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Inductivity of the global root number

by

David E. Rohrlich (Boston)

The invariance of the Artin root number under induction can be proved
without special effort. In fact if one develops the properties of Artin L-
functions in the usual way, then the inductivity of the root number is ob-
vious. In barest outline the argument is as follows. First one proves the in-
ductivity of Artin L-functions themselves, and then one combines Brauer’s
induction theorem with the analytic continuation and functional equation of
Hecke L-functions, thereby deriving the analytic continuation and functional
equation of Artin L-functions. The inductivity of the gamma and exponen-
tial factors follows from the duplication formula and the properties of the
Artin conductor respectively, so the “normalized L-function” (the product
of the L-function and its exponential and gamma factors) is also inductive.
Since the root number is the normalized L-function at s divided by the nor-
malized dual L-function at 1−s, the inductivity of the root number follows.

Artin L-functions can be viewed as the simplest examples of motivic
L-functions, but in the general setting much less is known. Certainly the an-
alytic continuation and functional equation are only conjectural, and even
the basic objects—the L-function, conductor, and root number—are con-
jectural in the sense that their definition depends on compatibilities which
are not yet known to hold in complete generality. Paradoxically, these very
limitations on our knowledge make it easy to prove that motivic root num-
bers are inductive: Given that the root number itself is only conjectural, one
is happy to use the conjectural functional equation, and then an argument
along the lines of the proof sketched above goes through as before.

The present note deals with an intermediate case. We consider a setting
in which the analytic continuation and functional equation of the L-function
are in general still conjectural, while the L-function, conductor, and root
number are well defined. The example to keep in mind is an elliptic curve
over an arbitrary number field, where we know the required compatibili-
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ties but not the analytic continuation and functional equation. Under these
circumstances a proof of inductivity that uses the functional equation is un-
satisfactory, but as pointed out to me by Ralph Greenberg, an unconditional
proof does not seem to have been explicitly recorded in the literature (cf.
[3, p. 163]). The gap is easily filled, and the purpose of this note is to fill it.
The key point is a local commutation relation (Proposition 3).

1. Pseudomotives. Let K be a number field, K a fixed algebraic clo-
sure of K, and E a coefficient field, by which we mean a number field con-
tained in C. Of course E can also be regarded as a subfield of its comple-
tions Eλ at the finite places λ of E. A family of λ-adic representations of
Gal(K/K) with coefficient field E is a collection {ρλ} of representations (i.e.
continuous homomorphisms) ρλ : Gal(K/K)→ GL(Vλ), where λ runs over
the finite places of E and Vλ is a vector space over Eλ of some fixed finite
dimension d independent of λ. We shall always assume that {ρλ} satisfies
the following condition:

(S) There is a finite set S of finite places of K, independent of λ, such
that ρλ is unramified (i.e. trivial on inertia) at all finite places v /∈
S ∪ S`, where ` is the residue characteristic of λ and S` consists of
the places of K with residue characteristic `.

The minimal set S with this property is the exceptional set of the family.

In practice, {ρλ} is of interest only if the representations ρλ satisfy some
sort of compatibility beyond (S). The usual condition is strict compatibil-
ity [8], or perhaps the slightly stronger condition denoted C5 in [9] and
referred to in [7] as full compatibility. But for present purposes full compati-
bility does not suffice even if supplemented by condition C8 of [9] and even if
{ρλ} is assumed to come from a motive, because what we really need is com-
patibility at the level of Weil–Deligne groups (cf. [1, p. 571, Définition 8.8]),
and the latter type of compatibility is not known to follow from the others.
In order to define “compatibility at the level of Weil–Deligne groups”—the
condition labeled (WD) below—we need to change notation temporarily
from global to local.

Thus let K be a finite extension of Qp for some prime p <∞, and let K
be a fixed algebraic closure of K. Write W(K/K) and WD(K/K) respec-
tively for the Weil group and the Weil–Deligne group of K. We recall that
as an abstract group, W(K/K) is the subgroup of Gal(K/K) generated by
the inertia group I together with any Frobenius element, and as a topolog-
ical group, W(K/K) is characterized by the fact that the subgroups of I
which are open in the Krull topology on I remain open in W(K/K) and
form a neighborhood basis at the identity. A representation of W(K/K) is
unramified if it is trivial on I. As for WD(K/K), there is no need to recall
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the definition: It suffices to know that a finite-dimensional representation of
WD(K/K) over a topological field of characteristic zero can be identified
with a pair ρρρ = (ρ,N), where ρ is a representation of W(K/K) and N is a
nilpotent endomorphism of the space of ρ satisfying ρ(g)Nρ(g)−1 = ω(g)N
for all g ∈W(K/K). Here ω is the unramified character of W(K/K) which
on an arithmetic Frobenius element takes the value q, the order of the residue
class field of K. We mention that if N = 0 then it is customary to identify
ρρρ and ρ. The key point is this: If λ is a finite place of E of residue charac-
teristic different from the residue characteristic of K, then a construction
of Grothendieck and Deligne gives a map β 7→ GD(β) from d-dimensional
representations of Gal(K/K) over Eλ to d-dimensional representations of
WD(K/K) over Eλ (see [10, pp. 515–516] and [1, pp. 566–571]). Strictly
speaking, the map β 7→ GD(β) is defined at the level of isomorphism classes
of representations, so β and GD(β) are to be taken up to isomorphism.

Now let K denote a number field again, and write Kv for the completion
of K at a place v of K and Kv for a fixed algebraic closure of Kv containing
K. If v is a finite place then the construction of Grothendieck and Deligne
gives rise to a map

(1) {ρλ} 7→ ρρρv

from families of λ-adic representations of Gal(K/K) with coefficient field E
to representations of WD(Kv/Kv) over C. The definition of (1) depends on
two choices: First we choose a place λ of E of residue characteristic different
from the residue characteristic of v, and we put β = (ρλ)v, where (ρλ)v
denotes the restriction of ρλ to the decomposition subgroup Gal(Kv/Kv)
of Gal(K/K). Then we choose an embedding of ι : Eλ ↪→ C extending the
identity embedding E ⊂ C, and we let ρρρv be the complex representation
obtained from GD(β) via extension of scalars under ι. We shall assume that
the choices made are inconsequential:

(WD) For every finite place v of K, the isomorphism class of the complex
representation ρρρv of WD(Kv/Kv) obtained from {ρλ} by applying
the construction of Grothendieck and Deligne is independent of
the choices inherent in the construction.

According to Deligne ([1, p. 571, Exemple 8.10]), this condition is satisfied
if E = Q and {ρλ} is the family of `-adic representations {ρA,`} associated
to H1 of an abelian variety A over K. The special case of elliptic curves is
much easier, of course; see for example [6, pp. 147–150].

Conditions (S) and (WD) do not yet provide an adequate framework
for the present discussion. Using (S) and (WD) one can associate an L-
function and a conductor to {ρλ}, but we are interested in the root number
associated to {ρλ}, and to define it one needs an archimedean contribution.
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In other words, at each infinite place v of K one needs a representation ρρρv
of the Weil–Deligne group WD(Kv/Kv), or equivalently a representation ρv
of the Weil group W(Kv/Kv), there being no distinction in the archimedean
case between the Weil and Weil–Deligne groups. (For the sake of a uniform
notation, we write ρρρv = (ρv, Nv) with Nv = 0.) To define these groups we
again let K be a local field, this time archimedean. If K ∼= C then

(2) WD(K/K) = WD(K/K) = K×,

and if K = R then

(3) WD(K/K) = K
× ∪ JK×

with J2 = −1 ∈ K
×

and JzJ−1 = z for z ∈ K. Here z 7→ z is complex
conjugation on K, which is independent of the identification K ∼= C×.

Now let K denote a number field again. We want to augment our families
{ρλ} by appending representations ρρρv of WD(Kv/Kv) at the infinite places
of K. If {ρλ} comes from a motive then there is a natural candidate for ρρρv,
namely the representation of WD(Kv/Kv) on the Hodge structure at v. But
since it is not known that a family satisfying (S) and (WD) comes from a
motive we make the following definition: A pseudomotive over K is an or-
dered pair M = ({ρλ}, {ρρρv}), where {ρλ} is a family satisfying (S) and (WD)
and {ρρρv} is simply an assignment of a representation ρρρv of WD(Kv/Kv) to
each infinite place v of K. We require the dimension of ρρρv to be the same
as the dimension d of the representations ρλ, and we refer to d as the rank
of M .

Now let v be any place of K, finite or infinite. In effect we have defined
a map

(4) M 7→ ρρρv(M)

from isomorphism classes of pseudomotives over K to isomorphism classes
of complex representations of WD(Kv/Kv): If v is finite then (4) is simply
the composition

M 7→ {ρλ} 7→ ρρρv

where M 7→ {ρλ} is projection on the first coordinate and {ρλ} 7→ ρρρv is (1).
If v is infinite then (4) is the projection of M onto the v-component of its
second coordinate.

2. The root number. Let K denote a finite extension of Qp, where
p 6 ∞, and let ρρρ denote a finite-dimensional complex representation of
WD(K/K). As our definition of the local root number W (ρρρ) we take

(5) W (ρρρ) =
ε(ρρρ, ψcan, dx)

|ε(ρρρ, ψcan, dx)|
,
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where ε(∗) is the local epsilon factor of [1], ψcan is the canonical additive
character ofK, and dx is any Haar measure onK. By the “canonical additive

character of K” we mean x 7→ e−2πi trK/R(x) if p =∞ and x 7→ e2πi{trK/Qp (x)}p

if p <∞, where {z}p denotes the sum of the nonintegral terms in the p-adic
expansion of a number z ∈ Qp. The quantity ε(ρρρ, ψcan, dx) is actually a
product of two factors,

(6) ε(ρρρ, ψcan, dx) = ε(ρ, ψcan, dx)δ(ρρρ),

where ε(ρ, ψcan, dx) depends only on the representation ρ of W(K/K), and
δ(ρρρ) depends only on ρρρ, not on the choice of Haar measure dx or the choice of
an additive character (a choice which we have eliminated anyway by insisting
on the canonical one). Thus

(7) W (ρρρ) = W (ρ)∆(ρρρ)

with W (ρ) = ε(ρ, ψcan, dx)/|ε(ρ, ψcan, dx)| and ∆(ρρρ) = δ(ρρρ)/|δ(ρρρ)|.
The key properties of the local root number are: first, additivity—in

other words, given two representations ρρρ and ρρρ′ of WD(K/K), we have

(8) W (ρρρ⊕ ρρρ′) = W (ρρρ)W (ρρρ′)

—and second, inductivity in degree zero. The latter property can be stated
as follows. Let ρρρ and ρρρ′ be representations of WD(K/K) of the same dimen-
sion. Given a subfield F of K containing Qp, we have

(9)
W (indK/F ρρρ)

W (indK/F ρρρ′)
=
W (ρρρ)

W (ρρρ′)
(dimρρρ = dimρρρ′)

where indK/F denotes induction from WD(K/K) to WD(K/F ). The notion

of “induction from WD(K/K) to WD(K/F )” requires no explanation if
p =∞, because WD(K/K) is a subgroup of finite index in WD(K/F ), and
ρρρ and ρρρ′ are representations of WD(K/K) in the usual sense. However if
p <∞ then ρρρ is a pair (ρ,N), and a definition is in order. Let ωF denote the
unramified character of W(K/F ) sending an arithmetic Frobenius element
to qF , the order of the residue class field of F . We put

(10) indK/F ρρρ = (indK/F ρ, ω
−1
F · (1⊗N)),

where just as in the case p =∞, the first coordinate on the right-hand side
has the obvious interpretation. As for the second coordinate, let V be the
space of ρ, and put G = W(K/F ) and H = W(K/K). We may take the
space of indK/F ρ to be C[G] ⊗C[H] V . Then ω−1F · (1 ⊗ N) is the nilpotent
endomorphism of C[G] ⊗C[H] V which sends a primitive tensor g ⊗ v to

ωF (g)−1(g ⊗Nv) for all g ∈ G and v ∈ V .

For the proof of (8) and (9) see [1]. We merely remark that in view of
the decomposition (7), two identities must be verified in each case: for (8)
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one shows that

W (ρ⊕ ρ′) = W (ρ)W (ρ′),(11)

∆(ρ⊕ ρ′) = ∆(ρ)∆(ρ′),(12)

and for (9) one shows that

W (indK/F ρ)

W (indK/F ρ′)
=
W (ρ)

W (ρ′)
(dim ρ = dim ρ′),(13)

∆(indK/F ρρρ) = ∆(ρρρ).(14)

Properties (11) and (13) are inherent in the very existence of local epsilon
factors ([1, p. 535, Théorème 4.1]), and properties (12) and (14) are elemen-
tary (see for example [6, p. 142]).

We also mention a third property of local root numbers. Suppose that
p < ∞. We say that the representation ρρρ = (ρ,N) is unramified if ρ is
unramified and N = 0. Given our definition of W (ρρρ) (in particular, the
choice of ψcan in (5)), it follows from paragraph 5.9 on p. 550 of [1] that if
ρρρ is unramified and if K is unramified over Qp then W (ρρρ) = 1.

To appreciate the significance of this third property we return to a global
setting. Let K be a number field again and let M be a pseudomotive over K.
We define the global root number W (M) of M by applying (4) at each place
v of K:

(15) W (M) =
∏
v

W (ρρρv(M)).

The product is meaningful because the map (1) sending {ρλ} to ρρρv has the
property that if v /∈ S (the exceptional set of {ρλ}) then ρρρv is unramified.
Since S is finite and K is unramified at all but finitely many places we
conclude that W (ρρρv(M)) = 1 for all but finitely many v.

The point to be proved in this note is that the map M 7→ W (M) is
invariant under induction. To formulate this assertion precisely, consider a
pseudomotive M = ({ρλ}, {ρρρv}) over K and a subfield F of K. We put

(16) indK/F M = ({indK/F ρλ}, {
⊕
v|u

indKv/Fu ρρρv}),

where the second coordinate of indK/F M assigns to each infinite place u
of F a direct sum over the places v of K lying above u, the direct summand
at v being indKv/Fu ρρρv.

Proposition 1. W (indK/F M) = W (M).

Implicit in Proposition 1 is the fact that indK/F M is a pseudomotive,
in other words that (WD) holds with M replaced by indK/F M . This will
follow along with Proposition 1 itself from the fact that (4) commutes with
induction. Let u denote a fixed place of F , finite or infinite. As before, the
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symbol
⊕

v|u denotes a direct sum in which the summands are indexed by
the places of K over u.

Proposition 2. ρρρu(indK/F M) ∼=
⊕

v|u indKv/Fu ρρρv(M).

If u is an infinite place of F then Proposition 2 is true by virtue of the
definition (16), but if u is finite then there is something to check. First let
us verify that Proposition 1 does indeed follow from Proposition 2.

3. Proof of Proposition 1 granting Proposition 2. As noted in the
introduction, Proposition 1 is an easily proved classical fact in the case of
Artin representations, and we shall use this known special case to deduce
Proposition 1 from Proposition 2 in general. In fact all we need is the relation

(17) W (indK/F 1K) = W (1K),

where F is a subfield of K and 1K is the one-dimensional trivial representa-
tion of Gal(K/K). Now the local root numbers of the trivial representation
are all equal to 1 and hence their product W (1K) is also 1, but it is more
efficient not to make this simplification. Instead we write both sides of (17)
as products over places and then we divide one side by the other. We obtain

(18) 1 =

∏
vW (1Kv)∏

u

∏
v|uW (indKv/Fu 1Kv)

by the standard formula for the restriction of an induced Artin representa-
tion to a decomposition group (see the last displayed formula on p. 12 of
[11]).

Now consider an arbitrary pseudomotiveM = ({ρλ}, {ρρρv}) overK. Using
the definition (15) in conjunction with Proposition 2, we have

(19) W (indK/F M) =
∏
u

∏
v|u

W (indKv/Fu ρρρv(M)).

Let d be the rank of M , or in other words the dimension of the representa-
tions ρρρv(M), and write 1⊕dKv for the direct sum of d copies of 1Kv . Raising
the two sides of (18) to the power d, multiplying by (19), and applying (8)
and (9), we obtain

W (indK/F M) =
∏
u

∏
v|u

W (indKv/Fu ρρρv(M))

W (indKv/Fu 1⊕dKv)
·
∏
v

W (1⊕dKv)

=
∏
v

W (ρρρv(M))

W (1⊕dKv)
·
∏
v

W (1⊕dKv).

Making the obvious cancellation, we obtain Proposition 1.

4. Proof of Proposition 2. As already noted, if u is an infinite place
of F then there is nothing to prove, so suppose that u is finite, and choose a



252 D. E. Rohrlich

place λ of E of residue characteristic distinct from the residue characteristic
of u. Appealing once again to the last displayed formula on p. 12 of [11], we
have

(20) (indK/F ρλ)u ∼=
⊕
v|u

indKv/Fu(ρλ)v.

Now the map β 7→ GD(β) commutes with formation of direct sums, and
consequently when we apply it to both sides of (20), we obtain

(21) GD((indK/F ρλ)u) ∼=
⊕
v|u

GD(indKv/Fu(ρλ)v).

The induction functor on complex representations of the Weil–Deligne group
was defined by (10), and the same definition is valid for representations over
any topological field of characteristic zero, in particular Eλ. Hence it is at
least meaningful to write indKv/Fu GD((ρλ)v). We claim that in fact

(22) GD(indKv/Fu(ρλ)v) ∼= indKv/Fu GD((ρλ)v).

Substituting (22) in (21) and extending scalars via ι : Eλ ↪→ C, we obtain
the proposition.

Thus it suffices to prove the commutation relation (22). This is a purely
local statement, and therefore we revert to a local notation. Let p be a prime
number.

Proposition 3. Let F be a finite extension of Qp, let K be a finite ex-
tension of F , and let β be a finite-dimensional representation of Gal(K/K)
over Eλ, where λ is of residue characteristic ` 6= p. Then GD(indK/F β) ∼=
indK/F GD(β).

Proof. Let V be the space of β. Recall also that I denotes the iner-
tia subgroup of W(K/K). Although the construction of Grothendieck and
Deligne is most naturally thought of as a map on isomorphism classes of
representations, if we fix an arithmetic Frobenius element σ ∈ W(K/K)
and a nonzero homomorphism I → Q` then the construction gives an ex-
plicit model for GD(β) as a representation of WD(K/K) on the same vector
space V . For our purposes σ can be chosen arbitrarily, but it is important
to take I → Q` to be t`|I, where t` : IF → Q` is any nonzero homomor-
phism and IF denotes the inertia subgroup of W(K/F ). Such a map t`
necessarily factors through the tame quotient of IF , and its existence fol-
lows from the fact that the tame quotient is the product of the groups Zq
for q 6= p. Since I has finite index in IF and Q` is torsion-free as an additive
group, t`|I is indeed nonzero. The formal properties of the Kummer pairing
give

(23) t`(gig
−1) = ωF (g)t`(i) (g ∈W(K/F ), i ∈ IF ),
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where as before, ωF is the unramified character of W(K/F ) sending an
arithmetic Frobenius element to qF .

So far we have not described the recipe for obtaining GD(β) from β.
We do so now. Write GD(β) = ρρρ = (ρ,N). Any nilpotent endomorphism of
a finite-dimensional vector space over a field of characteristic zero can be
exponentiated, and N is uniquely characterized by the property that

(24) β(i) = exp(t`(i)N)

for all i in some open subgroup J of I. As for ρ, we write an arbitrary
element h ∈ W(K/K) in the form h = iσn with i ∈ I and n ∈ Z, and we
put

(25) ρ(h) = exp(−t`(i)N)β(h).

It is a fact that ρ is a representation of W(K/K) and that the pair ρρρ = (ρ,N)
is a representation of WD(K/K).

Of course the recipe just described applies to GD(indK/F β) as well as

to GD(β). We put G = W(K/F ) and H = W(K/K), and we take the space
of indK/F β to be Eλ[G] ⊗Eλ[H] V . We write this space as Eλ[G] ⊗β V to
emphasize that H acts on V through β. Let πππ = GD(indK/F β) and write
πππ = (π, P ). Then

(26) (indK/F β)(i) = exp(t`(i)P )

for all i in some open subgroup JF of IF . Furthermore, if σF is a fixed
arithmetic Frobenius element of G, so that every g ∈ G has the form g = iσnF
with i ∈ IF and n ∈ Z, then

(27) π(g) = exp(−t`(i)P )(indK/F β)(g)

as before. We shall prove that

(28) πππ ∼= indK/F ρρρ,

as asserted by the proposition.

Before we can prove (28) we need to derive a more explicit formula for
P , and to derive the formula we need to examine the domain of validity of
(24). While (24) is assumed to hold on some open subgroup J of I, the set of
all i ∈ I satisfying (24) is a subgroup J ′ of I, necessarily open since it con-
tains J . Now if h ∈ H and i ∈ J ′ then β(hih−1) = β(h) exp(t`(i)N)β(h)−1

and consequently

(29) β(hih−1) = exp(t`(i)β(h)Nβ(h)−1).

But from (25) we have β(h) = exp(t`(i)N)ρ(h), and ρ is the first coordinate
of the representation ρρρ = (ρ,N) of WD(K/K). Thus conjugation by ρ(h)
multiplies N by ω(h), while exp(t`(i)N) commutes with N . We conclude
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that β(h)Nβ(h)−1 = ω(h)N . Making this substitution in (29), and taking
account of (23) and the fact that ωF |H = ω, we obtain

(30) β(hih−1) = exp(t`(hih
−1)N).

Thus J ′ is normal in W(K/K). Now let g1, . . . , gn be left coset represen-
tatives for W(K/K) in W(K/F ), and let J ′′ be the intersection of the
conjugates giJ

′g−1i . After declaring J ′′ to be the new J , we may assert
that (24) holds for all i in an open subgroup J of I which is normal in
W(K/F ). Of course since K/F is finite it follows that J is open in IF as
well.

Now consider (indK/F β)|J . Given j ∈ J , g ∈ G, and v ∈ V , we have

(indK/F β)(j)(g ⊗β v) = jg ⊗β v = g ⊗β β(g−1jg)(v)

because g−1jg belongs to J and therefore to H. In fact since g−1jg ∈ J , we
have

(31) (indK/F β)(j)(g ⊗β v) = g ⊗β exp(t`(j)ωF (g)−1N)(v)

by (24) and (23). Recalling that P is uniquely characterized by the fact that
(26) holds for all i in some open subgroup of IF , we conclude from (31) that
P is the nilpotent endomorphism of Eλ[G]⊗β V which on primitive tensors
g ⊗ v is given by

(32) P (g ⊗β v) = g ⊗β (ωF (g)−1Nv).

This is the desired formula for P .
We now return to the proof of (28). By (10), we have indK/F ρρρ =

(indK/F ρ, ω
−1
F ·(1⊗N)). In principle, the space of indK/F ρ could be written

as Eλ[G]⊗Eλ[H]V , but for clarity we write it as Eλ[G]⊗ρV . To prove (28) we
must show that there is a linear isomorphism from Eλ[G]⊗ρV to Eλ[G]⊗βV
which intertwines indK/F ρ with π and ω−1F · (1⊗N) with P .

Consider the embedding ψ : V → Eλ[G]⊗β V given by v 7→ 1⊗β v. We
claim that ψ intertwines ρ and π|H. Indeed take h ∈ H and write h = iσn

with i ∈ I and n ∈ Z. By (25), we have

(33) ψ(ρ(h)(v)) = 1⊗β exp(−t`(i)N)(β(h)(v))

On the other hand, by (27),

(34) π(h)(1⊗β v) = exp(−t`(i)P )(1⊗β β(h)(v))

From (32) we see that the right-hand side of (34) coincides with that of
(33), verifying the claim.

Now view V as an H-submodule of Eλ[G] ⊗ρ V via the embedding
v 7→ 1 ⊗ρ v, so that ψ is the map 1 ⊗ρ v 7→ 1 ⊗β v. Applying the universal
property of induction, we obtain a linear map Ψ : Eλ[G]⊗ρ V → Eλ[G]⊗β V
which extends ψ and intertwines indK/F ρ and π. The map Ψ is surjective,
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because 1 ⊗β V spans Eλ[G] ⊗β V as a G-module. Since Eλ[G] ⊗ρ V and
Eλ[G]⊗β V are both of dimension [K : F ] dim(V ) over Eλ, we conclude that
Ψ is an isomorphism.

We must still check that Ψ ◦ (ω−1F · (1 ⊗ N)) = P ◦ Ψ . For g ∈ G and
v ∈ V ,

Ψ((ω−1F · (1⊗N))(g ⊗ρ v)) = ωF (g)−1Ψ((indK/F ρ)(g)(1⊗ρ Nv)).

Now the right-hand side is ωF (g)−1π(g)Ψ(1 ⊗ρ Nv), because Ψ intertwines
indK/F ρ and π. Furthermore, Ψ extends ψ, so we find

(35) Ψ((ω−1F · (1⊗N))(g ⊗ρ v)) = ωF (g)−1π(g)(1⊗β Nv).

On the other hand, since g ⊗ρ v = (indK/F ρ)(g)(1 ⊗ρ v), the fact that Ψ
intertwines indK/F ρ and π also gives

(36) P (Ψ(g ⊗ρ v)) = P (π(g)Ψ(1⊗ρ v)).

But Pπ(g) = ωF (g)−1π(g)P , because πππ = (π, P ) is a representation of
WD(K/F ). Making this substitution in (36), rewriting Ψ(1⊗ρ v)) as 1⊗β v,
and appealing to (32), we see that the right-hand sides of (35) and (36)
coincide, whence (28) follows.
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