ > 384. Thus k < 384. Further, po < 43 since 47 - 53 - 59 > 3832. Then
we derive from Lemma 7.5(a), (b) that p; = 31, po = 41, ps > 47. Also,
k > 319 since 41 - 47 - 53 > 3192. By taking r = 7 for 319 < k < 384,
we deduce from (6.10) and (6.14) with (p,q) = (31,41) that & — |R| >
k—F'(k,r)+ o031+ 041 — 272 > 64. This is a contradiction.

Let w(d) = 7. Suppose p; < 19. By Lemma 7.6(v)—(vii), we get k <
735,930, 1200 according as p1 = 3, p1 € {5,7}, p1 > 11. By Lemma 7.5(a),
we obtain pa > 53. Now 53 - 59 - 61 < D19/p; < 7352/3,9302/5,1200%/11
according as p1 = 3, p1 € {5, 7}, p1 > 11, respectively. This is not possible.
Thus p; > 23. Further, p; < 41, po < 53 from pipapsps < Do < (]C — 1)2 <
20982. By taking r = 9, we see from (6.10) and (6.14) with (p, q) = (p1,p2)
that k—|R| > k—F'(k,r)4min(—2""3+053, —2" "2 +041 +053) > 128 for k >
1007. Therefore k < 1007. Now 10072 > D19 > min(23-47-53-59, 31-41-47-53)
by Lemma 7.5(b). This is not possible. m

COROLLARY 8.7. Assume (1.1) with w(d) > 5. Then k < 308,556, 1057,
2870 and 2(w(d) — 0)2° D=0 for w(d) = 5,6,7,8 and > 9, respectively. In
particular, k < 2w(d)2*@,

Proof. By Corollary 8.5 and Lemma 8.6, we derive that k— |R| < 9w (d)—0
and k — |R| < 2¢@D=1if d is odd, 5 < w(d) < 7. By Lemma 7.6(i), (i), we
get k < 2(w(d) — 0)2¢@D=0 for w(d) > 9+ 6, k < 4252 if w(d) = 8 and
k < 308,556,1057 according as w(d) = 5,6, 7, respectively. Now it remains
to consider w(d) =91if 2| d, 4|/ d and w(d) = 8. By Lemma 7.6(ii), it suffices
to consider d odd and w(d) = 8. Further, & < 4252 and k — |R| < 256.
Suppose k > 2870. Then k — |R| > 129 by Lemma 7.6(i) and Corollary 3.11
yields a partition (dy,dz) of d with max(dy, ds) < (k—1)2. Let p; > 53. Then
42524 > d > 53-59-61-67-71-73-79-83, a contradiction. Thus p; < 47.
Now we deduce from Lemma 7.6(vi) that k — |R| > 256, a contradiction. =

LEMMA 8.8.

(i) Let d be odd and w(d) = 5,6. Suppose that d is divisible by a prime
< k when w(d) = 5. Further, assume that there exist distinct primes
p and q with pq|d, p < 19,9 < k when w(d) = 6. Then (1.1) with
k > 101 has no solution.

(ii) Let d be even and 5 < w(d) < 6 + 0. Assume that p|d with p < 47
when w(d) = 7. Then (1.1) with k > 101 has no solution.

Proof. By Corollary 8.5, we may suppose that k — |R| < 2¢(@)=?,
(i) Let d be odd. From Corollary 8.7, we get k < 308,556 when w(d) =
5,6, respectively. Let w(d) = 5. By taking r = 5 for 101 < k < 308, we find
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from (6.10) and (6.13) with p = py that k — |R| > k — F'(k,7) —2"~1 > 17,
which is not possible by Lemma 8.6.

Let w(d) = 6. Then 53 < py < k by Lemma 7.5(a). We take r = 6. Let
p1 < 13. Then we see from (6.14) with (p,q) = (p1,p2) that gp, 4 = 273
if K <127 and gp, = 2772 if k > 127 by (6.13) with p = p;. From (6.10)
and op, > 1, we have k — |R| > k — F'(k,r) +1 — 2773 if kK < 127 and
k—|R| > k—F'(k,7)+1-2""2if k > 127, giving k—|R| > 33. This contradicts
Lemma 8.6. Thus p; € {17,19}. We find from (6.14) with (p,q) = (p1,p2)
that gp, p, = 2" 2if k < 193 and gy, = 2" L if k > 193 by (6.13) with p = p;.
From (6.10) and oy, 4+ 0p, > 019 + 1, we get k — |R| > 33, a contradiction.

(ii) Let d be even. Then from Lemma 7.6(ii)—(iv), we get w(d) =6, k <
252 and w(d) =7,k <430if 2 || d; w(d) =6, k < 127 and w(d) =7, k < 303
if4| d;w(d) =6,k <220if 8| d. By Lemma 7.5, we obtain w(d) = 6, k < 252
and p; > 53. Further, by Lemma 7.6, we get k — |R| > 2¢()~=0=1 11 This
with Corollary 3.11 gives max(dy,ds) < (k — 1)? for some partition (di, ds)
of d. Since max(dy,ds) > p1pap3 > 533 > 4302, we get a contradiction. m

LEMMA 8.9. Equation (1.1) with k > 101 implies that d > 10'V.

Proof. Assume (1.1) with k£ > 101 and d < 10'°. By Lemma 8.2, we have
w(d) > 5. Further, we deduce from Corollary 8.5 that k — |R| < 2¢()=7,
which we use without reference in the proof.

Let d be odd. Then w(d) < 9, otherwise d > Hlli2 p; > 10'°. By Lemma
8.8(i), we see that d > k% > 10 if w(d) = 5. Thus w(d) > 6.

Let w(d) = 6. If p; < 19, then d > k5 > 10'° by Lemma 8.8(i). Therefore
p1 > 23. Also, p; < 37, otherwise d > 41 -43 - 47 -53-59 .61 > 10'°.
Further, k& < 556 by Corollary 8.7. Therefore by Lemma 7.5(b), we obtain
d > min(23-47-53-59-61-67,31-41-47-53-59-61) > 1019,

Thus w(d) > 7. Then p; < 13, otherwise d > [[;2, p; > 10'°. Further,
k > 1733, otherwise d > 3 -53% > 10'° by Lemma 7.5(a). By Corollary 8.7,
we obtain w(d) > 8.

Let w(d) = 8. Then p; < 7. Now Lemma 7.6(v), (vi) gives p1 € {5,7}.
Further, po < 11 since 51_[226 p; > 10'°. This is not possible by Lemma
7.6(vii) since k > 1733.

Let w(d) = 9. Then p; = 3, po = 5 and p3 = 7. This is not possible by
Lemma 7.6(vii) since k£ > 1733.

Let d be even. Then w(d) < 10, otherwise d > Hzli1 p; > 1010, Further,
w(d) < 9 for 4| d since 4 [[}2, pi > 10'0. By Lemma 8.8(ii), we have w(d) > 7.
Further, k > 1801 by Lemma 7.5(c) since 2[[2L,sp; > 10'. Now we use
Lemma 7.6(ii)—(iv) to obtain either 2 || d,w(d) = 9,10 or 8|d, w(d) = 9.

Let 2| d. Let w(d) = 9. Then p; < 5, otherwise d > 2[[2, p; > 10'°.
Then k — |R| > 256 by Lemma 7.6(vii), a contradiction. Let w(d) = 10.
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Then p; = 3, p2 = 5 and hence k — |R| > 512 by Lemma 7.6(vii). This is not
possible.

Let 8|d and w(d) = 9. Then p; < 5 since 8[[;2, pi > 10'°. By Lemma
7.6, we get k — |R| > 512, which is a contradiction. =

9. Proof of Theorem 2. Suppose that (1.1) with b = 1 has a solution.
By Theorem A(b), Lemmas 8.2, 8.6 and Corollary 8.7, we see that w(d) = 5,
disodd, k—|R| < 16 and 110 < k < 308. We observe that ord,(agpa; - - - ax—_1)
is even for each prime p. Therefore the number of i’s for which a;’s are
divisible by p is at most o, = [k/p| or [k/p| — 1 according as [k/p] is even

P
or odd. Let » = 4. Then from (6.3), we get

k—|R >k—F(kr)=2" >k=> a,-2,

pP>pr
which is > 17 except at k = 110,112, 114, 116, 118, 120, 122, 124 where k —
|R| > 16. Hence k = 110,112,114, 116,118,120, 122,124 and k — |R| = 16.
Further, we may assume that for each prime 11 < p < k, there are exactly
o, many 4’s for which p|a;, and for any 4, pgta; whenever 11 < ¢ < k,
q # p. Consider the i’s for which a;’s are divisible by primes 109,107
when k& = 110; 37,109,107 when k = 112; 113,37,109,107 when k =
114; 23,113,37,109,107 when k = 116; 13,23,113, 37,109,107 when k =
118; 17,13, 23,113, 37,109, 107 when k = 120; 11,17, 13,23, 113,37, 109, 107
when k£ = 122; and 41,11,17,13,23,113,37,109,107 when k& = 124. Then
P(ag, ag+1 -+ ag+105) < 103 where ¢, = 2 + (k — 110)/2. This is excluded.
For instance, let & = 124. Then P(agaio---aj14) < 103. This gives
103% | ajaj4103 for j € {9,10,11}. Let 103%|agaii2. Then 1012 |aja;t101
for j € {10,12,13} so that P(aj4ai5---aiip) < 97. This is excluded by
considering Theorem A with k = 97. If 1032 | a1ai14, we obtain similarly
P(ajzais---aing) < 97 and this is excluded. Thus 103?|ajpaiz. If
1012 ajaji01 for j € {11,13}, we get P(aisais---aiip) < 97 and this is
excluded. Hence 1012 | agay1o this implying P(ai1a12 - - - a197) < 97, and this
is excluded again. =

10. Proof of Theorem 3. By Theorem .4(a) and Lemmas 8.2, 8.8(ii),
we may suppose that d is odd, either w(d) = 3, (ag,a1,...,ak_1) € &2 or
w(d) <2, (ag,a1,...,ax—1) € 61 UGSy, (ap,a1,...,a7) is not (3,1,5,6,7,2,
1,10) or its mirror image when k = 8, w(d) = 2. For p|d, we observe from
(%) =1 for ¢ € {2,3,5,7} that p > 311 and therefore d > 311%(®). Further,
we observe from Lemma 4.2 that (3.24) is valid.

Let w(d) = 1. If k — |R| > 2, we get d = d2 < 4(k — 1) by Corollary
3.10 with zp = 2, a contradiction since d > 311. Therefore it remains to
consider £ = 8 and (ag,...,a7) = (3,1,5,6,7,2,1,10) or its mirror image.
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We exclude the possibility (ao,...,a7) = (3,1,5,6,7,2,1,10); the proof for
its mirror image is similar. We write

n:3x3, n+d:m%, n+2d:5x%, n+3d:6x§,
n+4d="Tri, n+5d=2x} n+6d=2a n+ 7d = 1022.

Then we get 5d = 22 — 22 = (v6 — 71)(z6 + 1), implying either xg — 21 = 1,

r¢+x1 = ddor xg—x1 = 5,x6+x1 = d. We apply Runge’s method to arrive
at a contradiction. Suppose g — x1 = 1,26 + 1 = 5d. Then 5d = 221 + 1
and z; > 14. We obtain (125 - 6zgz325)? = (25(n + d) — 25d)(25(n + d) +
50d)(25(n + d) +100d) = (2522 — 1021 — 5)(252% + 2021 + 10) (2522 4 4021 +
20) = 1562528 + 3125025 + 2062527 — 300023 — 1075022 — 600021 — 1000 =:
¥ (x1). We see that

(12523 + 12527 + 2021 — 32)% > o(x1) > (12527 + 12523 4 2021 — 33)%

This is a contradiction. Let xg —x1 = 5, g+ 1 = d. Then we argue as above
to conclude that d = 2x1 + 5,21 > 66 and

(23 4+ 522 + dxy — 32)% > Yy (z1) > (23 + 522 + 4oy — 33)?,

where ¢ (z1) = 28 4+ 1025 4 332 — 2423 — 43022 — 120021 — 1000 is a square.
This is again not possible.

Thus w(d) > 2. Let k > 13 and (ag, a1,...,a12) # (3,1,5,6,7,2,1,10, 11,
3,13,14,15) or its mirror image when k = 13. Let g = 3,4,5 if k = 13, 14,
k > 19, respectively. Then from v(1) = 3 and Lemma 3.9, we get a set {2
of pairs (¢,7) with [£2| > k — |R| + r3 > g having Property ND. Therefore
there exists a non-degenerate double pair for k£ > 14 when w(d) = 2. Further,
there are distinct pairs corresponding to partitions (dj, ds), (dz2,d;) for some
divisor d; of d for k > 13 when w(d) = 2 and for £ > 19 when w(d) = 3.

Suppose that there is a non-degenerate double pair. Then we see from
Lemma 3.4 with zg = 2 that d < 3k2< 3. 242, contradicting d > 3112. Thus
there is no non-degenerate double pair corresponding to any partition. Again,
if there are pairs (i, 7), (g, h) corresponding to partitions (di, d2), (dz,d;) for
some divisor d; of d, then we derive from Lemma 3.3 that d < (k — 1)%.
This is not possible since 3112 < d < 12% when w(d) = 2 and 3113 < d <
23* when w(d) = 3. Therefore there are no distinct pairs corresponding to
partitions (dy,d2), (d2, d1) for any divisor d; of d. Thus it remains to consider
k = 14 when w(d) = 3 and either k¥ = 8,9 or k = 13, (ap,a1,...,a12) =
(3,1,5,6,7,2,1,10,11, 3,13, 14, 15) or its mirror image when w(d) = 2. Also,
we may suppose that there is a pair (¢, j) with a; = a; corresponding to the
partition (1,d) for each of these possibilities.

Let k¥ = 8 and w(d) = 2. We exclude the possibility (ag,ar,...,ar) =
(2,3,1,5,6,7,2,1); the proof for its mirror image is similar. We see that
either (0,6) or (2,7) corresponds to (1,d) and we arrive at a contradiction
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as in the case k = 8, w(d) = 1 and (ao,...,a7) = (3,1,5,6,7,2,1,10).
Let (0,6) correspond to (1,d). Then either xg — xg = 1, 26 + 9 = 3d or
Te—xo = 3, g+ = d. Suppose xg—x9 = 1, g+ g = 3d. Then we obtain
3d = 2z0+1, 2 > 100 and (3z227)? = (3n+6d)(3n+21d) = (623 + 4z +2)
(622 + 140+ 7) = 362§ + 108x3 + 11023 4 5620 + 14 =: h2(z0) is a square.
This is a contradiction since (623 +9x0+3)? > 1a(xg) > (623 +9x0+2)2. Let
xg—x9 = 3, xg+x9 = d. Then we argue as above to conclude that d = 2x9+3,
2o > 100 and 4:661 + 363:8 + 11:6% + 168x¢ + 126 =: 93(x¢) is a square. This is
again not possible since (223 + 9x0 + 8)? > 93(x0) > (223 + 920 + 7). The
other possibility, of (2,7) corresponding to (1, d), is excluded similarly.

Let k =9 and w(d) = 2. Then (1.1) holds with & = 8 and (ao,...,a7) =
(2,3,1,5,6,7,2,1) or its mirror image. This is already excluded. The case
k= 13,w(d) = 2 and (ay, ...,a12) = (3,1,5,6,7,2,1,10,11,3, 13, 14,15) or
its mirror image is excluded as above in the case k = 8.

Let k=14 and w(d)=3. Let (ao,...,a13) = (3,1,5,6,7,2,1,10,11, 3,13,
14,15, 1). Then one of the pairs (0,9), (1,6), (1,13), (6, 13) corresponds to the
partition (1,d). This is excluded as above in the case k = 8,w(d) = 2. The
proof for the mirror image (1,15,14,13,3,11,10,1,2,7,6,5,1, 3) is similar. =

11. Proof of Theorem 1. First we show that d > 10'°. By Lemma 8.9

and Theorem A(a), it suffices to consider the case kK = 7 and (ag, a1, ..., ag)
given by
(11.1) (2,3,1,5,6,7,2), (3,1,5,6,7,2,1), (1,5,6,7,2,1,10)

or their mirror images. Then for p|d, we have (%) =1 for q € {2,3,5,7}.
Suppose that d < 10'°. Since w(d) > 2, we have p; < 10°. For X > 0, let

Po="Po(X) = {ng: (%) :17q:2737577}'

We find that Py(10°) = {311,479,719,839,1009,...}. Thus p; > 311 by
p1 € Po(10%). Since 311 -479 - 719 - 839 > 10'°, we have w(d) < 3. Further,
from 3112 - 4792 > 10, we get either w(d) = 2, d = p1p2, p?pa, p1p3 or
w(d) = 3, d = p1paps.

Consider (ag, ai,...,as) = (2,3,1,5,6,7,2). From d = n+d—n = 323 —
223, 3120, 4fz0w1, we get d = —2 =1 (mod3) and d =3 — 2 = 1 (mod8),
giving d = 1 (mod 24). Again, from 2(22 — 22) = n + 6d — n = 6d = 6d1da,
we get xg — x9 = r1di, xg + 9 = 1rody with rire = 3, ridy < r9do and
(7’1d1,7’2d2) € D3 with

{(1,3q192), (3, 9192), (d1, 342), (391, 92), (42, 3q1)}  if w(d) =2,
D3 — {(17 3131132]33), (37]31132]33)’ (plv 3132133)7 (3p17p2p3)7
(P2, 3p1p3), (3p2, p1p3), (3, 3p1p2), (33, p1p2)} if w(d) = 3.
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Then z = (rads — r1d1) /2, giving 23 = n+2d = 223+ 2d1dy = ${(r1d1)* +
(rod2)? — 2d1ds} a square. Now we see from 322 = n +d = 21’3 +d =
${(r1d1)? + (rod2)? — 4dyda} that £{(r1d1)? + (rada)? — 4d1da} is a square.
For each d = q1q2, we first check for d = 1 (mod 24) and restrict to such d.
Further, for each possibility of (r1di,r2ds) € D3 with r1d; < rada, we check
whether 1{(r1d1)? + (rad2)? — 2d1d>} is a square and restrict to such pairs
(ridy,reds). Finally, we check that %{(rldl)Q + (rods)? — 4dyds} is not a
square. For example, let d = 1319 - 4919. Then q; = 1319, g2 = 4919.
We check that d = 1 (mod24). For each choice (r1dj,reds) € ®3 with
rid1 < rado, we check whether %{(r1d1)2 + (rods)? — 2d1ds} is a square,
which is possible only for (ridy, red2) = (1319, 3-4919). However, we find that
F{(r1d1)?+ (radz)®—4d1dy} is not a square for (r1dy, r2dz) = (1319, 3-4919).

Next we consider (ag,ai,...,as) = (3,1,5,6,7,2,1). From d = n + 6d —
(n + 5d) = 22 — 222, 3tx5, 3|22 and 2{x6, 4|22, we get d = 1 (mod 24).
Again, from 2% — 22 = n+6d — (n+d) = 5d = 5d1dy we get x5 — x1 = 1dy,
T + x1 = rodo with rirg =5, ridy < rods and

{(1,59192), (5, 9192), (d1, 542), (591, 92), (42, 5q1)}  if w(d) = 2,
D5 — {(17 5131132]33), (57]31132]33)’ (plv 5132133)7 (5p17p2p3)7
(P2, 5p1p3), (5p2, p1p3), (3, 5p1p2), (5p3, p1p2)} if w(d) = 3.

Thus zg = (rada + r1d1)/2, giving 222 = n+5d = 23 —d = i{(rldl)Q +
(rod2)? + 6d}, whence %{(rldl)Q + (r2d2)? + 6d} is a square. Further, from
7.%[21 =n+4d=n+6d — 2d = 33% —2d = %{(7’1611)2 + (ngg)z + 2d1d2}, we
find that %{(r1d1)2 + (r2d2)? +2d1ds} is a square. For each d = q1q2, we first
check if d = 1 (mod 24) and restrict to such d. Further, for each possibility of
(ridy, rods) € ®5 with r1dy < rada, we check whether %{(rldl)z + (rodz)? +
6d} is a square and restrict to such pairs (r1dy, rodz). Finally, we check that
1{(r1d1)*+ (rads)*+2d} is not a square. Further, the case (ag, ay, ..., ag) =
(1,5,6,7,2,1,10) is excluded by the preceding test.

The case (ag, a1, ...,a6) = (2,7,6,5,1,3,2) is similar to (ag, a,...,a) =
(2,3,1,5,6,7,2); we obtain d = —1 (mod 24), and 3{(r1d1)? + (rads)* + 2d}
and ${(r1d1)?+ (r2d2)*+4d} are squares for each possibility of (r1dy,r2d2) €
D3 with r1d; < reds. This is excluded. The cases (ag, a1, - ..,a¢) = (1,2,7,6,
5,1,3),(10,1,2,7,6,5, 1) are also similar to that of (ag,a1,...,as) = (3,1,5,
6,7,2,1),(1,5,6,7,2,1,10) and are excluded. Thus d > 10,

Now we show that d > k'°81°8% Since Ekloslogk < 1010 for k < 22027,
we may assume that k& > 22027. By Corollary 8.7, we obtain w(d) > 9 and
k < 2(w(d)—0)2¢@D=0 = Wy(w(d) —6). Further, we derive from 22027 < k <
2w(d)2¢9 that w(d) > 11. It suffices to show that logd > (log ¥o(w(d) — 6))
-(loglog ¥y (w(d)—0)) =: ¥ (w(d)—0). Let o (1) = I(log I+loglog—1.076868)
for I > 1. From d > 2° Hf:(g)ﬂ_y pi and Lemma 5.1(iv), we get logd >
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Uy (w(d) +1) —log2, ¥a(w(d)) + (6 — 1) log 2 when 21d, 2|d, respectively. It
suffices to check for w(d) > 11 that ¥s(w(d)+1) —log2—¥;(w(d)) > 01if 214,
Uy(w(d)) =1 (w(d)—1) >01if 2| d, 4] d and Ya(w(d)) +1logd —¥;(w(d)) > 0
if 8| d. This is indeed the case. =

12. Theorem 2 with w(d) = 2 and gcd(n,d) > 1. As stated in Sec-
tion 1, we prove

THEOREM 4. A product of eight or more terms in arithmetic progression
with common difference d satisfying w(d) = 2 is not a square.

Proof. Suppose Theorem 4 is not true. Then (1.1) is valid with £ > 8,
b= 1and w(d) = 2 but n and d not necessarily coprime. Let n’ = n/ged(n, d)
and d’ = d/gcd(n, d). Now, by dividing both sides of (1.1) by ged(n, d)¥, we
have
(12.1) w0’ +d)-- (0 + (k= 1)d) = pY P32yt
where y; > 0 is an integer and 01,2 € {0, 1}. We may assume that k is odd
and (01,02) # (0,0) by Theorem 2 with w(d) = 2. Let d’ = 1. Then we see
from [SaSh03b, Corollary 3| that the left hand side of (12.1) is divisible by at
least three primes > k. Therefore there exists a prime p with p # p1, p # po,
p > k such that it divides a term on the left hand side of (12.1) to a power
at least 2. This implies n’ > k2. Now we see from [MuSh04b, Theorem 2]
that the left hand side of (12.1) is divisible by at least three primes > k to
odd powers. This contradicts (12.1). Thus d’ > 1, implying (d1,02) # (1,1)
by ged(n',d") = 1. Now we may assume that (d1,d2) = (1,0). Then d’ is a
power of po. Further, we may suppose that p; > k by the results stated in
Section 1. Let n+ipd with 0 < iy < k be the term divisible by p; on the left
hand side of (12.1). Then

n' - (0 + (io — 1)d)(n' + (io + 1)d)--- (0 + (k — 1)d') = V'y3

where P(V) < k and y2 > 0 is an integer. Now k = 8 by [MuSh04a, Theo-
rem 1]. This is not possible since & is odd. =
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