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Small Galois groups that encode valuations

by

Ido Efrat (Be’er-Sheva) and Ján Mináč (London, ON)

1. Introduction. A repeated phenomenon in Galois theory is that es-
sential arithmetical information on a field is encoded in the group-theoretic
structure of its canonical Galois groups. A prototype of this phenomenon is
the classical Artin–Schreier theorem: a field F has an ordering if and only if
its absolute Galois group GF = Gal(Fsep/F ) contains a (non-trivial) involu-
tion. As shown by Becker [Bec74], the same holds when G = GF is replaced
by its maximal pro-2 quotient G(2). Moreover, the second author and Spira
[MS90, Th. 2.7] established a similar correspondence for an even smaller
pro-2 Galois group of F , the W -group of F .

In this paper we consider a generalization of the W -group to the pro-p
context, and prove an analogous result for valuations. Here p is an arbitrary
fixed prime number, and we assume that F contains a root of unity of order p
(in particular, charF 6= p). We set G(2) = Gp[G,G] and G(3) = Gδp[G(2), G],
where δ = 1 if p > 2, and δ = 2 if p = 2. The pro-p Galois group we consider
is G[3] = G/G(3). It has exponent dividing δp, and when p = 2 it coincides
with the W -group of F [EM11b, Remark 2.1(1)].

Of course, a field always carries the trivial valuation, so one is only
interested in valuations v satisfying certain natural requirements. In the
pro-p context, such requirements on v are:

(i) v(F×) 6= pv(F×);
(ii) (F×)p-compatibility : 1 + mv ≤ (F×)p, where 1 + mv is the group of

1-units of v, i.e., all elements x of F with v(x− 1) > 0.

Thus (i) is a strong form of non-triviality, whereas (ii) is a variant of Hensel’s
lemma. Indeed, when the residue field F̄v has characteristic not p, (ii) is
equivalent to the validity of Hensel’s lemma relative to the maximal pro-p
extension F (p) ([Wad83, Prop. 1.2], [Efr06, Prop. 18.2.4]).
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Our main result (Corollary 6.4) is that, under a finiteness assumption
and the hypothesis that −1 is a square if p = 2, there exists a valuation
v on F satisfying (i) and (ii) above if and only if the center Z(G[3]) has a

non-trivial image in G[2] = G/G(2).

Note that when char F̄v 6= p, conditions (i) and (ii) give a description
of the full maximal pro-p Galois group GF (p) = Gal(F (p)/F ) of F as a
semidirect product Zmp oGF̄v

(p) where m = dimFp(v(F×)/pv(F×)) and the
action is given by the cyclotomic character [Efr06, Example 22.1.6].

The proof of the main result is based on two key ingredients. First, results
of Rodriguez Villegas, Spira and the authors (see Theorems 2.1 and 2.2
below) give an explicit list Lp of small finite p-groups such that, for G = GF
as above,

G(3) =
⋂
{N E G | G/N ∈ Lp}.

A second ingredient is the notion of p-rigid elements in F (see §3 for
the definition). In a series of works by Arason, Elman, Hwang, Jacob,
Ware, and the first author (see [Jac81], [War81], [AEJ87],[HJ95], [Efr99],
[Efr06, Ch. 26], [Efr07]), it was shown that there exist valuations satisfying
(i) and (ii) if and only if F has sufficiently many p-rigid elements. The dual
notion in G[2] under the Kummer pairing can be interpreted, using certain
Galois embedding problems, in terms of the groups in Lp.

Connections between the group G[3] and valuations were earlier studied
in [MMS04, §§7–8] (for p = 2) and also announced in [Pop06b]. This is
also related to works by Bogomolov, Tschinkel, and Pop ([Bog91], [Bog92],
[BT08], [Pop06a]), showing that for function fields F over algebraically
closed fields, such “tame” valuations can be recovered from the larger Ga-
lois group G/[[G,G], G]. For a nice survey with more references see [BT10].
Some other connections between rigidity and small Galois groups were pre-
viously also investigated in [AGKM01] and [LS02], and in connection with
absolute or maximal pro-p Galois groups in, e.g., [Efr99], [Efr00], [EN94],
and [Koe03].

Underlying our results is the fact, proved in [EM11b] (extending results
in [CEM12]), that for G = GF with F as above, G[3] determines the Galois
cohomology ring H∗(G,Z/q), and is in fact the minimal Galois group of F
with this property.

For other works demonstrating the importance of the quotient G[3] in the
Galois theory of algebraic number fields see, e.g., [Koc02], [Mor04], [Vog05].

2. Galois-theoretic preliminaries. We fix a prime number p. For
p > 2 let

Hp3 = 〈r, s, t | rp = sp = tp = [r, t] = [s, t] = 1, [r, s] = t〉
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be the non-abelian group of order p3 and exponent p (the Heisenberg group).
Also let D4 be the dihedral group of order 8. To make the discussion uniform,
we set

(2.1) Ḡ =

{
Hp3 , p > 2,

D4, p = 2.

In both cases, the Frattini subgroup of Ḡ is its center Z(Ḡ), and one has
Ḡ/Z(Ḡ) ∼= (Z/p)2. Moreover, this is the unique quotient of Ḡ isomorphic to
(Z/p)2. Also, every proper subgroup of Ḡ is abelian.

From now on let F be a field containing a fixed root of unity ζp of order p,
and let G = GF be its absolute Galois group. The following theorem was
proved in [EM11b, Th. D].

Theorem 2.1. Assume that p > 2. Then G(3) is the intersection of all
normal open subgroups N of G such that G/N is isomorphic to {1}, Z/p
or Hp3.

The analog of this fact for p = 2 was proved by Rodriguez Villegas
[RV88] and Mináč–Spira [MS96, Cor. 2.18] (see also [EM11a, Cor. 11.3 and
Prop. 3.2]):

Theorem 2.2. Assume that p = 2. Then G(3) is the intersection of all
normal open subgroups N of G such that G/N is isomorphic to {1}, Z/2,
Z/4, or D4.

Moreover, Z/2 can be omitted from this list unless F is Euclidean [EM11a,
Cor. 11.4].

Let H i(G) = H i(G,Z/p) be the ith profinite cohomology group with
the trivial action of G on Z/p. Thus H1(G) is the group of all continuous
homomorphismsG→ Z/p. We write∪ for the cup productH1(G)×H1(G)→
H2(G). For a ∈ F× let (a)F ∈ H1(G) correspond to the coset a(F×)p under
the Kummer isomorphism F×/(F×)p

∼−→ H1(G). One has (a)F ∪ (a)F =
(a)F ∪ (−1)F [Ber10, Prop. III.9.15(5)].

Next, for a finite group K, we call a Galois extension E/F a K-extension
if Gal(E/F ) ∼= K. We say that a (Z/p) × (Z/p)-extension F ( p

√
a, p
√
b)/F

embeds inside a Ḡ-extension E/F properly if either p > 2 or else p = 2 and
Gal(E/F (

√
ab)) ∼= Z/4.

We refer to [Led05, (6.1.8), (3.6.3), (3.6.2)] for the following well known
facts; see also [GSS95] and [GS96].

Lemma 2.3. Let a, b ∈ F×.
(a) When (a)F , (b)F are Fp-linearly independent, F ( p

√
a, p
√
b)/F embeds

inside a Ḡ-extension properly if and only if (a)F ∪ (b)F = 0.
(b) When p = 2 and (a)F 6= 0, the extension F (

√
a)/F embeds inside a

Z/4-extension if and only if (a)F ∪ (−1)F = 0.
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3. Rigidity. The following key notion is a special case of [Efr06,
Def. 23.3.1] and originates from [Szy77] and [War81]. Note however that
our definition differs by sign from that of [War81].

Definition 3.1. An element a of F× is called p-rigid if (a)F 6= 0 and
there is no b ∈ F× such that (a)F ∪ (b)F = 0 in H2(G) and (−a)F , (b)F are
Fp-linearly independent.

To get an alternative description of p-rigid elements, we define subsets
C,D of F× as follows.

When (−1)F = 0 (resp., (−1)F 6= 0), let C be the set of all a ∈ F× for
which there exists b ∈ F× such that (a)F ∪ (b)F = 0 and (a)F , (b)F (resp.,
(a)F , (b)F , (−1)F ) are Fp-linearly independent in H1(G).

When (−1)F 6= 0 (so p = 2) we set

D = {a ∈ F× | (a)F ∪ (−1)F = 0}.
It is a subgroup of F×.

Lemma 3.2. Let a ∈ F× be such that (a)F 6= 0, (−1)F . The following
conditions are equivalent:

(a) a is not p-rigid;
(b) either a ∈ C or both (−1)F 6= 0 and a ∈ D.

Proof. When (−1)F = 0 this is immediate.

Next assume that (a)F ∪ (−1)F 6= 0. Then (−1)F 6= 0, p = 2 and
(a)F ∪ (a)F 6= 0. Thus, if b ∈ F× satisfies (a)F ∪ (b)F = 0, then (b)F 6=
(−1)F , (a)F . Therefore (−a)F , (b)F are F2-linearly independent if and only
if (a)F , (b)F , (−1)F are F2-linearly independent. We conclude that in this
case a is not 2-rigid if and only if a ∈ C.

Finally, assume that (−1)F 6= 0 but (a)F ∪ (−1)F = 0 (i.e., a ∈ D). Then
p = 2 and, by the assumptions, (−a)F , (−1)F are F2-linearly independent.
Hence a is not 2-rigid.

Next let Np be the subgroup of F× generated by all elements which are
not p-rigid and by −1.

We will need the following result of Berman and Cordes which simplifies
the definition in the case p = 2 (see [War81, Example 2.5(i)], [Mar80, Ch. 5,
Th. 5.18], and the related result [BCW80, Th. 1]):

Proposition 3.3. Let p = 2. Then N2 is the set of all a ∈ F× such that
a or −a is not 2-rigid.

Corollary 3.4. One of the following holds:

(1) Np = 〈(F×)p, C,−1〉;
(2) p = 2, (−1)F 6= 0 and N2 = 〈D,−1〉.
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Proof. If (−1)F = 0, then (1) holds by Lemma 3.2.
Next suppose that (−1)F 6= 0 (so p = 2). By Lemma 3.2, a ∈

F× \ ((F×)2 ∪−(F×)2) is not 2-rigid if and only if it is in C ∪D. Hence the
subgroups 〈(F×)2, C,−1〉 and 〈D,−1〉 of F× are contained inN2. Conversely,
by Proposition 3.3, N2 is contained in the union of these two subgroups.
Thus

N2 = 〈(F×)2, C,−1〉 ∪ 〈D,−1〉.
Since a group cannot be the union of two proper subgroups, (1) or (2) must
hold.

Remark 3.5. Let KM
∗ (F ) be the Milnor K-ring of F ([Mil70], [Efr06,

§24]). The Kummer isomorphism F×/(F×)p
∼−→ H1(GF ), a(F×)F 7→ (a)F ,

induces the Galois symbol homomorphismKM
∗ (F )/pKM

∗ (F )→ H∗(GF ). By
the Merkur’ev–Suslin theorem ([MS82], [GS06, Ch. 8]), it is an isomorphism
in degree 2 (in fact, by the more recent results of Rost and Voevodsky
[Voe11], it is an isomorphism in all degrees, but we shall not need this
very deep fact). Therefore, our notion of a p-rigid element a coincides with
the notion of (F×)p-rigidity of a(F×)p in KM

∗ (F )/pKM
∗ (F ) given in [Efr06,

Def. 23.3.1]. Consequently Np coincides with the subgroup N(F×)p , defined
K-theoretically in [Efr06, Def. 26.4.5].

4. The Kummer pairing. Let µp be the group of pth roots of unity in
F and recall that G = GF is the absolute Galois group of F . Consider the
Kummer pairing

(·, ·) : G× F× → µp, (σ, a) 7→ σ( p
√
a)/ p
√
a.

Its left kernel isG(2) and its right kernel is (F×)p. We compute the annihilator
of Np under this pairing.

Let T =
⋂
ρ ρ
−1(2Z/4Z), where ρ ranges over all epimorphisms ρ : G →

Z/4, and 2Z/4Z is the subgroup of Z/4 of order 2.

Lemma 4.1. Assume that (−1)F 6= 0. The annihilator of D with respect
to the Kummer pairing is T .

Proof. Let σ ∈ G. Then σ ∈ T if and only if σ fixes
√
a for every

a ∈ F× \ (F×)2 such that F (
√
a)/F embeds inside a Z/4-extension of F . By

Lemma 2.3(b), this means that (σ, a) = 1 whenever (a)F ∪ (−1)F = 0, i.e.,
whenever a ∈ D.

We define a subgroup G̃ of G by G̃ = G if p > 2, and G̃ = GF (
√
−1) when

p = 2. Thus G̃ = G when (−1)F = 0. Also let Ḡ be as in (2.1).

Proposition 4.2. The following conditions on σ ∈ G̃ are equivalent:

(a) for every τ ∈ G̃ the commutator [σ, τ ] is in G(3);
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(b) for every τ ∈ G̃ and every Ḡ-extensionL of F , the restrictions σ|L, τ |L
commute;

(c) (σ, a) = 1 for every a ∈ C.

Proof. (a)⇔(b). Let τ ∈ G̃. By Theorems 2.1 and 2.2, [σ, τ ] ∈ G(3) if
and only if σ|L, τ |L commute in Gal(L/F ) for every Galois extension L/F
with Galois group in {1,Z/p,Hp3}, when p > 2, or in {1,Z/2,Z/4, D4},
when p = 2. When Gal(L/F ) is abelian, the commutativity is trivial, so it
is enough to consider Ḡ-extensions L/F .

(b)⇒(c). Let a ∈ C and take b ∈ F× as in the definition of C. Then
when (−1)F = 0 (resp., (−1)F 6= 0) the Kummer elements (a)F , (b)F (resp.,

(a)F , (b)F , (−1)F ) are Fp-linearly independent. Hence there exists τ ∈ G̃

such that τ( p
√
a) = p

√
a and τ( p

√
b) 6= p

√
b. Moreover, (a)F ∪ (b)F = 0, so

Lemma 2.3(a) yields a Ḡ-extension L/F with F ( p
√
a, p
√
b) ⊆ L. By assump-

tion, the restrictions σ|L, τ |L commute. But Ḡ is non-commutative, so these
restrictions belong to a proper subgroup of Gal(L/F ). By the Frattini ar-

gument, their restrictions σ1, τ1 to Gal(F ( p
√
a, p
√
b)/F ) ∼= (Z/p)2 belong to

a proper subgroup, which is necessarily cyclic of order p. Thus σ1 ∈ 〈τ1〉,
whence σ( p

√
a) = σ1( p

√
a) = p

√
a, as desired.

(c)⇒(b). Let τ ∈ G̃ and let L be a Ḡ-extension of F . Take a, b ∈ F×
such that L0 = F ( p

√
a, p
√
b) is a (Z/p)2-extension of F which embeds properly

in L. By Lemma 2.3(a), (a)F ∪ (b)F = 0. In view of the structure of Ḡ, the
center Z(Gal(L/F )) is Gal(L/L0).

Case 1: σ|L0 , τ |L0 do not generate Gal(L0/F ). Then σ|L, τ |L generate a
proper subgroup of Gal(L/F ) ∼= Ḡ, which is necessary commutative. Thus
σ|L, τ |L commute, as required.

Case 2: a, b ∈ C. By assumption, (σ, a) = (σ, b) = 1. Therefore σ|L ∈
Gal(L/L0) = Z(Gal(L/F )), and we are done again.

Case 3: σ|L0 , τ |L0 generate Gal(L0/F ) and at least one of a, b is not
in C. By construction, (a)F , (b)F are F2-linearly independent. Hence nec-
essarily (−1)F 6= 0, p = 2, and (a)F , (b)F , (−1)F are F2-linearly dependent.
Without loss of generality, (a)F 6= (−1)F . We obtain

Gal(L/F (
√
a,
√
−1)) = Gal(L/L0) = Z(Gal(L/F )).

If σ(
√
a) =

√
a, then (as σ ∈ G̃)

σ|L ∈ Gal(L/F (
√
a,
√
−1)) = Z(Gal(L/F )).

Similarly, if τ(
√
a) =

√
a, then τ |L ∈ Z(Gal(L/F )), and in both cases

we are done. Finally, if σ(
√
a) = τ(

√
a) = −

√
a, then σ, τ coincide on

F (
√
a,
√
−1) = L0. Hence σ|L, τ |L generate a proper subgroup of Gal(L/F )

∼= Ḡ, which is necessarily abelian. Therefore they commute.
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Corollary 4.3. The annihilator of Np in G with respect to the Kummer
pairing is

Z̃ =

{
T ∩ G̃ if (−1)F 6= 0 and N2 = 〈D,−1〉,
{σ ∈ G̃ | ∀τ ∈ G̃ : [σ, τ ] ∈ G(3)} otherwise.

Proof. First we note that, since −1 ∈ Np, the annihilator of Np is

contained in G̃. Now in case (1) (resp., (2)) of Corollary 3.4, the assertion
follows from Proposition 4.2 (resp., Lemma 4.1).

Next let Z̄ be the image of Z̃ under the natural projection G → G[2]

= G/G(2). Then Z̄ ∼= Z̃/(G(2) ∩ Z̃). Note that if (−1)F = 0, then Z̄ is just

the image of Z(G[3]) in G[2].

Corollary 4.4. The Kummer pairing induces a perfect pairing

Z̄ × (F×/Np)→ µp.

Proof. The Kummer pairing induces a perfect pairing

G[2] × (F×/(F×)p)→ µp.

By Corollary 4.3, the annihilator ofNp/(F
×)p is Z̄. The assertion now follows

from general Pontryagin duality theory.

5. Rigid fields. The field F is called p-rigid if all a ∈ F× \ (F×)p are
p-rigid. The next result applies Corollary 4.4 to characterize these fields in
terms of G[3]. For p > 2 the equivalence (a)⇔(e) was proved in [MN77,
Th. 14]; see also [War92]. For p = 2 the equivalences (a)⇔(c)⇔(d) where
earlier proved in [MS90, Th. 3.13].

Theorem 5.1. Assume that (−1)F = 0. The following conditions are
equivalent:

(a) F is p-rigid;
(b) Np = (F×)p;
(c) G[3] is abelian;

(d) when p > 2 (resp., p = 2), G[3]
∼= (Z/p)I (resp., G[3]

∼= (Z/4)I) for
some index set I;

(e) F has no Ḡ-extensions.

Proof. (a)⇔(b). Immediate.
(b)⇔(c). By Corollary 4.4, Np = (F×)p if and only if Z̄ ∼= G[2], i.e., the

natural mapG[3] → G[2] maps Z(G[3]) surjectively. By the Frattini argument,
this means that G[3] = Z(G[3]).

(c)⇒(d). When p > 2, we use the fact that abelian profinite groups of
exponent dividing p always have the form (Z/p)I . Similarly, when p = 2
the group G[3] has exponent dividing 4, and by assumption is abelian.
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Moreover, since (−1)F = 0, every Z/2-extension embeds in a Z/4-extension
(Lemma 2.3(b)). Hence G[3] has the form (Z/4)I .

(d)⇒(c)⇒(e). Immediate.
(e)⇒(c). Use Theorem 2.1 (when p> 2) and Theorem 2.2 (when p= 2).

Remark 5.2. An analogous result was proved in [EM11a, Prop. 12.1
and Prop. 3.2] for the larger quotient G/G(3), where G(3) = (G(2))p[G(2), G]
is the third subgroup in the descending p-central filtration of G = GF :
namely, when p > 2 (resp., p = 2), G/G(3) is abelian if and only if F has
no Galois extensions with Galois group Mp3 (resp., D4), where Mp3 denotes
the unique non-abelian group of odd order p3 and exponent p2. Note that
indeed G(3) = G(3) for p = 2, by [EM11b, Remark 2.1(1)].

6. Valuations. Throughout this section we assume that (−1)F = 0. As
we mentioned earlier, the existence of (F×)p-compatible valuations v with
v(F×) 6= pv(F×) is related to p-rigid elements, and therefore to the groupNp.
Further, F×/Np is dual to the image Z̄ of Z(G[3]) in G[2] (Corollary 4.4).
Thus we can now detect these valuations from our Galois group G[3] under
some finiteness conditions discussed below.

Denote the exterior (graded) algebra of anR-moduleM by
∧∗
RM . There is

a canonical graded ring epimorphism
∧∗

Fp
(F×/(F×)p)→KM

∗ (F )/pKM
∗ (F ).

We say that (F×)p is totally rigid if this map is an isomorphism (see
[Efr06, §26.3 and Example 23.2.4]).

Example 6.1. Suppose that F is equipped with an (F×)p-com-
patible valuation v such that F̄×v = (F̄×v )p and such that the induced
map F×/(F×)p

∼−→ v(F×)/pv(F×) is an isomorphism. For instance, this
holds for F = C((t1)) · · · ((tn)). In the terminology of [Efr06, §23.2], let
0[v(F×)/pv(F×)] be the extension of the trivial κ-structure 0 by the abelian
group v(F×)/pv(F×). One has

0[v(F×)/pv(F×)] =
∧∗

Fp
(v(F×)/pv(F×))

as graded rings [Efr06, Example 23.2.4]. Further, there is a natural isomor-
phism

KM
∗ (F )/pKM

∗ (F )
∼−→ 0[v(F×)/pv(F×)]

(cf. [Efr06, Th. 26.1.2 and Ex. 26.1.1(2)]). Hence (F×)p is totally rigid. See
also [Efr06, §26.8].

For a valuation v on F let F̄v be its residue field, and let O×v be its group
of v-units. We will need the following special cases of [Efr06, Prop. 26.5.1,
Th. 26.5.5(c), Th. 26.6.1], respectively:

Proposition 6.2.

(a) If v is an (F×)p-compatible valuation on F , then Np ≤ (F×)pO×v .
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(b) If (F×)p is not totally rigid, and either p = 2 or (F× : (F×)p) <∞,
then there exists an (F×)p-compatible valuation v on F with Np =
(F×)pO×v .

(c) If (F×)p is totally rigid, then there exists an (F×)p-compatible valu-
ation v on F with ((F×)pO×v : Np)|p.

We obtain our main result:

Theorem 6.3.

(a) If v is an (F×)p-compatible valuation on F , then v(F×)/pv(F×) is
a quotient of the Pontryagin dual Z̄∨.

(b) Assume that (F×)p is not totally rigid, and p = 2 or (F× : (F×)p)
< ∞. Then there exists an (F×)p-compatible valuation v on F with
v(F×)/pv(F×) ∼= Z̄∨.

(c) Assume that (F×)p is totally rigid. Then there exists an (F×)p-com-
patible valuation v on F and an epimorphism Z̄∨→ v(F×)/pv(F×)
with kernel of order dividing p.

Proof. By Corollary 4.4, Z̄∨ ∼= F×/Np. Every valuation v on F induces
an isomorphism F×/(F×)pO×v

∼= v(F×)/pv(F×). Now use Proposition 6.2.

From parts (a) and (b) we deduce:

Corollary 6.4. Assume that (F×)p is not totally rigid, and that p = 2
or (F× : (F×)p) < ∞. Then there exists an (F×)p-compatible valuation v
on F with v(F×) 6= pv(F×) if and only if Z̄ 6= {1}.

Remark 6.5. The finiteness assumption for p 6= 2 in Proposition 6.2(b)
(and therefore in Theorem 6.3 and Corollary 6.4) originates from the chain
argument in the proof of [Efr06, Prop. 26.5.4]. It is currently not known
whether this assumption in Proposition 6.2(b) is actually necessary.
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