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1. Introduction. This paper is devoted to the proof of the following
result.

Theorem. Let ψ1(n), . . . , ψk(n) be non-increasing , positive functions of
a positive integer variable n. Then the simultaneous inequalities given by :

(1.1)
∣∣∣∣αi −

qi
p

∣∣∣∣ <
ψi(p)
p

for 1 ≤ i ≤ k have infinitely many or finitely many solutions in primes p, qi
for almost all α = (α1, . . . , αk) in Rk, according to whether the sum

(1.2)
∞∑

n=2

ψ1(n) . . . ψk(n)
(logn)k+1

diverges or converges respectively.

In the English translation of “Continued Fractions” [7] by A. Ya. Khin-
chin the theorem to which the title refers is Theorem 32 on page 69. It can
be stated as follows:

Suppose that ψ(x) is a positive continuous function of a positive variable
x and that xψ(x) is a non-increasing function. Then the inequality∣∣∣∣α−

m

n

∣∣∣∣ <
ψ(n)
n

has, for almost all α, an infinite number of solutions in integers m and n
(with n > 0) if

∑∞
n=1 ψ(n) diverges. If on the other hand the sum converges

then for almost all α there are only a finite number of solutions to the
inequality.

This elegant theorem was proved by Khinchin in the context of continued
fractions and using results of Borel and Bernstein. It has been the subject
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of important work by Duffin and Schaffer and in their 1941 paper [2] the
condition on ψ(x) is considerably weaker in that merely ψ(x) itself need
be non-increasing. The question of the necessary and sufficient condition on
ψ(x) was investigated further by Duffin and Schaffer and is the exact subject
of the Duffin–Schaffer conjecture. See Chapter 2 of [5] for a treatment of this
question.

Glyn Harman has considered the question of restricting the integers m
and n to sets of number theoretic interest and these results can be found in
Chapter 6 of [5]. In [4] both m and n are restricted to primes and it is in
that paper that our present theorem is proved in its one-dimensional form.

We have two things to show in the proof of our theorem; firstly that if the
sum (1.2) converges then there are finitely many solutions to the inequalities
for almost all α ∈ Rk and secondly that if the sum diverges then for almost
all α ∈ Rk there are infinitely many solutions. The first implication is proved
quite easily using the Borel–Cantelli Lemma and it is the second implication
that takes by far the most work.

Definitions. Throughout the paper, p, q, r and s, with or without sub-
scripts, will be primes (either positive or negative) unless stated otherwise.

For x ∈ Rk let
|x| = max

1≤i≤k
(|xi|).

Define Dp ⊆ Rk by

Dp =
⋃

si 6=p
1≤i≤k

(
s1 − ψ1(p)

p
,
s1 + ψ1(p)

p

)
× . . .×

(
sk − ψk(p)

p
,
sk + ψk(p)

p

)
,

and

V (N) =
∑

2≤p≤N

ψ1(p) . . . ψk(p)
(log p)k

.

Also, let

D =
∞⋂

q=2

∞⋃

p=q

Dp

that is, the set of points α ∈ Rk belonging to infinitely many of the Dp.

Throughout the proof we assume the Prime Number Theorem, the result
that the divergence of (1.2) is equivalent to the divergence of

∞∑

p=2

ψ1(p) . . . ψk(p)
(log p)k

and that ψi(n) ≤ 1/2 for each i and for all n. Furthermore we will require
the following results:
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Result 1 (First Borel–Cantelli Lemma). If {An} is a sequence of mea-
surable sets in a measure space whose measures have a finite sum, then the
set of points that are in an infinite number of the given sets has measure
zero.

Result 2. Let V be an open, Lebesgue-measurable subset of Rk. Let (Dn)
be a sequence of measurable subsets of V . Also, let D =

⋂∞
m=1

⋃∞
n=mDn,

i.e. the set of points of V belonging to infinitely many of the Dn. Suppose
that for every open cube C ⊆ V , we have

(1.3)
∞∑

n=1

λk(Bn) =∞,

(1.4) lim sup
N→∞

( N∑

n=1

λk(Bn)
)2( ∑

1≤m,n≤N
λk(Bm ∩Bn)

)−1
≥ δλk(C),

where Bn = C ∩Dn and δ > 0 is a constant independent of C. Then
λk(V \ D) = 0.

For proof of this result see Section 4.

Result 3. Let (xn) be a sequence of N points in Rk. Let B be a box
in Uk ⊆ Rk with side lengths β1, . . . , βk. Then for |θi| ≤ 1 (1 ≤ i ≤ k) and
positive integer L,

N∑

n=1
xn∈B+Zk

1

=
N∑

n=1

(
λ(B) + 1 · θ1µ1(B)

L+ 1
+ 3 · θ2µ2(B)

(L+ 1)2 + . . .+ (2k − 1)
θkµk(B)
(L+ 1)k

)

+
∑

0<|m|≤L
c(m)

∣∣∣
N∑

n=1

e(m · xn)
∣∣∣,

where
µj(B) =

∑

1≤ia≤k
ib 6=ic

βi1 . . . βik−j ,

so e.g. µ1(B) = β1β2 . . . βk−1 + . . . + β2β3 . . . βk, i.e. µj(B) is the (k − j)-
dimensional perimeter of B, and with

m = (m1, . . . ,mk), mi ∈ Z,

c(m) = k
k∏

j=1

(
1

L+ 1
+ min

(
1

π|mj|
, βj , 1− βj

))
.
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Proof. This is a k-dimensional generalisation of Lemma 5.1 of [4].

For the first implication we assume that the sum
∞∑

p=2

ψ1(p) . . . ψk(p)
(log p)k

converges. Without loss of generality, we will show that the set of α in (R+)k

for which there are infinitely many solutions to (1.1) has measure zero. Let
CM = [M1,M1 + 1]× . . .× [Mk,Mk + 1] for some vector M = (M1, . . . ,Mk)
∈ Zk and let Bp = CM ∩Dp, where Dp is as in the definitions. We have

Bp = CM ∩
( ⋃

si 6=p
1≤i≤k

(
s1 − ψ1(p)

p
,
s1 + ψ1(p)

p

)

× . . .×
(
sk − ψk(p)

p
,
sk + ψk(p)

p

))
,

and we can say that
∞∑

p=2

λk(Bp) ≤
∞∑

p=2

2kψ1(p) . . . ψk(p)
pk

∑

s1∼p
. . .
∑

sk∼p
1,

where si ∼ p denotes pMi < si < p(Mi + 1). Hence using the Brun–
Titchmarsh inequality for the number of primes in an interval of length
p we can say that the sum in question is

≤ C(k)
∞∑

p=2

ψ1(p) . . . ψk(p)
(log p)k

.

Since the sum above converges the sum of the measures of the Bp is finite
and so by the First Borel–Cantelli Lemma (Result 1) we can conclude that
the set of α contained in infinitely many Bp has measure zero. Now the set
of α contained in infinitely many Dp is just the union over all M of those
contained in infinitely many CM ∩ Dp and since a countable union of null
sets is itself null we can conclude that this too is a null set. From this the
result follows.

2. Construction. We now assume that
∞∑

p=2

ψ1(p) . . . ψk(p)
(log p)k

diverges. We will show that the sequence (Dp) of measurable sets satisfy the
conditions of Result 2 with V = (R+)k. We will then be able to conclude
that the set of α contained in infinitely many of the Dp has full measure,
which is equivalent to the assertion that for almost all α there are infinitely
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many solutions to the simultaneous inequalities (1.1). This then proves the
theorem. It follows from the Prime Number Theorem that if (1.2) diverges
then

∞∑

p=2

λk(Dp ∩ C) =∞,

where C is any cube in (R+)k. Thus (1.3) holds, and this is the first condition
of Result 2.

We now need to show that the second condition of Result 2 holds. Thus
we show that given any C ⊆ (R+)k, we have

(2.1) lim sup
N→∞

( N∑

p=2

λk(Dp ∩ C)
)2( ∑

2≤p,q≤N
λk(Dp ∩Dq ∩ C)

)−1

≥ δλk(C),

where δ > 0 is a constant independent of the choice of C. To show this we
prove the following lemma.

Lemma 1. For C ⊆ (R+)k we have

(2.2) lim
N→∞

1
V (N)

N∑

p=2

λk(Dp ∩ C) = 2kλk(C)

and

(2.3) lim sup
N→∞

1
(V (N))2

∑

2≤p,q≤N
λk(Dp ∩Dq ∩ C) ≤ ∆λk(C),

where ∆ > 0 is independent of the choice of C.

Proof. For ease of notation we prove the lemma for cubes C of the form
(1, 1 + θ)k with θ ≤ 1/2 rather than for cubes with a corner at some general
point η of (R+)k. Also, note that ∆ will be used to denote a positive real,
independent of the cube C, and will not necessarily be the same at every
occurrence. To show (2.2) note that

N∑

p=2

λk(Dp ∩ C) =
N∑

p=2

2k
ψ1(p) . . . ψk(p)

pk

∑

s1∼p
. . .
∑

sk∼p
1

where si ∼ p denotes p < si < p(1 + θ). By the Prime Number Theorem,
this is

N∑

p=2

2k
ψ1(p) . . . ψk(p)

pk
· θkpk

(log p)k
(1 + o(1))

and this is just 2kθkV (N) + o(V (N)) as required.
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For (2.3) note that since
∑

2≤p=q≤N
λk(Dp ∩Dq ∩ C) = 2kθkV (N) + o(V (N))

and the right-hand side above is o(V (N))2, we need only show that

(2.4)
∑

2≤p<q≤N
λk(Dp ∩Dq ∩ C) ≤ ∆λk(C)(V (N))2 + o(V (N))2.

We will denote the sum on the left-hand side above by S(N). Now Dq is a
union of cubes each having a measure of

2k
ψ1(q) . . . ψk(q)

qk
.

Since this is also the maximum measure of the intersection of a cube in
Dp and a cube in Dq, where p < q, we may write an upper bound on
λk(Dp∩Dq∩C) by bounding the number of such intersections and counting
them with this weight. Suppose that(

s1 − ψ1(p)
p

,
s1 + ψ1(p)

p

)
× . . .×

(
sk − ψk(p)

p
,
sk + ψk(p)

p

)

intersects with(
s1 − ψ1(q)

q
,
s1 + ψ1(q)

q

)
× . . .×

(
sk − ψk(q)

q
,
sk + ψk(q)

q

)
:

A necessary condition for this is given by

(2.5) 0 < |rip− siq| < 2qψi(p) for i = 1, . . . , k;

i.e. that the centres of the two cubes are sufficiently close for intersection
to occur. (Note that we need not consider equality with zero in the above
expression since we are assuming here that p 6= q and in our definition of
Dp, si 6= p.) Since we are only counting intersections which lie in C the
centres of both cubes must certainly lie in C and so we have the condition
r ∼ q, meaning that q < ri < q(1 + θ) for each i between 1 and k, and r ∼ p
similarly. This argument gives the following sum as an upper bound:

S(N) ≤
∑

2≤p<q≤N
2k
ψ1(q) . . . ψk(q)

qk

∑

r∼q

∑∗

s∼p
1,

the asterix denoting the summation condition given in (2.5). We now split
up the range 2 ≤ p < q ≤ N into subranges by defining parameters P and Q
as taking values 2(1+θ)n in the range (2, N(1+θ)). Using the “∼” notation
introduced above we can rewrite the sum as

(2.6) S(N) ≤
∑

2≤P≤Q≤N
2k
ψ1(Q) . . . ψk(Q)

Qk

∑

r:Q
q∼Q

∑∗

s:P
p∼P

1.
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Here, r : Q denotes Q < ri < Q(1 + θ)2 for i = 1, . . . , k and the asterix
denotes the following conditions:

0 < |rip− siq| < 3Qψi(P ) for i = 1, . . . , k.

Now define S(P,Q) to be the double sum part of (2.6). S(P,Q) counts the
number of solutions to a set of k inequalities involving integers alone and
the proof of (2.3) and hence of the main theorem now rests on proving a
suitable size upper bound for this.

3. Main lemma

Lemma 2. For Q ≥ P ≥ θ−2 there exists a small , positive real c (de-
pendent only on the ψ functions), such that

S(P,Q) ≤ ∆θk+2PQH1 . . .Hk

(logQ)k+1(logP )k+1 +O(H1 . . .HkPQ
1−c).

Here ∆ is a positive constant dependent only on the dimension k and Hi =
3Qψi(P ).

The criterion of Lemma 2 is that Q ≥ P ≥ θ−2; when this does not hold
either (1) Q < θ−2 or (2) P ≤ θ−2 < Q. In either case we have, trivially,

S(P,Q) ≤
∑

p∼P

∑

q∼Q

∑

r:Q

∑

s:P

1.

In case (1) this is just O(1) with respect to N while in case (2) it is

� Qk+1

(logP )k+1(logQ)k+1 .

Hence by (2.6), the contribution this gives to S(N) has size

�
∑

2≤P≤Q≤N
P≤θ−2

Qψ1(Q) . . . ψk(Q)
(logP )k+1(logQ)k+1 ,

which is O(V (N)). By this and Lemma 2 then, S(N) is

≤ ∆θk
∑

2≤P≤Q≤N

PQθ2ψ1(P ) . . . ψk(P )ψ1(Q) . . . ψk(Q)
(logP )k+1(logQ)k+1 + o(V (N))2

and this is

≤ ∆λk(C)(V (N))2 + o(V (N))2
.

Hence (2.4) holds, which directly implies (2.3), thus proving the theorem.
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In Lemma 2 we are looking for an upper bound on the number of solu-
tions in primes to the inequalities

(3.1)

0 < |r1p− s1q| < H1,

. . . . . . . . . . . . . . . . . . . . . .

0 < |rkp− skq| < Hk,

where ri : Q, si : P , p ∼ P and q ∼ Q.
We begin by proving the lemma in the case k = 2. This serves to illustrate

all the new difficulties introduced when generalising the one-dimensional
result. We shall then give some details for the case k > 2. The proof falls
into three parts. The first is when the P variable is smaller than a power of
Q (we will take P < Q1/4) and in this case the Brun–Titchmarsh inequality
provides a suitable bound. The other two parts cover the case P ≥ Q1/4

and are distinguished by the following assumption on the relative sizes of
our ψ(P ) functions:

∃δ > 0 such that for i = 1 to k, ψi(P )� P δ−1.

The second part will assume that the above holds, while the third part, when
it fails will be similar to the k = 1 version of the lemma which is proved in
[2] using a result on incomplete Kloosterman sums. The latter two parts use
the following sieve results.

Lemma 3a. For squarefree integer d and positive integer κ, write

ω(d) =
∏

p|d
κ.

Let A be a set of positive integers and Y,X positive reals. Put

Rd =
∑

n∈A
d|n

1− ω(d)
d

X.

Then the number of members of A having all their prime factors greater
than Y is

≤ ∆X

(logY )κ
+O

(∑

d≤Y
µ2(d)dε|Rd|

)
.

Here µ(d) is the Möbius function, ε is an arbitrary positive real and ∆ is a
positive constant.

Proof. This is a special case of Theorem (5.2) of [3].

Lemma 3b. For squarefree integer d and positive integer κ, write

ω(d) =
∏

p|d

(
κ− 1

p

)
=

∑

x1...xκ=d
x1,...,xκ≥0

φ(x1)
x1

.
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Let A be a set of positive integers, Y,X positive reals and h an even positive
integer. Put

Rd =
∑

n∈A
d|n

1− ω(d)
d

X.

Then the number of members of A having all their prime factors either
dividing h or greater than Y is

≤ ∆X

(log Y )κ

(
h

φ(h)

)κ
+O

( ∑

d≤Y
(d,h)=1

µ2(d)dε|Rd|
)
.

Here µ(d) is the Möbius function, φ(h) is the Euler totient function, ε is an
arbitrary positive real and ∆ is a positive constant.

Proof. This is a special case of Theorem (5.2) of [3].

These sieve results will in fact give an upper bound on the number of
solutions to the inequalities in integers si, ri with prime factors larger than
a given size so in this section si, ri are not necessarily primes.

We require one more auxiliary lemma before beginning the proof of
Lemma 2.

Lemma 4. Let U, V ≥ 1 be real and t, w integers with (t, w) = 1 and
V ≤ 3w. Then for any ε > 0, we have

∑

1≤u≤U

∣∣∣∣
∑

1≤v≤V
(v,w)=1

e

(
vut

w

)∣∣∣∣� Uw1/2+ε.

Here v denotes a solution of xv ≡ 1 (modw).

Proof. See Lemmas 6 and 7 in Chapter 2 of [6].

Proof of Lemma 2. Case 1: P < Q1/4. Fix s1, p and q in the first equa-
tion, then re-arranging the equation shows that the number of solutions is

π

(
s1q

p
+
H1

p

)
− π

(
s1q

p
− H1

p

)
.

By the Brun–Titchmarsh inequality this is

≤ 4H1

p log(H1/p)
.

Now since P < Q1/4 and H1 � Q/P this is

� 4H1

P logQ
.

Since we get a similar bound by fixing s2 in the second equation, the total
number of solutions is
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�
∑

p∼P

∑

q∼Q

∑

s1:P

∑

s2:P

H1

P logQ
· H2

P logQ
,

which is

≤ ∆θ4PQH1H2

(logQ)3(logP )3 ,

using the fact that Pθ ≥ P 1/2 and Qθ ≥ Q1/2. This proves Case 1 of the
lemma.

Case 2: P ≥ Q1/4 and there exists δ > 0 such that ψi(P ) � P δ−1,
i = 1, 2. We fix q and apply Lemma 3a with κ = 4 and with

A = {r1r2s1s2 | |rip− siq| < Hi, ri : Q, si : P and p ∼ P}.
Note that p is prime here. In order to estimate the size of Rd we need to
look at the size of

Ad = {n ∈ A | d|n}.
For this we will obtain an asymptotic formula using the Fourier analysis
Result 3. Writing a member of Ad in the form

(r1x1)(r2x2)(s1y1)(s2y2)

where x1x2y1y2 = d, we can obtain the number of elements in Ad by count-
ing solutions to

∥∥∥∥
r1x1p

qy1

∥∥∥∥ <
H1

qy1
,

∥∥∥∥
r2x2p

qy2

∥∥∥∥ <
H2

qy2
,

where ‖ · ‖ denotes distance to the nearest integer. Using Result 3 with

B =
(
−H1

qy1
,
H1

qy1

)
×
(
−H2

qy2
,
H2

qy2

)

we get
∑

n∈Ad
1 =

∑

x1x2y1y2=d

( ∑

r1,r2,p

(
4H1H2

y1y2q2 +
θ1

L+ 1

(
2H1

y1q
+

2H2

y2q

)

+
3θ2

(L+ 1)2

)
+ θ3E3

)
.

In the above sum, r1, r2 and p lie in the following ranges:

r1 :
(
Q

x1

)
, r2 :

(
Q

x2

)
, p ∼ P.

We let E3 denote the exponential sum part of Result 3 and we will deal with
this presently. Of the three summands within the r1, r2, p sum it is the first
which will form the main term and the other terms we will label E1 and E2

respectively. The main term then is
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∑

x1x2y1y2=d

4H1H2

y1y2q2

(
θ(2 + θ)Q

x1
+O(1)

)(
θ(2 + θ)Q

x2
+O(1)

)
π(P, θ)

where π(P, θ) denotes the number of primes in the interval (P,P (1 + θ)).
The above is

4H1H2θ
2(2 + θ)2Q2π(P, θ)

q2

∑

x1x2y1y2=d

1
x1x2y1y2

+O

(
H1H2PQ

q2

∑

x1x2y1y2=d

1
x1y1y2

)

and can be written as
ω(d)
d

X +O

(
H1H2Pd

ε

q

)
.

Hence we can say that

(3.2) |Rd| = O

(
H1H2Pd

ε

q

)
+E1 +E2 +E3.

Now letting L = Q, we have

E1 =
∑

x1x2y1y2=d

∑

r1,r2,p

θ1

L+ 1

(
2H1

y1q
+

2H2

y2q

)
.

This has order no larger than (H1 +H2)Pdε, which in turn is

(3.3) � H1H2Pd
ε

Qδ
,

since we have assumed that there exists δ > 0 such that ψi(P )� P δ−1.
The next error term, E2, is

∑

x1x2y1y2=d

∑

r1,r2,p

3θ2

(L+ 1)2 .

This can easily be seen to have order no worse than

(3.4)
H1H2Pd

ε

Q
.

The exponential sum term, E3, is
∑

x1x2y1y2=d

∑

0<|m|≤L
c(m)

∣∣∣∣
∑

r1,r2,p

e

(
m1r1x1p

y1q
+
m2r2x2p

y2q

)∣∣∣∣.

Here c(m) (see Result 3) is

2
2∏

j=1

(
1

L+ 1
+ min

(
1

π|mj|
, βj , 1− βj

))
.



216 H. Jones

We are taking

βj =
2Hj

qyj

and the order of c(m) will depend on the size of |mj | relative to this. Note
that we have already set L = Q. Summing over r1 and r2 we can say that
E3 is

≤
∑

x1x2y1y2=d

∑

0<|m|≤Q

∑

p∼P
c(m) min

(
Q

x1
,

1∥∥m1x1p
qy1

∥∥
)

min
(
Q

x2
,

1∥∥m2x2p
qy2

∥∥
)
.

The largest term in the above expression arises when m1 or m2 are zero.
Without loss of generality, let m2 = 0; then we have a term which is

�
∑

x1x2y1y2=d

∑

1≤|m1|≤Q

∑

p∼P
min

(
H1

q
,

1
|m1|

)
H2

qy2
· Q
x2
· 1∥∥m1x1p

qy1

∥∥ .

Splitting the range of m1 into two sections shows that this is

� H2

∑

x1x2y1y2=d

1
x2y2

∑

1≤|m1|≤Q/H1
p∼P

H1

Q
· 1∥∥m1x1p

qy1

∥∥

+H2

∑

x1x2y1y2=d

1
x2y2

∑

Q/H1≤|m1|≤Q
p∼P

1
|m1|

· 1∥∥m1x1p
qy1

∥∥ .

Combining m1 with p to give a single variable a we can say that this is

� H1H2

Q

∑

x1x2y1y2=d

1
x2y2

∑

P≤a<2PQ/H1

1∥∥ax1
qy1

∥∥

+
H1H2

Q

∑

x1x2y1y2=d

1
x2y2

2 logQ∑

k=0

1
2k

∑

2kPQ/H1≤a<2k+1PQ/H1

1∥∥ax1
qy1

∥∥ .

This in turn is

� H1H2

Q

∑

x1x2y1y2=d

1
x2y2

(
2P
H1

+ 1
)
Q logQ

+
H1H2

Q

∑

x1x2y1y2=d

1
x2y2

2 logQ∑

k=0

1
2k

(
2kP
H1

+ 1
)
Q logQ,

which is

� H2Pd
ε log2 Q+H1H2d

ε logQ.

Now since ψ1(P )� P δ−1, this is

(3.5) � H1H2Pd
ε

Qβ
(log2 Q),
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where β = min(δ, 1/4). The remaining part of E3 has m1 and m2 both
non-zero and for this part we start by noting that for any fixed p,

∑

1≤|m2|≤Q

1∥∥m2x2p
y2q

∥∥ � Qy2 logQ.

Using this bound for the m2 part of the double exponential sum (having m1

and m2 both non-zero) shows that the sum is no more than

Q logQ
∑

x1x2y1y2=d

y2

∑

1≤m1≤Q

H2

q
min

(
H1

q
,

1
|m1|

)∑

p∼P

1∥∥m1x1p
y1q

∥∥ .

As before we can now combine the two variables m1 and p to give a single
variable a to get our bound. This is straightforward for |m1| ≤ q/H1 and
uses a splitting up argument for m1 in the range q/H1 < |m1| < Q. Together
these give a bound no more than

(3.6)
H1H2Pd

1+ε

Qβ
(log3 Q).

Looking at (3.2) and the bounds we have obtained for E1, E2 and E3 in
(3.3)–(3.6) respectively, we can say that

(3.7) |Rd| �
H1H2Pd

1+ε

Qβ
(log2 Q).

This means that the error term of the sieve is
∑

d≤Y
µ2(d)dε|Rd| ≤

∆H1H2PY
2+ε

Qβ−η
,

for any small η>0, thus accounting for the log2 Q term in (3.7). Let Y =Qα.
Then taking α = η = ε = β/4 makes this term

≤ ∆H1H2P

Qc
,

where c = β/8 say. By Lemma 3 the size of A is

≤ ∆X

(logQ)4 +O

(
H1H2P

Qc

)
.

So summing over q we can say that the S(P,Q) of Lemma 2 is

≤ ∆π(P, θ)H1H2θ
2(2 + θ)2Q2

(logQ)4

∑

q∼Q

1
q2 +O(H1H2PQ

1−c),

which is

≤ ∆Pθ3

(logP )
· H1H2

(logQ)4 ·
θQ

(logQ)
+O(H1H2PQ

1−c).

This completes Case 2 of the proof of Lemma 2.
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Case 3: P ≥ Q1/4 and there exists i such that ψi(P ) � P δ−1 for all
δ > 0. Without loss of generality assume ψ1(P ) � P δ−1 for all δ > 0
(and consequently that there exists δ′ > 0 such that ψ2(P ) � P δ

′−1). The
number of solutions to the equations for those h1 = |r1p − s1q| with p |h1

is � H1H2P � H1H2PQ
3/4. For other values of h1 we fix h1 and p and

apply the sieve result, Lemma 3b, with κ = 5 and with

A = {r1r2s1s2q | r1p− s1q = h1, |r2p− s2q| < H2, si : P and q ∼ Q}.

Note that here we are including q in the sieve so we are not restricting q to
being prime. We want to obtain a suitable bound on the size of

Ad = {n ∈ A | d|n}.

For squarefree d this is equivalent to the number of solutions to

x1x2y1y2z = d, x1, . . . , z ≥ 1,

r1x1p− s1y1qz = h1 and |r2x2p− s2y2qz| < H2.

Since we are considering d with (h1, d) = 1 in this sieve, we also have
(h1, x1p) = 1 and consequently (s1y1z, x1p) = 1. Thus the above is equiva-
lent to

x1x2y1y2z = d, x1, . . . , z ≥ 1,

s1y1zh1 + q ≡ 0 (modx1p) and s2y2qz + h2 ≡ 0 (modx2p).

Here the ā notation denotes the inverse of a modulo x1p. We now convert
the congruences to exponential sums and say that the number of solutions
to the above is equal to

∑

x1x2y1y2z=d

1
p2x1x2

∑

0≤|m1|≤px1/2
0≤|m2|≤px2/2

∑

q∼Q/z

∑

s1:P/y1
(s1,px1)=1

∑

s2:P/y2
0<|h2|≤H2

S

(with the convention that the value mi = −pxi/2 is omitted from the sum-
mation if pxi is even), and where

S = e

(
m1(s1y1zh1 + q)

x1p

)
e

(
m2(s2y2zq + h2)

x2p

)
.

The part of this sum with m1 = m2 = 0 is our main term and is equal to

(3.8) X
ω(d)
d

+O

(
H2Qd

ε

p

)
,

where X = 2H2P
2Qθ3(2 + θ)2/p2. The remainder term in the sieve, Rd, is

thus
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(3.9)
∑

x1x2y1y2z=d

1
p2x1x2

∑

0≤|m1|≤px1/2
0≤|m2|≤px2/2
m1,m2 not both 0

∑

q∼Q/z

∑

s1:P/y1
(s1,px1)=1

∑

s2:P/y2
0<|h2|≤H2

S

+O(H2Qd
ε).

We now consider the parts of this sum where either m1 or m2 are zero.
Firstly, the part with m1 = 0 is

� 1
p

∑

x1x2y1y2z=d

1
x1x2y1

×
∑

1≤|m2|≤px2/2

∣∣∣∣
∑

q∼Q/z
s2:P/y2

∑

0<|h2|≤H2

e

(
m2(s2y2zq + h2)

x2p

)∣∣∣∣.

Now since ∣∣∣∣
∑

0<|h2|≤H2

e

(
m2h2

x2p

)∣∣∣∣ ≤ min
(
H2,

x2p

|m2|

)
,

the exponential sum above is

� 1
p

∑

x1x2y1y2z=d

1
x1x2y1

×
∑

1≤|m2|≤px2/2

min
(
H2,

x2p

|m2|

) ∑

q∼Q/z

∣∣∣∣
∑

s2:P/y2

e

(
m2s2y2zq

x2p

)∣∣∣∣.

We now sum over s2 and split the sum into two parts distinguished by the
size of m2 to give the following bound:

H2

p

∑

x1x2y1y2z=d

1
x1x2y1

∑

1≤|m2|≤px2/H2

∑

q∼Q/z

1∥∥m2y2zq
x2p

∥∥

+
∑

x1x2y1y2z=d

1
x1y1

∑

px2/H2≤|m2|≤px2/2

1
|m2|

∑

q∼Q/z

1∥∥m2y2zq
x2p

∥∥ .

We then combine m2 with q giving a single variable a running over a large
range. This will produce a

∑
d|a 1 term which adds a factor of Qε to the

bound. The bound we obtain by doing this is
∑

x1x2y1y2z=d

1
x1y1z

Q1+ε logP

+
( ∑

x1x2y1y2z=d

1
x1y1z

Q1+ε logP logH2 +
∑

x1x2y1y2z=d

1
x1y1

H2Q
ε logP

)
.



220 H. Jones

This is no more than QQεdε, and since H2 � QP−δ
′
, the bound is

(3.10) � H2P
δ′Qεdε.

Next we need to bound the part of (3.9) that has m2 = 0. This is

� H2

p

∑

x1x2y1y2z=d

1
x1x2y2

×
∑

1≤|m1|≤px1/2

∣∣∣∣
∑

q∼Q/z

∑

s1:P/y1
(s1,px1)=1

e

(
m1(s1y1zh1 + q)

x1p

)∣∣∣∣.

Now for |m1| ≤ px1/2 we have
∣∣∣∣
∑

q∼Q/z
e

(
m1q

x1p

)∣∣∣∣ ≤ min
(
Q

z
,
x1p

|m1|

)

(note that q now runs over all integers in its range), so the exponential sum
above is no more than

H2

p

∑

x1x2y1y2z=d

1
x1x2y2

×
∑

1≤|m1|≤px1/2

min
(
Q

z
,
x1p

|m1|

)∣∣∣∣
∑

s1:P/y1
(s1,px1)=1

e

(
m1s1y1zh1

x1p

)∣∣∣∣.

We may now apply Lemma 4 to the inner sum above giving a factor
(x1p)1/2+ε. We then sum over m1 either directly, for |m1| ≤ px1z/q, or
in blocks for |m1| > px1z/q thus obtaining a bound for the above of

H2

∑

x1x2y1y2z=d

x
1/2+ε
1

x2y2z
p1/2+ε +H2

∑

x1x2y1y2z=d

x
1/2+ε
1

x2y2
log(P/z)p1/2+ε.

Combined these are

(3.11) � H2p
1/2+εd1/2+ε.

The remaining part of the multiple exponential sum in (3.9) is
∑

x1x2y1y2z=d

1
p2x1x2

∑

1≤|m1|≤px1/2
1≤|m2|≤px2/2

∑

q∼Q/z

∑

s1:P/y1
(s1,px1)=1

∑

s2:P/y2
0<|h2|≤H2

S,

where

S = e

(
m1(s1y1zh1 + q)

x1p

)
e

(
m2(s2y2zq + h2)

x2p

)
.
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This has order of magnitude no greater than
∑

x1...z

1
p2x1x2

∑

m1,m2
q∼Q/z

min
(
H2,

x2p

|m2|

)

×
∣∣∣∣

∑

s1:P/y1
(s1,px1)=1

e

(
m1(s1y1zh1 + q)

x1p

)∣∣∣∣
∣∣∣∣
∑

s2:P/y2

e

(
m2s2y2zq

x2p

)∣∣∣∣;

here we have summed over h2. Next we sum over s2 to give a bound of
∑

x1...z

1
p2x1x2

∑

m2
q∼Q/z

min
(
H2,

x2p

|m2|

)
min

(
P

y2
,

1∥∥m2y2zq
x2p

∥∥
)
T,

where

T =
∑

1≤|m1|≤px1/2

∣∣∣∣
∑

s1:P/y1
(s1,px1)=1

e

(
m1(s1y1zh1 + q)

x1p

)∣∣∣∣.

We can now apply Lemma 4 directly to T . For the sum over m2 and q we
consider the parts where x2p does and does not divide m2y2zq separately.
In the first case we combine the variables q and m2 to give a single variable
running over a large range. This will also produce a Qε term as an upper
bound on the number of divisors of the variable. This part of the sum then is

�
∑

x1...z

1
p2x1x2

(x2p) log(x2p)
(

Q

zx2p

)
x2p log(x2p)Qε(x1p)(x1p)1/2+ε/2,

which is
� P 1/2+εQ1+ε

∑

x1x2y1y2z=d

x
1/2+ε/2
1 .

This gives a bound of P 1/2+εQ1+εd1/2+ε, and since H2 � QP−δ, this is

(3.12) � H2P
1/2+εQεd1/2+ε.

When x2p divides m2y2zq we are forced to take the trivial bound P/y2 on
the sum over s2 but since this occurs for a small range of m2 values the
bound we get is less than the bound given above.

By (3.10)–(3.12) the bound for the remainder term Rd as expressed
in (3.9) is

� H2Q
1+εd1/2+ε

p1/2
.

Hence ∑

d≤Y
(d,h)=1

µ2(d)dε|Rd| � H2Q
1+εP−1/2Y 3/2+2ε.
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By taking Y = P 1/4 and both occurrences of ε as 1/100 we can apply
Lemma 3b to state that for fixed h1 and p, the number of solutions to the
inequalities (3.1) is

(3.13) ≤ ∆H2θ
3Q

log5 P

(
h1

φ(h1)

)5

+O(H2Q
63/64).

Now
∑

1≤h1≤H1

(
h1

φ(h1)

)5

< ∆′H1,

so summing (3.13) over p and h1 gives the bound

∆H1H2θ
4PQ

(logP )3(logQ)3 +O(H1H2PQ
63/64).

Here we used the fact that 4 logP ≥ logQ. This completes the third and
final case of the proof of Lemma 2.

We should now mention some details regarding the proof of Lemma 2 for
k > 2. The proof still falls into the three cases used when k = 2. If we look
at these in turn, Case 1 generalises instantly and the difference is merely
one of notation. Case 2 is where we have P close to Q and with none of the
ψi(P ) functions being “small”. This case too generalises in a straightforward
way. The sieve result used is again Lemma 3a, applied with κ = 2k. Result
3 is employed, giving us the equation
∑

n∈Ad
1 =

∑

x1...xky1...yk=d

( ∑

r1,...,rk,p

(
2kH1 . . .Hk

y1 . . . ykqk
+ T1 + . . .+ Tk

)
+ E

)
,

where the Tj terms are of the form

Tj = (2j − 1)
θj

(L+ 1)j
∑

1≤ia≤k
ib 6=ic

2Hi1

qyi1
× . . .× 2Hik−j

qyik−j
.

It should be noted that the parameter L can be set to Q as before. The
exponential sum E looks like

∑

x1...xky1...yk=d

∑

r1,...,rk,p

c(m)
∣∣∣∣
∑

r1,...,rk,p

e

(
m1r1x1p

y1q
+ . . .+

mkrkxkp

ykq

)∣∣∣∣.

Since this is symmetrical in the k variables, the generalisation from k = 2 is
immediate. In Case 3 of the proof one might expect complications to arise
from the fact that we have more than two ψ(p) functions of different sizes.
However, for each k only one of the functions can be small in the sense that

ψ(p)� pδ−1 for any δ > 0,
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since if more than one of these functions had this property then our sum (1.2)
would converge. It may be the case that the product of l of the functions
is small in the sense given above thus forcing the product of the remaining
k − l functions to be large in the sense that

ψl+1(p) . . . ψk(p)� p−δ for any δ > 0,

but no problems arise from functions being large in this sense. For Case 3
then we employ a (2k + 1)-dimensional sieve with A equal to

{r1 . . . rks1 . . . skq | r1p− s1q = h1, |rip− siq| < Hi, si : P and q ∼ Q}.
The remainder terms in the sieve are dealt with using exponential sums
as for k = 2 but over k variables this time, m1 . . .mk. The part of the
sum having all mi zero except m1 is dealt with using the Kloosterman sum
estimate as before.

4. Additional proofs. The proof of Result 2 is as follows.
Firstly we need the following lemma which, given a measurable subset

A of Rk, provides a useful sufficient condition for Rk \ A to be a null set.

Lemma 5. Let A be as above and suppose that for every open cube
C ⊆ Rk we have

λk(A ∩ C) ≥ δλk(C)

where δ > 0 is a constant independent of the choice of C. Then λk(Rk \A)
= 0.

Proof. Corollary 6.2.6 on page 184 of [1] states that, if S is a (Lebesgue)
measurable subset of Rk, then almost all points of S are density points
of S. Applying this to the set Ac, the complement of A relative to Rk, and
assuming for a contradiction that λk(Ac) 6= 0, we get

∃x ∈ Ac ∀ε > 0 ∃δ′ > 0
∣∣∣∣
λk(Ac ∩ C)
λk(C)

− 1
∣∣∣∣ < ε for all cubes C with e(C) < δ′.

(Here e(C) denotes the edge length of C.) Applying the above with ε = δ/2
(where δ is as in the lemma) and letting C be an open cube with e(C) < δ′ε
we have:

∣∣∣∣
λk(Ac ∩ C)
λk(C)

− 1
∣∣∣∣ <

δ

2
,

hence 1 − λk(Ac ∩ C)/λk(C) < δ/2 and so λk(Ac ∩ C) > (1 − δ/2)λk(C).
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But
λk(C) = λk(Ac ∩ C) + λk(A ∩ C)

> (1− δ/2)λk(C) + δλk(C) (by assumption in the lemma)

= (1 + δ/2)λk(C) (contradiction, since δ > 0).

Hence we must have λk(Ac) = 0, which proves the lemma.

The result will now follow from two lemmas which allow us to apply
Lemma 5 with A = V c ∪ D.

Lemma 6. Let C be an open cube with C ⊆ V and let Bn = C ∩ Dn.
Then

λk(D ∩ C) ≥ δλk(C).

Proof. Firstly, we apply Lemma 5 on p. 17 of [8] to the sequence of
measurable sets (Bn) and get

(4.1) λk(B) ≥ lim
N→∞

( ∞∑

n=1

λk(Bn)
)2( ∑

1≤m,n≤N
λk(Bm ∩Bn)

)−1
,

where B = C ∩ D. The lemma requires a finite measure space but since the
sets (Bn) all lie in the finite cube C this is satisfied. The result then follows
from (4.1) and (1.4) of Result 2.

Lemma 7. Let A = V c ∪ D and C be an open cube in Rk. Then

λk(A ∩ C) ≥ δλk(C)

where δ > 0 is a constant independent of the choice of C.

Proof. Let G = C ∩ V ; then G is an open, measurable subset of Rk.
Hence Lemma 1.4.2 (p. 28) of [1] ensures we can say

G =
∞⋃

i=1

Ci where the Ci are disjoint half-open cubes.

We have

λk(D ∩G) = λk
(
D ∩

∞⋃

i=1

Ci

)
= λk

( ∞⋃

i=1

(D ∩ Ci)
)

(Ci disjoint)(∗)

=
∞∑

i=1

λk(D ∩ Ci) =
∞∑

i=1

λk(D ∩ C◦i )

≥
∞∑

i=1

δλk(C◦i ) (by Lemma 6)

=
∞∑

i=1

δλk(Ci) = δλk
( ∞⋃

i=1

Ci

)
= δλk(G).
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Hence,

λk(A ∩ C) = λk((V c ∪ D) ∩ C)

= λk(V c ∩ C) + λk(D ∩ C) (since D ⊆ V )

= λk(C \ V ) + λk(D ∩ (C ∩ V )) (since D ⊆ V )

= λk(C \ V ) + λk(D ∩G)

≥ λk(C \ V ) + δλk(G) (by (∗))
≥ δλk(C \ V ) + δλk(C ∩ V ) (letting δ < 1)

= δλk(C) (as required).

We have shown that A = V c ∪ D fulfils the criteria of Lemma 5 so we have
λk(Rk \ (V c ∪ D)) = 0; but this implies that λk(V ∩ (Rk \ D)) = 0 because
D ⊆ V ⊆ Rk and so λk(V \ D) = 0 as required.
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