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Genus one curves defined by separated variable
polynomials and a polynomial Pell equation

by

Roberto M. Avanzi (Essen) and Umberto M. Zannier (Venezia)

1. Introduction and statement of the results. In this paper we
discuss the following problem:

Problem 1.1. Determine all pairs (G,H) of polynomials in one variable
over a field K of characteristic zero such that the degrees m of G and n of
H are coprime and the curve given by

C : G(X) = H(Y )

has genus one.

We characterize all the solutions to the above problem. These are, apart
from a finite number of cases, two infinite families whose elements correspond
to the isomorphism classes of elliptic curves together with a torsion point.
We exploit this to compute explicit presentations of all the solutions over
the rationals.

The condition (m,n) = 1 alone implies the irreducibility of the curve
(Ehrenfeucht’s criterion, [E, Tv]), so it makes sense to speak of the genus.

Problem 1.1 finds its motivation in the more general problem of deter-
mining all the pairs (G,H) of polynomials with rational coefficients such
that the value sets of G and H over the rationals have infinite intersection
(i.e. that #{G(Q)∩H(Q)} =∞). By a theorem of Faltings [Fa] there must
be an absolutely irreducible factor of the polynomial G(X)−H(Y ) of genus
at most one. On the other hand, if we ask that the value sets over the inte-
gers have infinite intersection, then by a theorem of Siegel ([Sie], a proof is
also given in [Sil, Ch. IX, §§3, 6]) the polynomial G(X)−H(Y ) must have
a genus zero factor (with at most two infinite places).
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In the genus zero case with (m,n) = 1, Ritt’s Second Theorem gives a
complete answer (see [Sch3, pp. 40–41]). Proved in 1922 by J. F. Ritt [Ri],
it is equivalent to the following statement (see [Sch3, §5] and [Z]):

Ritt’s Second Theorem. Let K be a field. Let G, H ∈ K[t] have
coprime degrees m, n resp. such that G′H ′ 6= 0 and that the curve G(X) =
H(Y ) has genus zero. Then the pair (G,H) is equivalent over the algebraic
closure of K (as in Definition 1.2 below) to

(tm, trP (t)m)(1)

for a suitable polynomial P and r ∈ N, or to

(Tm(t), Tn(t))(2)

where the polynomials Td are the normalized Chebyshev polynomials.

This results admits several proofs, including [Fr1], [Sch3, §5] and [Z].
The interesting work [Fr4] contains also a comprehensive set of references
about recent developments. P. Müller [Mü] derives Ritt’s theorems in a
group-theoretical setting.

In the genus zero case Michael Fried [Fr1] went even further: he solved it
when (m,n) ≤ 2 and also for arbitrary d = (m,n) provided the degrees m
and n are larger than some number N(d) and C is irreducible ([Fr1, Theorem
4]) (1).

Recently Yuri Bilu and Robert Tichy [BT] gave a very explicit finite-
ness criterion for all the polynomials of the form G(X) −H(Y ) ∈ Q[X,Y ]
with infinitely many rational points with bounded denominators, going be-
yond [Fr1] in determining in which cases one actually gets infinitely many
rational points with bounded denominators, removing Fried’s cyclic reduced
pairs.

The genus one case has not yet been investigated, as far as the authors
are aware, apart from the very special case arising from the problem of
finding arithmetic progressions with equal product of consecutive terms:
the authors of [BST] find some polynomials which fall in our families as a
special case. Later (Remark 1.12) we briefly go deeper into this problem.

Since the main motivations are diophantine, we have treated this problem
only in characteristic zero.

We summarize a few facts about our solution, which is more complicated
than in the genus zero case:

(i) the degree of one of the two polynomials is always bounded;

(1) In passing we note he faced the older (see [DLS]) problem of the reducibility
of arbitrary polynomials of the form G(X) − H(Y ). The case where one of G, H is
indecomposable is essentially solved, assuming the Classification of the Finite Groups,
in [Fr1], [Fr2, Theorem 1], [Fr3, Theorem 2.2] and [CC].

The general case when G and H are not indecomposable is still open.
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(ii) we have some curves of the type Y m = G(X) which are the analogue
of the solutions (1) of Ritt’s Second Theorem (the cyclic case);

(iii) we get an elliptic case corresponding to the solutions of type (2);
(iv) there are, up to equivalence, 11 other curves not included in the cyclic

and elliptic cases, which we call sporadic.

In the elliptic case we find polynomials defined over C, which are essen-
tially all solutions G(X) to the polynomial Pell equation

G(X)2 − f(X)R(X)2 = 4(3)

for a suitable polynomial R(X), where f(X) is a degree 4 square-free monic
polynomial (explicit formulae for the general solutions can be given, but we
do not need them, as it suffices to prove that solutions exist and to com-
pute those with rational coefficients). Some of these polynomials have been
discovered by Akhiezer while studying polynomials which are extremal on
two disjoint intervals (2) [A]. We generalize his terminology by calling them
elliptic polynomials. The polynomials discovered by Akhiezer are sometimes
called Akhiezer polynomials.

The solutions of the above equation (3) are parametrized by torsion
points of elliptic curves as described in Theorem 2 below. This parametriza-
tion can be expressed in the language of modular curves.

We could say that torsion points on circles “parametrize” Chebyshev
polynomials Tn in an analogous way.

The Tn’s also satisfy a relation similar to (3), but with f(X) = X2 − 4
of degree 2.

Composing Chebyshev polynomials with elliptic polynomials yields again
elliptic polynomials: Theorem 2 gives a more precise statement.

Our results are collected in Theorems 1–3 and a Corollary.
Throughout this paper, k denotes a fixed algebraically closed field of

characteristic zero.

Definition 1.2. Two polynomials G and G̃, with coefficients in k, are
said to be equivalent if there exists a linear function L such that G̃ = G ◦L,
and write G̃ ∼ G.

An ordered pair of polynomials (G,H) is said to be equivalent to the
ordered pair (G̃, H̃) if there exist three linear functions M , L1 and L2 such
that either

G̃ = M ◦G ◦ L1 and H̃ = M ◦H ◦ L2

or
G̃ = M ◦H ◦ L1 and H̃ = M ◦G ◦ L2,

and write (G,H) ≈ (G̃, H̃).

(2) This fact parallels the history of the first discovery of the Chebyshev polynomials,
which are extremal on one interval.
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Theorem 1 (Main Theorem). Let G(X) and H(Y ) be two polynomials
with coefficients in k, and coprime degrees m and n. Then the irreducible
curve C : G(X) = H(Y ) has genus one if and only if the pair (G,H) is
equivalent to some pair in one of the following families:

(i) the set F1 of pairs of type (G(X), Y n) such that the equation Y n =
G(X) defines a genus one curve;

(ii) the sets F2 and F3 of elliptic cases, consisting of the pairs (G,H)
where H is the normalized Chebyshev polynomial of degree 3 and 4 respec-
tively , and G is a solution of the polynomial Pell equation (3) for a suitable
monic square-free degree 4 polynomial f(X): the f(X)’s such that the above
equation is solvable are characterized by Theorem 2 below ; moreover in F3

the sign of G is determined such that G(X) + 2 has exactly one root of odd
multiplicity (3); and

(iii) the family Fs of the 11 sporadic pairs.

A detailed definition of the sets F1, F2, F3 and Fs is given in Definitions
1.5–1.10.

Suppose now that K is an arbitrary field of characteristic zero.
Consider the polynomial Pell equation

G(X)2 − f(X)R(X)2 = γ(4)
where f(X) is a square-free degree 4 monic polynomial with coefficients in
K. A solution of equation (4) over K is a triple τ = (G(X), R(X), γ) with
G(X) and R(X) ∈ K[X] and γ ∈ K∗ which satisfy (4). The degree of τ is
the degree of G(X).

We endow the normalization ∆ of the curve
Y 2 = f(X)

with an elliptic curve structure by choosing one of the two points at infinity
(which, f being monic, are K-rational) as the identity element. Denote by
π the other point at infinity.

The following theorem holds:

Theorem 2. The equation (4) is solvable with G(X), R(X) in K[X]
and γ ∈ K∗ if and only if π is a torsion point of ∆.

Suppose now that π is a torsion point of order exactly N . Then (4) has
a solution of degree dN for any positive integer d, and , for a fixed degree,
the solution with G monic is unique (up to the sign of R).

Let (G1, R1, γ1) be the solution with G1 monic of minimal degree N .
Then the solution (Gd, Rd, γd) with Gd monic of degree dN is given by

Gd(X) = Dd(G1(X); γ1/4), γd = 41−dγd1
where Dd is the dth Dickson polynomial.

(3) See Remark 1.6 below.
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The polynomials f(X) together with the solutions G1(X) of minimal
degree correspond , up to linear change of the variable, to the isomorphism
classes of elliptic curves together with a torsion point of given order.

There is a solution (G0, R0, 4) with G0 of degree N if and only if γ1

is a square in K, and in this case, for any fixed d the polynomials G(X)
and R(X) of degrees dN , resp. dN − 2, which solve (3) are determined up
to sign. Let G0 be a solution to (3) of minimal degree N . Up to sign the
solution Gd(X) of degree dN is given by

Gd(X) = Td(G0(X))(5)

where Td is the normalized Chebyshev polynomial of degree d.
If K is algebraically closed then we can clearly always suppose γ = 4

and N can be any natural number greater than 1.

Using Mazur’s theorem ([Maz1, Maz2]) we get the following corollary to
the above theorem:

Corollary 1.3. If K = Q in Theorem 2 then N can only take the
values 2 ≤ N ≤ 10 and N = 12.

It is possible to give explicit parametrizations of all the f(X) ∈ Q[X] such
that the point π on the curve ∆ has order exactly N . Moreover all solutions
(GN (X; t), RN (X; t), γN (t)) to (4) can be computed , with GN (X; t) monic
of (minimal) degree N , where t = {t1, t2, . . .} is a finite set of parameters
which run through Q (except at most a finite number of values), GN (X; t)
and R(X; t) ∈ Q(t)[X] and γN (t) ∈ Q(t).

If N = 2 or 3 then we can take #t = 2, and if N > 3 one parameter
suffices.

In Section 5 we will discuss how to give explicit parametrizations for all
the possible f(X) and compute tables for G(X), R(X) and γ over Q. The
instructions we give are explicit enough to allow faithful reproduction of our
computations, which required about 15 minutes with MAPLE [CGG+] on
an old IBM RS6000 workstation. More detailed information can be obtained
from the authors.

The deep results of Merel, Oesterlé and Parent [Me, Oe, P] bound the
torsion of elliptic curves over number fields. As a consequence, analogues of
the preceding theorem hold for an arbitrary number field: in particular the
degrees of the minimal solutions for any admissible f(X) are bounded and
explicit bounds can be given.

Theorem 3. Notation as in Corollary 1.3. Two polynomials G(X) and
H(Y ) with coefficients in Q and coprime degrees m and n, are such that
the curve C : G(X) = H(Y ) has genus one if and only if the pair (G,H) is
equivalent over Q to some pair in one of the following families:
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(i) F1(Q), that is, the elements of F1 with G(X) ∈ Q[X].
(ii,a) The set F2(Q) of the polynomial pairs (G,H) defined by

G(X) = Dd

(
GN (X; t);

γN (t)
4

)
,

H(Y ) = ±
(

4
γN (t)

)d
D3

(
Y ;
(
γN (t)

4

)d)

for N ∈ {2, 4, 5, 7, 8, 10}, d a positive integer coprime to 3.
(ii,b) The set F3(Q) of the pairs (G,H) defined by

G(X) = Dd

(
GN (X; t);

γN (t)
4

)
,

H(Y ) = ε

(
4

γN (t)

)3d/2

D4

(
Y ;
(
γN (t)

4

)d)

for N ∈ {3, 5, 7, 9}, d an odd positive integer , ε ∈ {±1}. For these values of
N , γN (t) is always a square in Q(t), and we can then fix a square root in
Q(t). The sign of

√
γN (t) can be chosen such that G(X)+2(γN(t)/4)d/2 has

exactly one root of odd multiplicity and ε = 1, that is, H(Y )+2(γN (t)/4)d/2

is a square (cf. Proposition 2.2).
(iii) The family Fs(Q) of the 7 sporadic pairs with rational coefficients,

which is a subset of Fs.
Remark 1.4. For a given number field K, Faltings’s proof of the Mordell

conjecture and the above results imply that the solution set over K is given,
up to equivalence, by the solutions over the rationals plus a finite number
of other pairs.

The rest of the paper contains the proofs of the above theorems and the
necessary definitions. The largest part of the work is devoted to the proof
of Theorem 1.

The main idea behind the proof of Theorem 1 is simple. We consider the
following genus zero curves together with coverings

C′ : Z = G(X) with Φ1 : C → C′, Y 7→ Z = H(Y ),(6)

C′′ : Z = H(Y ) with Φ2 : C → C′′, X 7→ Z = G(X),(7)

then we apply Riemann–Hurwitz’ genus formula to the coverings Φ1 and Φ2.
To complete the classification using this idea is in principle straightforward
but in practice tricky, as Section 4 shows.

We now give the definitions used in the statements of the theorems. The
reader should be aware that, unfortunately, a few lengthy definitions need
to be given.

Definition 1.5 (Standard pairs of cyclic type). Let F1 be the set of
the following pairs of polynomials:



Genus one curves 233

(i) (Y 2, g0
∏3

1(X − xi)G0(X)2);
(ii) (Y 3, g0[(X − x1)(X − x2)]sG0(X)3) with s = 1 or 2;

(iii) (Y 4, g0(X − x1)s(X − x2)2G0(X)4) with s = 1 or 3;
(iv) (Y 6, g0(X − x1)s(X − x2)3G0(X)6) with s = 2 or 4;

where G0 ∈ k[X] and xi 6= xj for all i, j.

Note that in F1(Q) = F1 ∩ Q[X] the fact that G(X) ∈ Q[X] does not
imply that the roots xi’s are rational, except in (iii) and (iv).

If we put Z = Y/G0(X) in the definition above, then we see that the
above pairs define curves which are birational to the curves Zr = L(X) =∏

(X − xi)si , where the covering X → L(X) has no more than 3 finite
ramification points.

The above pairs are the analogue to the cyclic case of Ritt’s Second The-
orem. The obvious example of elliptic curves in Weierstrass form is covered
by (i).

Before giving the next definitions, we make the following

Remark 1.6. Note that if two polynomials G(X), f(X) of degrees n
and 4 respectively and f(X) square-free satisfy (4) for some γ ∈ K∗, then
(f(X), R(X)) has degree d at most 1. If d = 1 then R(X) is square-free
whereas if d = 0 then R(X) has at most one multiple root, of multiplicity
exactly 2, all the other roots being simple (this can be proved using Ma-
son’s abc-Theorem (see [La]) or with the arguments used in the proof of
Lemma 4.5).

The number of roots of odd multiplicity of G(X)− 2 plus the number of
roots of odd multiplicity of G(X) + 2 is 4.

Definition 1.7 (Standard pairs of the first elliptic type). The set F2 is
the set of pairs of polynomials (T3(Y ), G(X)) where T3(Y ) is the normalized
Chebyshev polynomial of degree 3, G(X) is a solution to (3) and 3 -n =
deg(G).

Definition 1.8 (Standard pairs of the second elliptic type). The set F3
is the set of pairs of polynomials (T4(Y ), G(X)) with m = deg(G) odd and
such that G(X) is a solution to (3), with the sign chosen in such a way that
G(X)−2 (resp. G(X) + 2) has exactly three roots of odd multiplicity (resp.
one).

Definition 1.9 (Sporadic pairs). Let
√
−7 be a fixed square root of

−7. We define the following polynomials:

B1(X) = 3X4 − 4X3,

B2(X) = (X2 − 1)3,

B3(X) = X4(4X − 5),
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B4(X) =
1
64

(X2 + 3)2(X + 3)2 − 1,

C1(X) = − 1
108

X3(X − 5)2,

C2(X) = −1− 1
108

(X2 + 5)2(2X − 5).

We also define

C3,j(X) = − C̃3,j(X)

C̃3,j(βj)
,

for j = 1 or 2, where

C̃3,j(X) = (X2 + αj)3(X + 1),

α1 =
1
14

(−3−
√
−7), α2 =

1
14

(−3 +
√
−7),

βj = −1
7

(3 +
√

9− 7αj);

and

C4(X) =
1

1728
(X3 + 9X + 6)3,

C5(X) = −(X2 − 1)4,

C6(X) = − 1
16
X4(X − 3)2.

Definition 1.10. The set Fs consists of the following 11 pairwise non-
equivalent pairs of polynomials: (B1, C1), (B1, C2), (B1, C3,j) for j = 1, 2,
(B1, C4), (B2, C1), (B2, C3,j) for j = 1, 2, (B3, C5), (B3, C6) and (B4, C2).

The set Fs(Q) consists of the 7 pairs: (B1, C1), (B1, C2), (B1, C4),
(B2, C1), (B3, C5), (B3, C6) and (B4, C2).

Remark 1.11. The last statement of Lemma 4.6 can be used to prove
that a pair (G,H) of K-polynomials is equivalent to one of the 4 pairs
(Bl, C3,j) for 1 ≤ l, j ≤ 2 if and only if −7 is a square in K.

Hence we can define Fs(K) to be Fs if −7 is a square in K or to be Fs(Q)
otherwise.

Remark 1.12. F. Beukers, T. N. Shorey and R. Tijdeman in [BST] are
concerned with equations of the form

X(X + 1) . . . (X + (m− 1)) = Y (Y + λ)(Y + 2λ) . . . (Y + (n− 1)λ).

They do not assume (m,n) = 1. The pairs arising from the genus one cases 1
and 3 in their Theorem 2.2 are equivalent to objects in our F1. Their case 7
is equivalent to a pair belonging to F2 and to F3: this is due to the fact that
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degree 3, 4 Chebyshev polynomials are equivalent to elliptic polynomials
(just change the “defining” ramification points).
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2. Preliminary results. Following [Sch3] we define the normalized
Chebyshev polynomials Td(X) by

T0(X) = 2, T1(X) = X, Td+1(X) = XTd(X)− Td−1(X).

They are precisely the polynomials such that

Td(z + z−1) = zd + z−d.(8)

They satisfy the relation

Td ◦ Te = Tde = Te ◦ Td
and are related to the classical Chebyshev polynomials

Cd(X) = cos(d arccosX)

by Td(2X) = 2Cd(X).
In this paper when we write Chebyshev polynomials we always mean the

normalized ones.
For a ∈ k, the nth Dickson polynomial Dn(X; a) is defined by the relation

Dd(z + a/z; a) = zd + (a/z)d,

which, once a square root of a is fixed, gives

ad/2Td(a−1/2X) = Dd(X; a).(9)

Further information about Dickson polynomials can be found in [LMT,
Chapter 2]. If a ∈ Q then Dn(X; a) ∈ Q[X].

Definition 2.1. We say that λ is an extremum of F (X) if F (X)− λ
has a multiple root. The extrema of F (X) are precisely the values taken by
F (X) at the zeros of F ′(X).

For any polynomial F (X) we define its root type, denoted by M(F ), as
the unordered list of the multiplicities of the distinct roots of F (X). For
example, if F (X) = 5(X2 − 1)3(X − 3)2(X + 2) then M(F ) = [3, 3, 2, 1].
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n roots of multiplicity m are denoted by mn, so that the above example can
be written as M(F ) = [32, 2, 1].

The type of an extremum λ of F (X) is the root type of F (X)− λ.

The following result, which can be deduced by the corresponding prop-
erties of the Chebyshev polynomials and (9), is also proved in [B].

Proposition 2.2. If a 6= 0 and d ≥ 3 then Dn(x; a) has exactly two
extrema, namely ±2ad/2. If d is odd then both have type [2(d−1)/2, 1]. If d is
even then 2an/2 has type [2(d−2)/2, 12] and −2an/2 has type [2d/2].

More precisely , for odd d we have

Dd(X; a)± 2ad/2 = (X ± 2
√
a)∆d(X,±

√
a)2,

and for even d we have

Dd(X; a)− 2ad/2 = (X2 − 4a)∆d(X,
√
a)2,

Dd(X; a) + 2ad/2 = D2(Dd/2(X; a); ad/2) + 2ad/2 = Dd/2(X; a)2

where the ∆d are suitable polynomials.

Remark 2.3. Let K be a characteristic zero field, F (X) ∈ K[X] and α
be algebraic over K. Then any element of the Galois group over K sends
F (X)− α to a polynomial of the same root type. Therefore if the types of
the extrema of F (X) are pairwise distinct, then all extrema belong to K. In
particular if α and β are conjugate over K then they have the same type.

The letters X, Y , Z denote indeterminates, and x, y, z are their images
in the rational function fields.

Let F = k(x, y) be the function field of the curve C. If z = G(x) = H(y),
then k(x) = k(x, z) is the function field of the curve C ′. Let π run over all
places of F/k(x).

We use the Riemann–Hurwitz formula applied to the function field ex-
tension F/k(x) (equivalently, to the covering Φ1):

0 = 2g − 2 =
∑

π

(eπ − 1)− 2n,(10)

where g is the genus of C, the sum is over the places π of F/k(x) and eπ is
the ramification index of π over k(x).

Definition 2.4. For any x0 ∈ k define r(x0) to be the order of the root
x0 as root of G(X)−G(x0), i.e. (X − x0)r(x0) ‖ (G(X)−G(x0)).

For any y0 ∈ k define s(y0) by (Y − y0)s(y0) ‖ (H(Y )−H(y0)).

It is clear that

n− 1 = deg(H ′(Y )) =
∑

y0∈k
(s(y0)− 1).(11)
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The following statement is given without proof. Proofs of more general
results can be found in [Z].

Proposition 2.5. If the point (x0, y0) ∈ C/k, i.e. if G(x0) = H(y0) =
z0, then there are exactly (r(x0), s(y0)) places π of F such that x(π) = x0
and y(π) = y0 and for all such π we have

eπ =
s(y0)

(r(x0), s(y0))
.

Moreover the (only) place at infinity of k(x) is totally ramified in F . If π∞
is the place at infinity of F then eπ∞ = n = deg(H).

For all finite points (x0, y0) of the curve C define

c(x0, y0) =
∑

π:x(π)=x0, y(π)=y0

(eπ − 1).

As an immediate consequence of the above result, we get

c(x0, y0) = s(y0)− (r(x0), s(y0)).(12)

Fix y0 and define

σ(y0) =
∑

x0:(x0,y0)∈C
c(x0, y0) =

∑

x0:(x0,y0)∈C
s(y0)-r(x0)

{s(y0)− (r(x0), s(y0))}.(13)

All summands in the above formula are non-negative by definition: omitting
some of them gives a lower bound for σ(y0) (see for example equations (30)
and (31)).

By Proposition 2.5 we can rewrite (10) as

0 =
∑

(x0,y0)∈C
c(x0, y0) + (eπ∞ − 1)− 2n

so that by (12) and (13),

n+ 1 =
∑

(x0,y0)∈C
c(x0, y0)(14)

=
∑

(x0,y0)∈C
{s(y0)− (r(x0), s(y0))} =

∑

y0∈k
σ(y0).

Subtracting (11) from (14) we obtain

2 =
∑

y0∈k
{σ(s0)− (s(y0)− 1)} =

∑

y0:H′(y0)=0

{σ(s0)− (s(y0)− 1)}.(15)

For all x0 ∈ k define

%(x0) =
∑

y0 : (x0,y0)∈C
r(x0)-s(y0)

{r(x0)− (r(x0), s(y0))}
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and by symmetry

2 =
∑

x0∈k
{%(x0)− (r(x0)− 1)} =

∑

x0:G′(x0)=0

{%(x0)− (r(x0)− 1)}.(16)

Remark 2.6. Formulae (16) and (15) are indeed “genus formulae”. If
we do not assume that the genus of our curve is 1, then the left hand side
of both formulae reads 2g (in place of 2).

If we do not assume m and n to be coprime, then the number of places
above w∞ is (m,n) and the left hand sides read 2g + (m,n)− 1.

Similar formulae were used by Fried ([Fr1]).

3. The polynomial Pell equation. In this section we prove Theo-
rem 2.

This kind of problem has been already considered by Schinzel ([Sch1,
Sch2]), Abel (see references in [Sch2]) and Hellegouarch and Lozach ([HL])
among others. Our solution paves the way for the computations described
in Section 5.

Consider the normalization ∆ of the curve

Y 2 = f(X).

There are two K-rational points at infinity. Let ∞0 be the point chosen as
zero element and π =∞1 be the other one.

The Jacobian variety J (∆) of ∆ is the curve itself and for any point
α ∈ ∆ we denote by [α] its image in the Jacobian.

We use the symbols ⊕,	 to indicate sum and difference on the curve.
In the function field of the curve Y 2 = f(X) the left hand side of (4)

factorizes as follows:

G(x)2 − (yR(x))2 = (G(x) + yR(x))(G(x)− yR(x)),

which allows us to obtain the following relation between divisors:

div(G(x) + yR(x)) + div(G(x)− yR(x)) = 0.

In view of this relation, the rational functions G(x)±yR(x), whose poles
occur only at ∞, cannot vanish for finite x. Hence we can write

div(G(x)− yR(x)) = m · (−∞0 +∞1)(17)

for a suitable choice of the sign of y and a suitable integer m.
Applying the map [·] to (17) we get by the Abel–Jacobi Theorem

m · [∞1] = m · (	[∞0]⊕ [∞1]) = [m · (−∞0 +∞1)] = 0.(18)

Conversely, if (18) is satisfied then there exists a function φ on ∆ such
that div(φ) = −m∞0 +m∞1: since this φ has no finite poles, we can write
φ = G(x) + yR(x) for suitable polynomials G(X), R(X) ∈ K[X] of degrees
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m and m − 2 respectively. Therefore we have reduced the problem of the
existence of the polynomial G to the existence of curves ∆ as above such
that ∞1 is a torsion point of order N dividing m.

It is clear that over an algebraically closed field of characteristic zero this
is possible for every m.

It is also clear that if the order of ∞1 is N then there are solutions with
G(X) of minimal degree, which is exactly N .

The divisor determines the function φ, and thus also G(X) and R(X), up
to multiplication by a non-zero constant, hence monic solutions are uniquely
determined by f(X) and their degree.

Let
√
γ be a square root of γ, possibly in a suitable extension L of K.

Then there exist polynomials G̃(X) = 2√
γG(X) and R̃(X) = 2√

γR(X) in
L[X] such that

G̃(X)2 − f(X)R̃(X)2 = 4.

As solutions of the above equation, G̃(X) and R̃(X) are determined up to
sign. Let m = deg(G) and write the above expression as

(
G̃(X)

2

)2

− f(X)
(
R̃(X)

2

)2

= 1

and note that
(
G̃(X)

2
±
√
f(X)

R̃(X)
2

)d
=
G̃d(X)

2
±
√
f(X)

R̃d(X)
2

(19)

for any d > 1, so that (4)

G̃d(X)2 − f(X)R̃d(X)2 = 4

where G̃d is up to sign the unique solution of degree dm for the given f(X).
We note that

G̃d(X) =
(
G̃(X)

2
+
√
f(X)

R̃d(X)
2

)d
+
(
G̃(X)

2
+
√
f(X)

R̃d(X)
2

)−d

= Td

(
G̃(X)

2
+
√
f(X)

R̃d(X)
2

+
(
G̃(X)

2
+
√
f(X)

R̃d(X)
2

)−1)

= Td(G̃(X)).

This proves formula (5).
If d is even then G̃d(X), R̃d(X) ∈ K[X], otherwise it is enough to multi-

ply them by
√
γ. If we multiply them by (γ/4)d/2 we get monic solutions—

which by the above arguments are necessarily the unique monic solutions in

(4) The argument is the same used to get all the solutions of a classical Pell equation
from the minimal one.
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K[X]—and (9) shows that the monic solution Gd(X) of degree dN is given
by Dd(G(X); γ/4).

The other assertions now follow.

4. Proof of the Main Theorem. In this section assumptions are as in
the statement of the Main Theorem, the exception being Lemma 4.6 which
does not require them.

The proof is divided into several smaller cases; first we consider the case
when one of the two polynomials has only one extremum (Proposition 4.3),
then the case when both have at least two extrema. We subdivide the latter
case further according to the degree of H in three subcases: deg(H) = 3,
4 and larger than 4, which are considered in Propositions 4.7, 4.8 and 4.12
respectively.

We recall that k is algebraically closed.

Notation 4.1 (for the whole section). Let λ1, . . . , λT be the T distinct
extrema of H(Y ) in k. Choose y1, . . . , yT among the roots of H ′(Y ) in such
a way that H(yi) = λi and si = s(yi) > 1 is maximal in the sense that if
H(y∗) = λi then s(y∗) ≤ si.

Clearly, H(Y )− λ is a square-free polynomial for all λ 6∈ {λ1, . . . , λT }.
By Mi we denote the number of distinct roots of G(X)− λi whose mul-

tiplicity is not divisible by si. For each i, 1 ≤ i ≤ T , we write

G(X)− λi = g0

( Mi∏

j=1

(X − xij)r(xij)
)
Gi(X)si(20)

with si - r(xij) for all i,j, and xij 6= xkl if i 6= k or j 6= l.
By S we denote the number of distinct values taken by G(X) at the

zeros of G′(X).
Hence, T and S are the numbers of finite ramification points of the

coverings Φ1, respectively Φ2 defined in (6) and (7).

Lemma 4.2. Let y0 ∈ k be such that s(y0) > 1 and let M be the number
of the distinct points x0i ∈ k such that (x0i, y0) ∈ C and s(y0) - r(x0i) (i.e.
the x0i are the distinct roots of G(X) − H(y0) whose multiplicity is not a
multiple of s(y0)). Suppose that G(X) − H(y0) is not the t-th power of a
polynomial of strictly smaller degree, with t > 1 and t | s(y0). In particular
M ≥ 1. Then

σ(y0) ≥ s(y0)− 1

and (up to a permutation of the indices) the following assertions hold:

(i) σ(y0) = s(y0)− 1 if and only if M = 1;
(ii) σ(y0) = s(y0) if and only if M = 2, s(y0) = 2;
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(iii) σ(y0) = s(y0) + 1 if and only if one of the following conditions is
satisfied:

(a) s(y0) = 2, M = 3;
(b) s(y0) = 3, M = 2;
(c) s(y0) = 4, M = 2 and (r(x01), 4) = 1, (r(x02), 4) = 2;
(d) s(y0) = 6, M = 2 and (r(x01), 6) = 2, (r(x02), 6) = 3;

(iv) σ(y0) > s(y0) + 1 otherwise.

Proof. Put s = s(y0). First, s cannot divide r(x0) for all x0 such that
(x0, y0) ∈ C, otherwise G(X)−H(y0) would be an sth power of a polynomial
of strictly smaller degree.

If M = 1 we put d = (s, r(x01)), then d | r(x0) for all x0 such that
(x0, y0) ∈ C and G(X)−H(y0) is a dth power, whence d = 1 and, obviously,
σ(y0) = s− 1.

We now consider the case M > 1. We have {s−(s, r0i)} ≥ s/2 for i = 1, 2
and σ(y0) ≥ s. Equality holds only if M = 2 and {s − (s, r0i)} = s/2 (in
which case s must be equal to 2), as σ(y0) > s in all other cases. To complete
the proof note that if s = 5 or s ≥ 7 then σ(y0) ≥ s+ 3 and the remaining
cases can be handled one by one.

Proposition 4.3. Let T = 1. Then (G,H) is equivalent to some pair
in F1.

Proof. It is easy to see that T = 1 if and only if H(Y ) ∼ h0Y
n. Assume

then that H(Y ) = h0Y
n. By (15), we must have σ(0) = s(0) + 1 and the

result follows from Lemma 4.2.

From now on we can assume that G′ and H ′ each have at least two
distinct roots (equivalently, that G and H are not equivalent to monomials)
so that S and T are > 1 and the degrees of G and H are greater than 2.

Remark 4.4. Differentiate both sides of (20) and, for all i, define the
polynomial

Vi(X) =
( Mi∏

j=1

(X − xij)r(xij)−1
)
Gi(X)si−1,(21)

which is clearly a factor of G′(X). Since Vi(X) | (G(X)− λi) and the λi are
pairwise distinct, the polynomials Vi(X) are pairwise coprime, which also
means that the sum of their degrees is bounded by m− 1.

We clearly have

deg(Gi) ≤
1
si

(m−Mi)(22)
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and, since deg(Gi) + deg(Vi) +Mi = m, we see immediately that

deg(Vi) ≥ (m−Mi)
(

1− 1
si

)
.(23)

Lemma 4.5. Suppose T > 1. Put M = M1 +M2. Then

m− (M − 1) ≤ deg(G1) + deg(G2).

In general , if T ⊆ {1, . . . , T} where #T ≥ 2, then

(#T − 1)m ≤
{∑

i∈T
deg(Gi) +Mi

}
− 1.

Proof. The first inequality is a particular case of the second one, so we
just prove the latter. By Remark 4.4 we have

m− 1 ≥
∑

i∈T
deg(Vi) =

∑

i∈T
(m− deg(Gi)−Mi)

and the result follows.

The following is a characterization of the polynomials defined in 1.9,
which appear in the “sporadic” solutions to our problem.

Lemma 4.6. Let F ∈ k[X] be a polynomial. The following assertions
hold:

(i) if M(F ) = [3, 1] and M(F + 1) = [2, 12] then F ∼ B1;
(ii) if M(F ) = [32] and M(F + 1) = [2, 14] then F ∼ B2;

(iii) if M(F ) = [4, 1] and M(F + 1) = [2, 13] then F ∼ B3;
(iv) if M(F ) = [3, 13] and M(F + 1) = [23] then F ∼ B4;
(v) if M(F ) = [3, 2] and M(F + 1) = [2, 13] then F ∼ C1;
(vi) if M(F ) = [3, 12] and M(F + 1) = [22, 1] then F ∼ C2;
(vii) if M(F ) = [32, 1] and M(F + 1) = [22, 13] then F ∼ C3,j for j = 1

or 2;
(viii) if M(F ) = [33] and M(F + 1) = [22, 15] then F ∼ C4;

(ix) if M(F ) = [42] and M(F + 1) = [2, 16] then F ∼ C5;
(x) if M(F ) = [4, 2] and M(F + 1) = [2, 14] then F ∼ C6.

Over a field K of characteristic zero there are polynomials satisfying the
hypothesis of (vii) if and only if −7 is a square in K. In particular , this does
not happen if K = Q.

Proof. We note that if F or F + 1 satisfy any of the hypotheses (i)–(x),
then also F ′ is completely determined—that is, the roots of F ′ are among
the roots of F and of F + 1 (in other words such an F has precisely two
extrema). Moreover we can always without loss of generality make a linear
change of variables such that two roots of F or F + 1 are given.
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• In case (i) we have F (X) = cX3(X−α). Then F ′(X) = cX2(4X−3a).
Without loss of generality we can pick α = 4/3, so that the two roots of
F ′(X) are 0 and 1. Then F (1) = −c/3 and we pick c = 3.
• Cases (ii), (iii), (v), (ix) and (x) are handled along the same lines.
• In case (iv) we start with F̃ (X) = (X2 + 3)2(X + α)2 for α not yet

determined and such that α2 +3 6= 0. Then F̃ ′(X) = 6(X2 +3)(X+α)P (X)
with P (X) = X2 + 2

3αX + 1. In order for F̃ (X) − λ to have a root of
multiplicity 3 for some λ 6= 0, P (X) must be a square and λ = F̃ (%) where
% is the double root of P (X). This is achieved if and only if α = 3 or −3:
since the two values lead to equivalent polynomials (obtained through the
substitution X 7→ −X) we just fix α = 3. Now % = −1 and F̃ (−1) = 64,
hence F (X) = F̃ (X)/64 − 1 is up to equivalence the unique polynomial
satisfying the hypothesis of (iv).
• In case (vi) we write F̃ (X) = (X2 + 20)2(X − α). Then F̃ ′(X) =

5(X2 + 20)P (X) with P (X) = X2 − 4
5αX + 4. As above, P (X) must be a

square, which happens only if α = ±5; the two choices lead to equivalent
polynomials so we choose α = 5. Then P (X) = (X − 2)2, F̃ (2) = −1728,
and we conclude that F ∼ C2.
• We now prove (vii) and also the last statement about C3,j . Write

F̃ (X) = (X2 + a)3(X + b) with a 6= −b2 and F̃ (X) ∈ K[X] where K is a
field of characteristic zero. We infer that a, b ∈ K (we can use the Galois
action over K, which sends roots to roots of the same multiplicity). Up to
equivalence, we assume that b = 1.

We have F̃ ′(X) = 7(X2 + a)2P (X) where P (X) = X2 + 6
7X + 1

7a. Now
F + 1 has two distinct double roots and they are roots of F̃ ′(X); thus they
are the roots of P (X). Let them be %1 and %2; the condition F̃ (%1) = F̃ (%2)
implies that the remainder of division of F̃ (X) by P (X) must be constant.

The coefficient of X in the remainder of the division of F̃ (X) by P (X)
is

Q(a) = −63

76 (9− 7a)(49a2 + 21a+ 4).

The equation Q(a) = 0 has three solutions: one is a = 9/7, which leads to
P (X) with a double root, and therefore is to be discarded; the other two
are given by

a = (−3±
√
−7)/14.(24)

Let α1, α2 be the two values of a in (24). We get the two polynomials C3,j
for j = 1, 2 which are not equivalent (but are algebraic conjugates). In the
above expression for the derivative we have P (X) = X2 + 6

7X + 1
7a, and βj

is simply one of the two distinct solutions we get when a = αj for j = 1, 2.
Now, C̃3,j(βj) is just the remainder of the division of C̃3,j(X) by P (X),
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which is in K as long as a is. Therefore we have proved (vii) and the last
statement.
• Finally, we deal with case (viii). We start with F̃ (X) = F1(X)3, where

F1(X) = X3 + aX2 + bX + c. We can assume up to equivalence that a = 0,
whence F̃ (X) = (X3 + bX + c)3 and F̃ ′(X) = (X3 + bX + c)2P (X) where
P (X) = 9X2 + 3b. As above P (X) must be square-free and the coefficient
of X in the remainder of the division of F̃ (X) by P (X) must be 0; we get
the equation

81bc2 − 4b4 = 0.

We want b 6= 0 such that P (X) is not a square, and we get the following
parametrization for the K-rational solutions:

b = 9t2, c = 6t3 for t ∈ K, t 6= 0.

Different choices of t lead to equivalent polynomials so we fix t = 1. Write
P (X) = 9(X − i

√
3)(X + i

√
3), we have F̃ (i

√
3) = F̃ (−i

√
3) = −1728.

Then F (X) = 1
1728 F̃ (X) ∈ Q[X] is up to equivalence the unique poly-

nomial satisfying the hypothesis.

Proposition 4.7. If S, T > 1 and n = 3 < m then (G,H) is equivalent
to a pair in F2.

Proof. Up to equivalence we can assume that λ1 = −2 and λ2 = +2,
and since T > 1 we must have M(H − 2) = M(H + 2) = [2, 1]. Using the
methods of Lemma 4.6 we conclude that H(Y ) ∼ T3(Y ) = Y 3 − 3Y .

Now, s(yi) = 2 and σ(yi) = Mi, thus (15) reads 2 = {M1−1}+{M2−1},
i.e. 4 = M1 +M2. Hence

(G(X)− 2)(G(X) + 2) = f(X) ·R(X)2

for some R(X), f(X) ∈ k[X], where f(X) is square-free and has degree 4.
This concludes the proof.

Proposition 4.8. If S, T > 1 and n = 4 < m, then (G,H) is equivalent
to a pair in F3 or to one of the pairs (B1, C1), (B1, C2), (B1, C3,j) for j = 1
or 2, and (B1, C4).

Proof. Since T > 1, we look at the possible M(H ′) where H ′(Y ) is not
equivalent to a monomial. Up to equivalence there are three possibilities for
H(Y ):

(I): M(H − λ1) = [3, 1] and M(H − λ2) = [2, 12];

(II): M(H − λ1) =M(H − λ2) =M(H − λ3) = [2, 12];

(III): M(H − λ1) = [22] and M(H − λ2) = [2, 12].

Let us consider first case (I). We assume that λ1 = 0 and λ2 = −1. Then
H(Y ) ∼ B1(Y ) by Lemma 4.6(i).
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For j = 1, 2, let M1j be the number of roots x0 of G(X) whose multi-
plicity r(x0) is such that r(x0) ≡ j (mod 3). Then M1 = M11 +M12.

We have s(y1) = 3, σ(y1) = 2M1, s(y2) = 2 and σ(y2) = M2, thus by
(15) we get the relation

2M1 +M2 = 5.(25)

We see immediately that M2 is odd, which implies that m is odd.
By Remark 4.4 we have

2
3

(m−M1) +
m−M2

2
≤ deg(V1(X)) + deg(V2(X)) ≤ m− 1,

which implies, using (25), the inequality

5 ≤ m ≤M2 + 4 ≤ 9.(26)

By (25) and (26) there are three possible subcases according to the value
of M1:

• M1 = 0 and M2 = 5. Then G(X) = g0G1(X)3 and m = 9. Since
deg(V1) = 6 we must have deg(V2) ≤ 2, which implies that G(X) + 1 has at
most one root of multiplicity at most 3 or at most two double roots. Since it
has 5 roots of odd multiplicity, it is clear thatM(G+1) = [22, 15]. Moreover,
G1(X) must be square-free as otherwise G(X) would give a factor of G′(X)
of degree larger than 6. Hence M(G) = [33] and Lemma 4.6(viii) implies
(G,H) ≈ (B1, C4).
• M1 = 1 with M2 = 3. If M11 = 0 and M12 = 1 then m ≡ 2 (mod 3)

so that m = 5. Now M(G) can be [5] or [3, 2] (which yield Vi of degree 4
and 3 respectively) whereas M(G+ 1) can be [2, 13] or [3, 12] (giving V2 of
degree 1 and 2). Since by Remark 4.4 we have 4 ≥∑2

i=1 deg(Vi), we are left
with the case satisfying the hypothesis of Lemma 4.6(v) with F = G. Hence
(G,H) ≈ (B1, C1).

IfM11 = 1 andM12 = 0 thenm ≡ 1 (mod 3), thusm = 7. NowM(G) can
be one of [7], [3, 4], [6, 1] and [32, 1], whereasM(G+ 1) can be one of [5, 12],
[4, 13], [3, 2, 12] and [22, 13]. We conclude that the only possible case is that of
the hypothesis of Lemma 4.6(vii) with F = G, whence (G,H) ≈ (B1, C3,j)
for j = 1 or 2.
• M1 = 2. Then M2 = 1. By (25) and (26) we must have m = 5. Now

M(G) can be [4, 1] or [3, 12] and M(G + 1) can only be [5], [3, 2], [4, 1] or
[22, 1]. It follows that M(G) = [3, 12], M(G + 1) = [22, 1] and by Lemma
4.6(vi) we get (G,H) ≈ (B1, C2).

We now show that case (II) cannot happen. In this case T = 3, and
for 1 ≤ i ≤ 3 we have s(yi) = 2 and σ(yi) = Mi. Then (15) gives 2 =∑3

i=1{Mi − 1}, i.e. 5 =
∑3

i=1Mi. From Remark 4.4 (namely the bounds
(23) and

∑3
i=1 deg(Vi) ≤ m− 1) we obtain m ≤ 3, a contradiction.
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Consider finally case (III). Here we choose λ1 = −2 and λ2 = +2. Denote
the two double roots of H(Y ) + 2 by y11 and y12.

Then H(Y ) ∼ T4(Y ) = Y 4 − 4Y 2 + 2. We have

s(y11) = s(y12) = s(y2) = 2, σ(y11) = σ(y12) = M1, σ(y2) = M2,

so we get 2 = 2{M1 − 1} + {M2 − 1}, or 2M1 + M2 = 5. As n is even, m
must be odd and we have M1 = 1, M2 = 3. Reasoning as at the end of the
proof of Proposition 4.7 we now conclude that (G,H) belongs to F3.

Now if, say, G(X)− λ is not a perfect power of a polynomial of smaller
degree for all λ ∈ k, then in (15) all summands are non-negative. Since their
sum is 2, Lemma 4.2 limits the possibilities for T , the si and the Mi. The
aim of the next proposition is to show that this is, essentially, always the
case.

Proposition 4.9. If S and T are greater than 1 then for every choice
of µ and λ in k, the polynomials G(X) − µ and H(Y ) − λ cannot both be
perfect powers of smaller degree polynomials.

The proof of Proposition 4.9 uses the following

Lemma 4.10. Assumptions as in Proposition 4.9. Suppose further G(X)
= G∗(X)r with r > 1. Then the curve Xr = H(Y ) has genus zero and
H(Y ) ∼ h0Y

qH1(Y )r with (q, r) = 1, where H1(Y ) is a polynomial.

Proof. Put z = G∗(x) and m∗ = deg(G∗). By doing this we embed
the field L = k(z, y) of the curve defined by Zr = H(Y ) in F = k(x, y),
the function field of C. Thus L has genus at most one. We want to prove
that it is zero. Suppose L is elliptic; then the extension F/L is Galois and
Abelian, and by the Riemann–Hurwitz formula it is also non-ramified. Now
[F : k(x)] = [L : k(z)] = deg(H), thus it is also [F : L] = [k(x) : k(z)] = m∗.
Consider the place w at infinity in k(z). It ramifies totally in k(x) with
ramification index m∗, and the place at infinity in k(x) ramifies totally in
F with index n. Therefore the ramification index of w in F is m∗n which
is maximal, being equal to the degree of the field extension. Therefore the
place at infinity of L over w is also totally ramified in F with maximal index
m∗, and, as the extension is non-ramified, it follows that m∗ = 1. On the
other hand T > 1 implies m∗ > 1. This contradiction proves the first part
of the statement.

The second part follows at once.

Proof of Proposition 4.9. We prove the result by contradiction. Without
loss of generality we can replace the pair (G,H) with an equivalent one,
therefore we assume that our curve is given by G(X) = H(Y ) with G(X) =
G∗(X)r and r > 1 an integer, and that for some λ ∈ k we have H(Y )− λ =
H∗(Y )s with s > 1.
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From Lemma 4.10 the curve

C′/k : Xr = H(Y )

has genus zero and we can assume that H(Y ) = h0Y
qH1(Y )r with (q, r) = 1

and H1(Y ) ∈ k[Y ] non-constant (because T > 1).
We now want to prove that λ = 0 and, implicitly, that H(Y ) − δ for

δ 6= 0 is never a power of a smaller degree polynomial.
If λ 6= 0 then Y q−1H1(Y )r−1H∗(Y )s−1 would be a factor of H ′(Y ), hence

of degree ≤ n − 1, which would imply that 0 < n(1 − 1/r − 1/s) ≤ −q/r.
Hence λ = 0 and we can write

H(Y ) = h0Y
asH0(Y )rs(27)

with (a, r) = 1, H0(0) 6= 0 and deg(H0) > 0. One infers that the polynomial

Q(Y ) = Y as−1H0(Y )rs−1

is a factor of (H,H ′) of degree {n− 1− (n− as)/(rs)}.
The same arguments applied to G(X) yield

G(X) = g0X
brG0(X)rs(28)

with (b, s) = 1, G0(0) 6= 0 and deg(G0) > 0. Thus

P (X) = Xbr−1G0(X)rs−1

is a factor of (G,G′) of degree {m− 1− (m− br)/(rs)}.
Exchanging G and H if necessary, we can assume without loss of gener-

ality that m > n.
From Lemma 4.2, if H(y0) 6= 0 and s(y0) > 1 then {σ(s0)− (s(y0)− 1)}

≥ 0.
We write (15) in the form

2 = A+ B(29)

where

A = {σ(0)− (s(0)− 1)}+
∑

y0 :H0(y0)=0

{σ(s0)− (s(y0)− 1)}

and
B =

∑

y0 :H′(y0)=0
H(y0)6=0

{σ(s0)− (s(y0)− 1)}.

The summands of B are non-negative; the same is not necessarily true
of those of A, but we can give lower bounds for them. For every root y0 of
H0 let µ(y0) be its multiplicity (thus s(y0) = rsµ(y0)). By (27) and (28) we
have
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σ(0)− (s(0)− 1) ≥ (as− (as, br))− (as− 1) ≥ 1− a(30)

(see the comment after (13)) and also, for every y0 such that H0(y0) = 0,

σ(s0)− (s(y0)− 1) ≥ (rsµ(y0)− (rsµ(y0), br))− (rsµ(y0)− 1)(31)

≥ 1− rµ(y0).

Summing (31) over the roots of H0(Y ) we get
∑

y0 :H0(y0)=0

{σ(s0)− (s(y0)− 1)} ≥ 1− r deg(H0) = 1− n/s+ a.(32)

We combine (30) and (32) with (29) to obtain 2 = A+B ≥ 2−n/s+B,
whence B ≤ n/s. In particular, for any y0 such that s(y0) > 1 and G(y0) 6= 0
we have

{σ(s0)− (s(y0)− 1)} ≤ n/s.(33)

With the notation of 4.1, we can assume that λ1 = 0 and that y1 is a
root of H(Y ). Since T > 1, we put s2 = s(y2) > 1 and see that (Y − y2)s2−1

is a factor of H ′(Y ) coprime to Q(Y ). Bounding the sum of their degrees by
n− 1 we get

s2 − 1 ≤ n− as
rs

.(34)

Now, P (X) and V2(X) are coprime factors of G′(X). Bounding the sum
of their degrees by m− 1 and using the fact that

∑M2
j=1 r(x2j) ≥M2 we get

m

(
1− 1

s2
− 1
rs

)
≤M2

(
1− 1

s2

)
− b

s
.(35)

We now want to prove that s2 = 2. Suppose s2 ≥ 3. In this case σ(y2) ≥
2M2, and we use (33) and (34) to write

n

s
≥ σ(y2)− (s2 − 1) ≥ 2M2 − (s2 − 1) ≥ 2M2 −

n− as
rs

,

in other words, since m > n,

M2 ≤
1
2

(
n

s
+
n− as
rs

)
<
m

3
.

Using this inequality, (35) and the fact that rs ≥ 6 we obtain the desired
contradiction:

m

2
≤ m

(
1− 1

s2
− 1
rs

)
< M2 <

m

3
.

Thus s2 = 2, and (33) with y0 = y2 gives the bound M2 = σ(y2) ≤
n/s+ 1, which yields in turn

M2 < m/s+ 1.
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This bound for M2 and (35) with s2 = 2 imply that

m

3
<
m− 2b

2s
+

1
2
.

Since s ≥ 2 and b ≥ 1, this is absurd.
This contradiction shows that at least one of the two polynomials G, H

is not the power of a smaller degree polynomial plus a constant.

The result just proved allows us to work without loss of generality under
a following hypothesis:

(∗) for every λ ∈ k the polynomial G(X) − λ is not the perfect power of
a polynomial of smaller degree.

Moreover we can suppose that n and m are greater than or equal to 5
(and that T and S are greater than 1).

Remark 4.11. Hypothesis (∗) and Lemma 4.2 imply that in (15) all
summands are non-negative integers. Therefore only two cases are possible:
either there exists some y∗0 ∈ k such that

{
σ(y0) = s(y0)− 1 for all y0 6= y∗0,

σ(y∗0) = s(y∗0) + 1;

or there exist exactly two elements y01 and y02 in k such that
{
σ(y0) = s(y0)− 1 for all y0 6∈ {y01, y02},
σ(y0i) = s(y0j) for i = 1, 2.

In both cases using Lemma 4.2 one infers that, for any set of indices
T ⊆ {1, . . . , T}, one has

∑
i∈T Mi ≤ #T + 2.

Proposition 4.12. If S, T > 1 and the polynomials G and H both have
degree larger than 4, then (G,H) is equivalent to one of the following pairs:
(B2, C1), (B2, C3,j) for j = 1 or 2, (B3, C5), (B3, C6) and (B4, C2).

Proof. By Proposition 4.9 we can suppose that (∗) holds. Choose now
y1, y2, . . . as in 4.1. Assume also that s1 ≥ s2. We can also assume without
loss of generality that λ1 = 0 and λ2 = −1.

Extend the notation of 4.1 putting rij = r(xij) and ri =
∑Mi

j=1 rij .

• We claim that T = 2, s1 ≥ 3 and M1 ≤ 2. Suppose there exists a set
of indices T ⊆ {1, . . . , T} with #T = 3. By Lemma 4.5,

2m ≤
(∑

i∈T

m−Mi

2
+Mi

)
− 1 =

3
2
m+

∑

i∈T

Mi

2
− 1.

By Remark 4.11 we have
∑

i∈T Mi ≤ 5, therefore m ≤ 3, a contradiction.



250 R. M. Avanzi and U. M. Zannier

We prove the second claim: suppose s1 = 2. Then also s2 = 2. Moreover
M1 ≡ M2 (mod 2). If we had M1 = M2 = 1 then (since T = 2) all roots y∗
of H ′(Y ) would satisfy s(y∗) = 2 and σ(y∗) = 1, in contradiction with (15).

Assume then that M1 6= 1. By Lemma 4.2 and Remark 4.11 either M1 =
M2 = 2 or M1 = 3 and M2 = 1. It is easy to see that in both cases H(Y ) has
only one double root, all other roots being simple. For example, in the case
M1 = M2 = 2, suppose H(Y ) has (at least) a multiple root y′1 other than
y1. By assumption then s1 = s(y′1) = s2 = 2 and σ(y1) = σ(y′1) = σ(y2) = 2.
With these values one gets already a contradiction from (15), as all other
summands in the genus formula are non-negative as we assume (∗). The
other case is similar, but it suffices to consider the double roots of H(Y ).

Now H(Y ) contributes a degree 1 factor to H ′(Y ) and H(Y ) + 1 con-
tributes a factor of degree at most n/2, and the product of these factors is, up
to a multiplicative constant, equal to H ′(Y ). In other words n−1 ≤ n/2+1,
or n ≤ 4. But n > 4, and this contradiction proves the second claim.

The third claim now follows by Remark 4.11 and Lemma 4.2.

• From Remark 4.4 and in particular from (23) we get

(m−M1)
(

1− 1
s1

)
+ (m−M2)

(
1− 1

s2

)
≤ deg(V1) + deg(V2) ≤ m− 1.

Using ri ≥Mi and the fact that s1 ≥ 3, we write

m ≤ (M1 +M2 − 1)s1s2 − (M1s2 +M2s1)
s1s2 − (s1 + s2)

.(36)

• If M1 = 2, since s1 ≥ 3 we have σ(y1) ≥ s1 + 1. We fall in the first case
of Remark 4.11 with σ(y1) = s1 + 1 and σ(y2) = s2 − 1. The last equality
implies also M2 = 1.

We have

5 ≤ m ≤ 2 +
s1

s1s2 − (s1 + s2)
,(37)

which implies that s2 ≤ 4
3s1/(s1 − 1). The last inequality and s1 ≥ 3 imply

that s2 = 2. The same inequality and the fact that s2 = 2 gives s1 = 3. Now
(37) implies that m = 5.

Bounding the sum of the degrees of coprime factors of G′(X) as usual we
infer that r11 = r12 = r21 = 1 and that G1 and G2 are square-free, so that
M(G) = [3, 12] and M(G + 1) = [22, 1]. Thus G(X) ∼ C2(X) by Lemma
4.6(vi).

Moreover, y1 is also the only multiple root of H(Y ), since for any other
such root y′1 we would also have σ(y′1) ≥ s(y′1) + 1, contradicting Re-
mark 4.11.
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At this point we can writeM(H) = [3, 1n−3] andM(H+1) = [2k, 1n−2k].
Thus n − 1 = 2 + k with n ≥ 2k so that n ≤ 6. As m and n are coprime
n = 6. Finally H(Y ) ∼ B4(Y ) by Lemma 4.6(iv) and (G,H) ≈ (B4, C2).

• Consider now the case M1 = 1. We necessarily have M2 > 1 otherwise
by (36) we would get m ≤ 1, a contradiction. Then, by Remark 4.11 and
Lemma 4.2, either s2 = 2 and M2 ≤ 3 or s2 ≥ 3 and M2 = 2.

If s2 ≥ 3 then 5 ≤ m ≤ 2 + s2/(s1s2 − (s1 + s2)) whence 3 ≤
s2/(s1s2 − (s1 + s2)) and s2(3s1 − 4) ≤ 3s1; this and s2 ≥ 3 now would
imply that s1 ≤ 2, a contradiction.

Hence s2 = 2 and (36) simplifies to

m ≤ M2s1 − 2
s1 − 2

= M2 + 2
M2 − 1
s1 − 2

.(38)

We cannot have M2 = 2 (in the last inequality, if M2 = 2 we get m ≤ 4), so
M2 = 3 and (38) is satisfied only in the following cases: s1 = 4 with m = 5
and s1 = 3 with m ≤ 7. Since M2 = 3 and s2 = 2 the root type of H(Y ) + 1
is [2, 1n−2], as we fall in the first case of Remark 4.11.

Consider first the case s1 = 4. Then M(G) = [4, 1] and M(G + 1) =
[2, 13], whence G(X) ∼ B3(X) by Lemma 4.6(iii). Since H(Y ) cannot have
triple roots by Remark 4.11, we writeM(H) = [4l, 2k, 1n−2k−4l] with l ≥ 1.
Counting the roots of H ′(Y ) from the root types of H and H + 1 we get
n − 1 = 3l + k + 1. Clearly 4l + 2k ≤ n. The last two relations imply that
l + k ≤ 2 and n ≤ 8− 2k.

If k = 0 then n ≤ 8 and we have thus two possibilities: n = 6 and n = 8.
If n = 6 then M(H) = [4, 12] and M(H + 1) = [2, 14] with T = 2, which is
absurd. Then n = 8 and l = 2 (the case l = 1 is discarded in the same way
we have discarded n = 6), hence by Lemma 4.6(ix) it is H(Y ) ∼ C5(Y ), and
finally (G,H) ≈ (B3, C5).

If k = 1 then n = 6 and l = 1. By Lemma 4.6(x) we have H(Y ) ∼ C6(Y )
and (G,H) ≈ (B3, C6).

Now consider the case s1 = 3. From Lemma 4.5 follows that

m− 3 ≤ deg(G1) + deg(G2), with
(39)

deg(G1) ≤
⌊
m− 1

3

⌋
and deg(G2) ≤

⌊
m− 3

2

⌋
.

This allows us to discard the case m = 6 at once.
If m = 5, then (39) implies deg(G1) = deg(G2) = 1, so that we can

write M(G) = [3, 2] and M(G + 1) = [2, 13]. By Lemma 4.6(v) we have
G ∼ C1. WriteM(H) = [3l, 2k, 1n−2k−3l] with l ≥ 1 (recall thatM(H+1) =
[2, 1n−2]). Then n − 1 = 2l + k + 1 with 3l + 2k ≤ n. Thus l + k ≤ 2
and n ≤ 6 − k. Since m = 5 we must have n = 6, and the relations just
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proved imply k = 0 and l = 2. Using Lemma 4.6(ii) we conclude that
(G,H) ≈ (B2, C1).

Lastly, if m = 7 by (39) we must have deg(G1) = deg(G2) = 2. Then
M(G) = [32, 1] and M(G + 1) = [22, 13]. By Lemma 4.6(vii) we have G ∼
C3,j for j = 1 or 2. To prove that H(Y ) has no double roots we observe that
σ(y2) = s(y2)+1 and that for any double root y′1 of H(Y ) we would also have
σ(y′1) = s(y′1)+1, contradicting Remark 4.11. Write thenM(H) = [3l, 1n−3l]
with l ≥ 1. Hence n−1 = 2l+1 and since l ≤ n/3 we get n ≤ 6, but n = 2l+2
is even, so n = 6 and l = 2. Then H(Y ) is as in the case m = 5 above. Finally
we infer that (G,H) ≈ (B2, C3,j) for j = 1 or 2.

We can now give the

Proof of the Main Theorem. It is immediate to see that any pair (G,H),
possibly exchanging G and H, falls under the hypothesis of one of Proposi-
tions 4.3, 4.7, 4.8 or 4.12.

The fact that the defined pairs of polynomials indeed give genus one
curves should be clear from the same arguments that led to them, or by a
direct checking using (16) and (15).

5. Computations for the arithmetic case. In this section we de-
scribe a method for performing the computations which are used to prove
Corollary 1.3 and Theorem 3.

The interested reader can then reproduce our computations, or ask the
authors to send the data by email. One will also find the complete tables in
[Av].

The first assertion of Corollary 1.3 is clear by Theorem 2 and Mazur’s
celebrated theorem, which we quote here:

Mazur’s Theorem (Maz1, Maz2). Let E/Q be an elliptic curve. Then
the torsion subgroup Etors(Q) is one of the following fifteen groups:

Z/NZ, 1 ≤ N ≤ 10 or N = 12;

Z/2Z× Z/2NZ, 1 ≤ N ≤ 4.

Further , each of these groups occurs as Etors(Q) for some elliptic curve E/Q.

If G(X), f(X), R(X) ∈ Q[X] satisfy (4) for some γ, we can assume, by
a linear change of variable over Q, that f(X) = X4 + cX2 + bX + a.

We first determine the admissible f(X), that is, those such that the
point π on ∆ is a torsion point. We get families of polynomials fN (X, t)
for 2 ≤ N ≤ 10 or N = 12 where t is a set of parameters. Then we
solve the equation (4) as a system of equations in the coefficients of the
polynomials G(X) and R(X) and in γ; the solutions will then be given
by a CAS (Computer Algebra System) as rational functions in t. We need
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to do it only for the solutions with G(X) of minimal degree N and with
f(X) = fN (X, t).

In order to do this we bring the curve ∆ into a normal form equivalent
to that given by Tate. If b 6= 0 the birational morphism defined by

z = 2(X2 + Y ) + c, w = (2X − d)z + 2b where d =
4a− c2

2b

maps ∆ to the curve

E : w2 + 2dwz − 2bw = z3 − (2c+ d2)z2(40)

and the points ∞0, resp. π =∞1 on ∆ are mapped to the point at infinity,
resp. (0, 0) on E.

In what follows we implicitly use the methods and results of [Hu, §2] for
a generic elliptic curve determined by a cubic equation

w2 + a1wz + a3w = z3 + a2z
2.

The rational point (0, 0) has order 3 if and only if a2 = 0 and a3 6= 0. If
it has finite order greater than 3 we can take a change of variables defined
over the ground field so that a3 = a2, and get the Tate parametrization of
coefficients

w2 + (1− P )wz −Qw = z3 −Qz2.(41)

Instead of doing this we prefer to use the following form:

w2 + L(1− P )wz − L3Qw = z3 − L2Qz2,(42)

which can be obtained from (41) via the transformation (w, z) 7→ (w/L3,
z/L2) and is best suited to our computations. Suitable parametrizations of
P and Q give all the elliptic curves over Q in Tate’s form where the origin
is a torsion point.

The needed parametrizations of P and Q are well known. For example
if P = t2(t− 1) and Q = t2(t− 1)(t2− t+ 1), then (41) and (42) describe all
curves in Tate’s normal form such that (0, 0) is a point of order 9 as t runs
through Q \ {0, 1}. The method to determine them is sketched in [Hu, pp.
88–90]. They are also given in the online help system of Connell’s MAPLE
package apecs, available from [Co].

We then equate the coefficients of (42) and (40) and solve the resulting
system for a, b, and c. In this way, when N is greater than 3, we parametrize
all possible f(X). Different choices of L yield equivalent polynomial f(X),
and thus lead to equivalent values of G(X). Thus one can fix an arbitrary
non-zero value of L.
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If the order is 3 then we have 2c + d2 = 0 in (40). We express b as a
function of a and c which are the parameters.

The case when the point has order 2 is easily handled. By Theorem 2 if
we can solve (4) with deg(G) = 2 then π on ∆ has order 2. If b = 0 this
actually happens for any choice of a and c since a general solution is given by
G(X; {a, c}) = X2 + c/2. Moreover, this can happen only if b = 0, because
if b 6= 0 then the tangent to E at the origin has slope 0, which means that
the order of π is not 2.

We thus compute polynomials fN (X; t) ∈ Q(t)[X] where t is the param-
eter set and 2 ≤ N ≤ 10 or N = 12. If N = 2 or 3 then #t = 2, otherwise
#t = 1.

Denote by Coeff(P (X), j) the coefficient of Xj in the polynomial P (X).
Now we can use a computer to solve the system

Coeff(G(X)2, j) = Coeff(f(X; t)R(X)2, j) for 1 ≤ j ≤ 2N − 1(43)

where the unknowns are the coefficients of the monic polynomials G(X) and
R(X) (of course we do not equate the constant terms of the two sides).

We get, for each N , two polynomials GN (X; t) and RN (X; t) ∈ Q(t)[X].
Next we compute

γN (t) = GN (X; t)2 − fN (X; t)RN (X; t)2.(44)

Now γN (t) is a square in Q(t) for odd N , which means that in Theorem
3(ii,b) we can fix a square root of γN (t) in Q(t) as required and that G(X)
is actually a polynomial with rational coefficients.

The constants in Theorem 3 are chosen so that G(X) is monic, the
extrema of H(Y ) are ±2(γN (t)/4)d/2 and the pairs are equivalent to the
corresponding pairs given in Theorem 1.

This completes our description of the methods followed in our calcula-
tions.
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