Torsion subgroups of elliptic curves with non-cyclic torsion over \mathbb{Q} in elementary abelian 2-extensions of \mathbb{Q}

by

YASUTSUGU FUJITA (Sendai)

1. Introduction. Let E be an elliptic curve over \mathbb{Q} and F the maximal elementary abelian 2-extension of \mathbb{Q}, that is, $F := \mathbb{Q}(\{\sqrt{m}; m \in \mathbb{Z}\})$. It is known that the torsion subgroup $E(F)_{\text{tors}}$ of $E(F)$ is finite (Ribet [8]). More precisely, Laska and Lorenz showed that there exist at most thirty-one possibilities for $E(F)_{\text{tors}}$ (see [3, Theorem] or Theorem 2.1). However, it is not known whether all the groups listed in Theorem 2.1 can happen as $E(F)_{\text{tors}}$.

Now assume that E has non-cyclic torsion over \mathbb{Q}; then by Mazur’s theorem ([4]), the group $E(\mathbb{Q})_{\text{tors}}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/m\mathbb{Z}$, where $m = 2, 4, 6$ or 8. Such an elliptic curve has a Weierstrass model $E : y^2 = x(x + M)(x + N)$, where M and N are non-zero integers with $M > N$. Further we may assume that the greatest common divisor (M, N) of M and N is a square-free integer or 1, since for any positive integer d, E is isomorphic over \mathbb{Q} to an elliptic curve E_{d^2} given by $y^2 = x(x + d^2M)(x + d^2N)$ by replacing x with x/d^2 and y with y/d^3, respectively. Then using the result of Ono ([6, Main Theorem 1], see also Theorem 2.2), Kwon classified the torsion subgroup of E over all quadratic fields ([2, Theorem 1]); Qiu and Zhang classified the torsion subgroup of E for a certain elliptic curve E with $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ over all elementary abelian 2-extensions of \mathbb{Q}, i.e., over all number fields of type $(2, \ldots, 2)$ ([7, Theorems 3 and 4]); Ohizumi classified the torsion subgroup of E for an elliptic curve E with $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ over all bicyclic biquadratic fields, i.e., over all number fields of type $(2, 2)$ ([5, Main Theorems 4.1 and 4.2]).

In this paper, first we completely determine the structure of the torsion subgroup $E(F)_{\text{tors}}$ when $E(\mathbb{Q})_{\text{tors}}$ is non-cyclic:

Theorem 1. Let E be an elliptic curve over \mathbb{Q} given by the equation $y^2 = x(x + M)(x + N)$, where M and N are integers with $M > N$. Assume

2000 Mathematics Subject Classification: Primary 11G05.
that \((M, N)\) is a square-free integer or 1. Let \(F := \mathbb{Q}(\{\sqrt{m}; m \in \mathbb{Z}\})\) be the maximal elementary abelian 2-extension of \(\mathbb{Q}\). Then \(E(F)_{\text{tors}}\) can be classified as follows:

(a) If \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}\), then \(E(F)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z}\).
(b) If \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}\), then \(E(F)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z}\).
(c) If \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}\), then \(E(F)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}\) or \(\mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}\). In this case, we may assume that both \(M\) and \(N\) are squares. Then \(E(F)_{\text{tors}} \simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}\) if and only if \(M - N\) is a square (this is equivalent to the condition that \(E_{-1}(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}\)).
(d) If \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}\), then \(E(F)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}\), \(\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}\) or \(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}\) for all square-free integers \(D\). Otherwise, \(E(F)_{\text{tors}}\) can be determined depending only on the type(s) of \(E_D(\mathbb{Q})_{\text{tors}}\) (and of \(E_{-D}(\mathbb{Q})_{\text{tors}}\) when \(E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}\)) for \(D\) with \(E_D(\mathbb{Q})_{\text{tors}} \not\simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}\) through the isomorphism \(E \simeq E_D\) over \(F\).

Secondly, using Theorem 1 we classify the torsion subgroup \(E(K)_{\text{tors}}\) for all elementary abelian 2-extensions \(K\) of \(\mathbb{Q}\) (Section 5). This is a generalization of the result of Kwon ([2, Theorem 1]).

The following notation is in force throughout this paper. \(F\) denotes the maximal elementary abelian 2-extension of \(\mathbb{Q}\). If \(k\) is an algebraic extension of \(\mathbb{Q}\), then we denote by \(O_k\) the ring of algebraic integers in \(k\). For integers \(M\) and \(N\), we denote by \((M, N)\) the greatest common divisor of \(M\) and \(N\). For a square-free integer \(D\), we define the \(D\)-quadratic twist \(E_D\) of an elliptic curve \(E : y^2 = x(x + M)(x + N)\) over \(\mathbb{Q}\) by \(E_D : y^2 = x(x + DM)(x + DN)\). Given a Weierstrass model for \(E\), we often denote by \(x(P)\) the \(x\)-coordinate of a point \(P\) on \(E\). If \(A\) is an abelian group, then we denote by \(A[n]\) the subgroup of \(A\) annihilated by \(n\). For a prime number \(l\) and an elliptic curve \(E\) over a field \(k\), we denote by \(E(k)_{(l)}\) the \(l\)-primary part of \(E(k)_{\text{tors}}\). For a field \(k\) and an element \(a\) in \(k\), we mean by \(\sqrt{a}\) an element \(\alpha\) in the algebraic closure of \(k\) satisfying \(\alpha^2 = a\). If \(a\) is a positive real number, then we take the positive root as \(\sqrt{a}\) and we define \(\sqrt{-a} = \sqrt{-1} \sqrt{a}\) with the imaginary unit \(\sqrt{-1}\), as usual.

Acknowledgments. We would like to thank Professor Tetsuo Nakamura for his helpful comments and suggestions.

2. Preliminary results. We begin by stating the result of Laska and Lorenz:

Theorem 2.1 ([3, Theorem]). Let \(E\) be an elliptic curve over \(\mathbb{Q}\). Then the torsion subgroup \(E(F)_{\text{tors}}\) is isomorphic to one of the following thirty-one
groups:
\[\mathbb{Z}/2^{a+b}\mathbb{Z} \oplus \mathbb{Z}/2^a\mathbb{Z} \quad (a = 1, 2, 3 \text{ and } b = 0, 1, 2, 3), \]
\[\mathbb{Z}/2^{a+b}\mathbb{Z} \oplus \mathbb{Z}/2^a\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \quad (a = 1, 2, 3 \text{ and } b = 0, 1), \]
\[\mathbb{Z}/2^a\mathbb{Z} \oplus \mathbb{Z}/2^a\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z} \quad (a = 1, 2, 3), \]
\[\mathbb{Z}/2^a\mathbb{Z} \oplus \mathbb{Z}/2^a\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \quad (a = 1, 2, 3) \]
or \{O\}, \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/5\mathbb{Z}, \mathbb{Z}/7\mathbb{Z}, \mathbb{Z}/9\mathbb{Z}, \mathbb{Z}/15\mathbb{Z}.

Just as in [2] or [7], the result of Ono is a basic tool in this paper:

Theorem 2.2 ([6, Main Theorem 1]). Let \(E : y^2 = x(x + M)(x + N) \) be an elliptic curve over \(\mathbb{Q} \), where \(M \) and \(N \) are integers. Assume that \((M, N)\) is a square-free integer or 1. Then the torsion subgroup \(E(\mathbb{Q})_{\text{tors}} \) can be classified as follows:

(i) \(E(\mathbb{Q}) \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \) if and only if \(M \) and \(N \) are both squares, or \(-M\) and \(-M + N\) are both squares, or \(-N\) and \(-N + M\) are both squares.

(ii) \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \) if and only if \(M = u^4 \) and \(N = v^4 \), or \(-M = u^4 \) and \(-M + N = v^4 \), or \(-N = u^4 \) and \(-N + M = v^4 \), where \(u \) and \(v \) are relatively prime positive integers with \(u^2 + v^2 = w^2 \) for some integer \(w \).

(iii) \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \) if and only if \(M = a^4 + 2a^3b \) and \(N = b^4 + 2b^3a \), where \(a \) and \(b \) are relatively prime integers with \(a/b \not\in \{-2, -1, -1/2, 0, 1\} \).

(iv) In all other cases, \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \).

If we write \(E = E(M, N) \), then we obtain \(E(M, N) \simeq E(-M, N - M) \simeq E(-N, M - N) \) over \(\mathbb{Q} \) by replacing \(x \) with \(x - M \) and \(x - N \). Hence, if \(E(\mathbb{Q}) \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \) (resp. \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \)), then we can assume that \(M \) and \(N \) are both squares (resp. \(M = u^4 \) and \(N = v^4 \)) by changing \(x \)-coordinates suitably.

The following lemma is useful for finding whether a point on \(E \) over a field \(k \) is divisible by 2 in \(E(k) \) (see [1, Theorem 4.2, p. 85] and its proof):

Lemma 2.3. Let \(k \) be a field of characteristic not equal to 2 or 3, and \(E \) an elliptic curve over \(k \) given by \(y^2 = (x - \alpha)(x - \beta)(x - \gamma) \) with \(\alpha, \beta, \gamma \) in \(k \). For \(P = (x, y) \in E(k) \), there exists a \(k \)-rational point \(Q = (x', y') \) on \(E \) such that \([2]Q = P \) if and only if \(x - \alpha, x - \beta \) and \(x - \gamma \) are all squares in \(k \). In this case, if we fix the sign of \(\sqrt{x - \alpha}, \sqrt{x - \beta} \) and \(\sqrt{x - \gamma} \), then \(x' \) equals one of the following:

\[\sqrt{x - \alpha} \sqrt{x - \beta} \pm \sqrt{x - \alpha} \sqrt{x - \gamma} \pm \sqrt{x - \beta} \sqrt{x - \gamma} + x \]
or
\[-\sqrt{x - \alpha} \sqrt{x - \beta} \pm \sqrt{x - \alpha} \sqrt{x - \gamma} \mp \sqrt{x - \beta} \sqrt{x - \gamma} + x,\]
where the signs are taken simultaneously.

Using Theorem 2.2 and Lemma 2.3, Kwon classified the torsion subgroup of \(E = E(M, N) \) over all quadratic fields ([2, Theorem 1]) and the torsion subgroup of \(E_D \) for all square-free integers \(D \):

THEOREM 2.4 ([2, Theorem 2]). Let \(E : y^2 = x(x + M)(x + N) \) be an elliptic curve over \(\mathbb{Q} \), where \(M \) and \(N \) are integers.

(i) If \(E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \), then \(E_D(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) for all square-free integers \(D \).

(ii) If \(E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \), then \(E_D(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) for all square-free integers \(D \).

(iii) If \(E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \), we may assume that \(M = s^2 \) and \(N = t^2 \) for some integers \(s \) and \(t \). If \(D = -1 \) and \(s^2 - t^2 = \pm r^2 \) for some integer \(r \), then \(E_D(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \). In all other cases, \(E_D(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \).

(iv) If \(E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \), then \(E_D(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \) for only finitely many \(D \) and \(E_D(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) for almost all \(D \).

The following proposition is classical (see, e.g., [1, III.1]).

PROPOSITION 2.5. Any integral solution \((x, y, z)\) of \(X^4 \pm Y^4 = Z^2 \) satisfies \(xyz = 0 \).

3. **Squares of algebraic integers in \(F \).** Let \(R := \mathbb{Z}[(\sqrt{m}; m \in \mathbb{Z})] \); it is a subring of \(\mathcal{O}_F \).

LEMMA 3.1. If \(a \in \mathcal{O}_F \) is of degree \(2^d \) over \(\mathbb{Q} \) for some integer \(d \geq 0 \), then \(2^d a \in R \).

Proof. We prove this lemma by induction on \(d \). It is obvious that the lemma holds for \(d = 0, 1 \).

Assume that \(d \geq 2 \). Let \(K_d := \mathbb{Q}(a) \). Then \(K_d \) is a number field of type \((2, \ldots, 2)\) of degree \(2^d \) over \(\mathbb{Q} \). We may write

\[a = \frac{1}{b} \left(b_0 + b_1 \sqrt{\theta_1} + \cdots + b_m \sqrt{\theta_m} \right) \]

with some integer \(m \geq d \), where \(b_0, b_1, \ldots, b_m \) are non-zero integers and \(\theta_1, \ldots, \theta_m \) are distinct square-free integers. For each \(i \) with \(1 \leq i \leq m \), we may choose a basis \(\{1, \sqrt{\theta_{i1}}, \ldots, \sqrt{\theta_{i1d}}\} \) of \(K_d \) over \(\mathbb{Q} \) such that \(\theta_{i1} = \theta_i \) and \(\theta_{i2}, \ldots, \theta_{id} \in \{\theta_1, \ldots, \hat{\theta_i}, \ldots, \theta_m\} \). We define the subfield \(K_d^{(i)} \) of \(K_d \) of degree \(2^{d-1} \) to be \(\mathbb{Q} \left(\sqrt{\theta_{i1}}, \sqrt{\theta_{i2}}, \ldots, \sqrt{\theta_{id}} \right) \). Let \(\alpha_i \) be the sum of the elements
in the set
\[\left\{ \frac{1}{b} b_0, \frac{1}{b} b_1 \sqrt{\theta_1}, \ldots, \frac{1}{b} b_m \sqrt{\theta_m} \right\} \cap K_d^{(i)}. \]

Note that the terms \((1/b)b_0\) and \((1/b)b_i \sqrt{\theta_i}\) appear in the sum \(\alpha_i\), since \((1/b)b_0, (1/b)b_i \sqrt{\theta_i} \in K_d^{(i)}\). Then \(\alpha_i \in K_d^{(i)}\) and we can write \(a = \alpha_i + \beta_i \sqrt{\theta_i} \sqrt{\theta_i}\) with some \(\beta_i \in K_d^{(i)}\). Let \(\sigma\) be a generator of the Galois group \(\text{Gal}(K_d/K_d^{(i)})\). Then \(2\alpha_i = a + a^\sigma \in K_d^{(i)} \cap \mathcal{O}_F\). By the inductive assumption, \(2^d\alpha_i = 2^{d-1}2\alpha_i \in R\). Since the terms in the sum \(2^d\alpha_i\) are linearly independent over \(\mathbb{Z}\), each term in \(2^d\alpha_i\) is contained in \(R\); in particular, \(2^d(1/b)b_0, 2^d(1/b)b_i \sqrt{\theta_i} \in R\). Since this holds for each \(i\) with \(1 \leq i \leq m\), we obtain
\[
2^d a = 2^d \frac{1}{b} b_0 + 2^d \frac{1}{b} b_1 \sqrt{\theta_1} + \cdots + 2^d \frac{1}{b} b_m \sqrt{\theta_m} \in R.
\]

This completes the proof of the lemma. ■

We need the following lemmas in order to verify that a certain element in \(F\) is not a square in \(F\).

Lemma 3.2. Let \(a \in \mathcal{O}_F\), an odd prime \(l\) and an integer \(i \geq 0\), if \(l^i \sqrt{l}\) divides \(a^2\) in \(\mathcal{O}_F\), then so does \(l^{i+1}\).

Proof. If \(l^i \sqrt{l}\) divides \(a^2\) in \(\mathcal{O}_F\), then \(a/\sqrt{l} \in \mathcal{O}_F\), since \((a/\sqrt{l})^2 = a^2/l^i \in \mathcal{O}_F\). By replacing \(a\) with \(a/\sqrt{l}\), it suffices to prove the assertion for \(i = 0\).

Let \(F' := \mathbb{Q}(\{\sqrt{m}; m \text{ is an integer indivisible by } l\})\). Since Lemma 3.1 implies that \(2^d a \in R\) for some integer \(d \geq 0\), we may write \(2^d a = \alpha + \beta \sqrt{l}\) with \(\alpha, \beta \in R \cap \mathcal{O}_{F'}\). Thus
\[
(3.1) \quad 2^{2d} a^2 = (\alpha^2 + \beta^2 l) + 2\alpha\beta \sqrt{l}.
\]

Assume that \(\sqrt{l}\) divides \(a^2\) in \(\mathcal{O}_F\). The equation (3.1) implies that \(\sqrt{l}\) divides \(\alpha^2 \in \mathcal{O}_F\). Lemma 3.1 allows us to write \(\alpha^2 = \sqrt{l} (\gamma + \delta \sqrt{l})/2^e\) with \(\gamma, \delta \in R \cap \mathcal{O}_{F'}\) and some integer \(e \geq 0\). Hence \(2^e \alpha^2 = \gamma \sqrt{l} + \delta l\). However, \(\alpha^2 \in \mathcal{O}_{F'}\), together with the linear independence of 1 and \(\sqrt{l}\) over \(\mathcal{O}_{F'}\), implies that \(\gamma = 0\). Hence \(2^e \alpha^2 = \delta l\). Since \((\sqrt{2^e} \alpha/\sqrt{l})^2 = \delta \in \mathcal{O}_F\), we have \((\sqrt{2^e} \alpha/\sqrt{l}) \alpha \in \mathcal{O}_F\). Hence it is easy to find that \(\sqrt{l}\) divides \(\alpha\) in \(\mathcal{O}_F\). It follows from (3.1) that \(l\) divides \(2^{2d} a^2\) in \(\mathcal{O}_F\), that is, \(l\) divides \(a^2\) in \(\mathcal{O}_F\). ■

Remark 3.3. When \(l = 2\), Lemma 3.2 does not hold in general. For example, let \(a = 1 + \sqrt{-1} + \sqrt{2}\). Then
\[
a^2 = 2\sqrt{2} \frac{1 + \sqrt{-1}}{\sqrt{2}} (1 + \sqrt{2}).
\]

Since \((1 + \sqrt{-1})/\sqrt{2} \in \mathcal{O}_F\), it is obvious that \(2\sqrt{2}\) divides \(a^2\) in \(\mathcal{O}_F\). Suppose
that 4 divides \(a^2 \) in \(\mathcal{O}_F \). Then we must have

\[
\frac{1 + \sqrt{-1}}{2} \in \mathcal{O}_F \cap \mathbb{Q}(\sqrt{-1}) = \mathcal{O}_{\mathbb{Q}(\sqrt{-1})},
\]

since \(a^2/4 = (1 + \sqrt{-1})/2 + (1 + \sqrt{-1})/\sqrt{2} \), which contradicts the fact that \(\mathcal{O}_{\mathbb{Q}(\sqrt{-1})} \subset R \). It follows that \(a^2 \) is divisible not by 4 but by \(2\sqrt{2} \) in \(\mathcal{O}_F \).

Lemma 3.4 ([7, Assertion, p. 166]). For any \(m \in \mathbb{Z} \), \(\sqrt{m} \) is a square in \(F \) if and only if \(|m| \) is a square in \(\mathbb{Q} \).

Proof. Suppose that \(\sqrt{m} \) is a square in \(F \). Then it is not difficult to find that it can be expressed as \(\sqrt{m} = c(a + b\sqrt{m})^2 \), where \(c \in \mathbb{Q} \) and \(a, b \in \mathbb{Z} \). If \(m \) is not a square in \(\mathbb{Q} \), then \(a^2 + b^2 m = 0 \), that is, \(m = -(a/b)^2 \). The converse obviously holds. \(\blacksquare \)

4. **Proof of Theorem 1.** We begin by examining the structure of \(E(F)(2) \) when \(E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \).

Proposition 4.1. Assume that \(E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). Then \(E(F)(2) \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z} \).

Proof. We may assume that \(M = u^4 \) and \(N = v^4 \), where \(u \) and \(v \) are relatively prime integers with \(u > v > 0 \) and \(u^2 + v^2 = w^2 \) for some integer \(w > 0 \).

First, we show that \(E(F) \not\supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). By Lemma 2.3, we can find a point \(P = (x, y) \) of order 4 on \(E \) such that \(x = u^2 w\sqrt{u^2 - v^2} - u^4 \). Suppose that \(E(F) \supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). Then by Lemma 2.3, \(x + u^4 = u^2 w\sqrt{u^2 - v^2} \) must be a square in \(F \). This means that \(\sqrt{u^2 - v^2} \) is a square in \(F \). It follows from Lemma 3.4 that \(u^2 - v^2 \) is a square in \(\mathbb{Q} \), which contradicts Proposition 2.5 and the assumption \(u^2 + v^2 = w^2 \). Hence \(x + u^4 = u^2 w\sqrt{u^2 - v^2} \) is not a square in \(F \). Therefore, \(E(F) \not\supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \).

Secondly, we show that \(E(F) \not\supset \mathbb{Z}/32\mathbb{Z} \). Let

\[
P_3 = (uv(u + w)(v + w), uwv(u + v)(v + w)(w + u)).
\]

Then \(P_3 \) is a point of order 8 in \(E(\mathbb{Q}) \) and \([4]P_3 = (0, 0) \). Using Lemma 2.3, we can find a point \(P_4 = (x_4, y_4) \) of order 16 in \(E(F) \) such that \([2]P_4 = P_3 \) and \(x_4 = \sqrt[3]{\xi} \eta \), where

\[
\begin{align*}
\eta &= \sqrt[3]{\xi} + \sqrt[3]{\eta_1} + \sqrt[3]{\eta_2} + \eta_3, \\
\xi &= uv(u + w)(v + w), \quad \eta_1 = uw(u + v)(w + v), \\
\eta_2 &= vw(v + u)(w + u), \quad \eta_3 = w(u + v).
\end{align*}
\]

Note that \(\xi, \eta_1, \eta_2, \eta_3 \in \mathbb{Z} \) and \(\eta \in \mathcal{O}_F \). Since \(u^2 + v^2 = w^2 \), \((u, v) = 1 \) and \(\eta \) is symmetric with respect to \(u, v \), we may assume that \(u = 2mn, v = m^2 - n^2, w = m^2 + n^2 \), where \(m \) and \(n \) are relatively prime integers with \(m > n > 0 \).
and $m \not\equiv n \pmod{2}$. Then
\[
\sqrt{\xi} = 2m(m+n)\sqrt{mn(m^2-n^2)},
\]
\[
\eta_1 = 4m^3n(m^2+n^2)(m^2+2mn-n^2),
\]
\[
\eta_2 = (m+n)^2(m^4-n^4)(m^2+2mn-n^2),
\]
\[
\eta_3 = (m^2+n^2)(m^2+2mn-n^2).
\]
We see that none of ξ, η_1 and η_2 is a square in \mathbb{Q} by using $(u,v) = 1$ and $u^2 + v^2 = w^2$ (see [2, p. 157]). We need the following lemma:

Lemma 4.2. There exists an odd prime l and an integer $i \geq 0$ such that x_4 is divisible not by l^{i+1} but by $l^i\sqrt{l}$ in O_F.

Proof of Lemma 4.2. Suppose that the square-free part of $mn(m^2-n^2)$ is 2. Then both $m+n$ and $m-n$ are squares and either $m = 2(m')^2, n = (n')^2$ or $m = (m')^2, n = 2(n')^2$ for some integers m', n', since any two of $m, n, m+n, m-n$ are relatively prime. If $m = 2(m')^2$ and $n = (n')^2$, then both $2(m')^2 + (n')^2$ and $2(m')^2 - (n')^2$ must be squares, which cannot happen, since either $2(m')^2 + (n')^2$ or $2(m')^2 - (n')^2$ is congruent with 2 or 3 modulo 4. If $m = (m')^2$ and $n = 2(n')^2$, then both $(m')^2 + 2(n')^2$ and $(m')^2 - 2(n')^2$ must be squares, which contradicts the fact that 2 is not a congruent number. Hence there exists an odd prime l which divides the square-free part of $mn(m^2-n^2)$. In order to prove the lemma, it suffices to show that \sqrt{l} does not divide η in O_F.

Suppose that \sqrt{l} divides η in O_F. Since l divides either η_1 or η_2, Lemma 3.1 implies that l divides η_3. Hence, it is easy to see that l divides both mn and m^2-n^2, which contradicts $(m,n) = 1$. Therefore, \sqrt{l} does not divide η in O_F. This completes the proof of the lemma.

Now comparing Lemma 3.2 with Lemma 4.2, we easily find that x_4 is not a square in O_F. It follows from Lemma 2.3 that $P_4 \not\in 2E(F)$.

Next, using Lemma 2.3 we can find a point $P'_4 = (x'_4, y'_4)$ of order 16 in $E(F)$ such that $[2]P'_4 = P_3 + Q_1 = P'_3$ and
\[
x'_4 = \sqrt{uw(u+w)(v-w)}\{\sqrt{uw(u-v)(w-v)} + \sqrt{uv(v-u)(w+u)} \\
+ \sqrt{uw(u+w)(v-w)} + w(u-v)\},
\]
where $P'_3 = (uw(u+w)(v-w), uvw(u-v)(w+u))$ and $Q_1 = (-u^4, 0)$. Since x'_4 is obtained by substituting $-v$ into v in x_4, it is easy to show that x'_4 is not a square in F. It follows from Lemma 2.3 that $P'_4 \not\in 2E(F)$. Put $Q_2 := P'_4 - P_4 \in E(F)$. Then $[2]Q_2 = P'_3 - P_3 = Q_1$. Note that Q_2 is not a multiple of P_4, since Q_1 would then be a multiple of $[8]P_4 = (0, 0)$. Suppose that there exists a point P of order 32 in $E(F)$. Then $[2]P = [a]P_4 + [b]Q_2$ for some integers $a \in \{1, 3, 5, 7, 9, 11, 13, 15\}$ and $b \in \{0, 1, 2, 3\}$, since $E(F) \not\subseteq$
Let \(\mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). Now we define a point \(Q \in \langle P_4 \rangle \oplus \langle Q_2 \rangle \) as follows:

\[
Q := \begin{cases}
-[(a - 1)/2]P_4 - [b/2]Q_2 & \text{if } b = 0, 2, \\
-[(a - 1)/2]P_4 - [(b - 1)/2]Q_2 & \text{if } b = 1, 3.
\end{cases}
\]

Then \([2](P + Q) = P_4 \) or \(P_4 \). Since \(P + Q \in E(F) \), we must have either \(P_4 \in 2E(F) \) or \(P_4' \in 2E(F) \), which is a contradiction. Therefore, \(E(F) \not\supset \mathbb{Z}/32\mathbb{Z} \). Consequently, \(E(F)_{(2)} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z} \), which completes the proof of Proposition 4.1.

When \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \), we define \(E(F)_{(2')} \) as follows:

\[
E(F)_{(2')} := \{ P \in E(F); [n]P = O \text{ for some odd integer } n \}.
\]

We can easily determine the structure of \(E(F)_{(2')} \) using Theorem 2.1 and Theorem 1(ii) in [2], which implies that \(E(\mathbb{Q}(\sqrt{D})) \not\supset \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \) for all square-free integers \(D \).

PROPOSITION 4.3. Assume that \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \). Then \(E(F)_{(2')} \simeq \mathbb{Z}/3\mathbb{Z} \).

Proof. It suffices to show that \(E(F) \not\supset \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \), since Theorem 2.1 implies that \(E(F) \not\supset \mathbb{Z}/6\mathbb{Z} \) for any odd prime \(p \). By the tripling formula, the \(x \)-coordinates of points of order 3 on \(E \) are the roots of some equation of degree 4 with coefficients in \(\mathbb{Q} \). Assume that \(E(\mathbb{Q}) \supset \mathbb{Z}/3\mathbb{Z} \). Then one of the roots is the \(x \)-coordinate of a point \(P_1 \) of order 3 in \(E(\mathbb{Q}) \). Hence, if \(E(F) \supset \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \), then some polynomial \(g(x) \) of degree 3 with coefficients in \(\mathbb{Q} \) must be decomposed as a product of linear polynomials in \(F \). Since the Galois group \(\text{Gal}(F/\mathbb{Q}) \) has no element of order 3, there exists \(\alpha \in \mathbb{Q} \) such that \(g(\alpha) = 0 \). Let \(E \) be given by \(y^2 = f(x) \), let \(D \) be the square-free part of \(f(\alpha) \) and put \(\beta := \sqrt{f(\alpha)} \). Then the point \(P_2 = (\alpha, \beta) \) is of order 3 in \(E(\mathbb{Q}(\sqrt{D})) \), and \(P_1 \) and \(P_2 \) generate \(E[3] \). Hence \(E(\mathbb{Q}(\sqrt{D})) \supset E[3] \), which contradicts Theorem 1(ii) in [2]. Therefore, \(E(F) \not\supset \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \).

In order to determine the structure of \(E(F)_{(2)} \), we need an elementary lemma:

LEMMA 4.4. Let \(\alpha, \beta \in \mathbb{Q} \) and let \(\gamma \) be a square-free integer. If \(\alpha + \beta \sqrt{\gamma} \) is a square in \(F \), then \(\alpha^2 - \beta^2 \gamma \) is a square in \(\mathbb{Q} \).

Proof. If \(\alpha + \beta \sqrt{\gamma} \) is a square in \(F \), then it can be expressed as \(\alpha + \beta \sqrt{\gamma} = c(a + b\sqrt{\gamma})^2 \), where \(c \in \mathbb{Q} \) and \(a, b \in \mathbb{Z} \). This means that \(c(a^2 + b^2\gamma) = \alpha \) and \(2abc = \beta \). Then \(4(a^2c)^2 - 4\alpha(a^2c) + \beta^2\gamma = 0 \). Hence

\[
a^2c = \frac{\alpha \pm \sqrt{\alpha^2 - \beta^2\gamma}}{2} \in \mathbb{Q}.
\]

Therefore, \(\sqrt{\alpha^2 - \beta^2\gamma} \in \mathbb{Q} \).
Since we have $E_D(\mathbb{Q})_{(2)} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ for all square-free integers D by Theorem 2.4(ii), it suffices to show the following.

Proposition 4.5. Assume that $E(\mathbb{Q})_{(2)} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and $E_D(\mathbb{Q})_{(2)} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ for all square-free integers D. Then $E(F)_{(2)} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$.

Proof. By Lemma 2.3, the x-coordinate of a point P of order 4 on E equals one of $\pm \sqrt{MN}, -M \pm \sqrt{M(M-N)}, -N \pm \sqrt{N(N-M)}$. Suppose that $E(F) \supset \mathbb{Z}/8\mathbb{Z}$. By Lemma 2.3, there exists a point $P = (x, y)$ of order 4 in $E(F)$ such that x, $x + m$ and $x + n$ are all squares in F.

Suppose that $x = \pm \sqrt{MN}$. By Lemma 3.4, $|MN|$ is a square in \mathbb{Q}. Hence, we may assume that $M = d_1^2D, N = \pm d_2^2D$ for some D, a square-free integer, or 1, and some relatively prime integers d_1, d_2. If $M = d_1^2D, N = d_2^2D$, then the D-quadratic twist E_D of E is given by $y^2 = x(x + (d_1D)^2).$ Hence by Theorem 2.2(ii) we have $E_D(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, which contradicts the assumption. Therefore assume that $M = d_1^2D, N = -d_2^2D$. Then $x + m = \pm d_1d_2D \sqrt{-1} = d_1D$. By Lemma 4.4, if $x + m$ is a square in F, then $\sqrt{(d_1^2D)^2 + (d_1d_2D)^2} \in \mathbb{Q}$, that is, $\sqrt{d_1^2 + d_2^2} \in \mathbb{Q}$. However, since the D-quadratic twist E_D of $E = E(M, N)$ is isomorphic over \mathbb{Q} to an elliptic curve $E = E_D(-N, M-N)$ given by $y^2 = x(x + (d_2D)^2)\{x + (d_1^2 + d_2^2)D^2\}$, we must have $E_D(\mathbb{Q}) \simeq E'(\mathbb{Q}) \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ by Theorem 2.2(i), which contradicts the assumption.

If $x = -M \pm \sqrt{M(M-N)}$ (resp. $x = -N \pm \sqrt{N(N-M)}$), then we also arrive at a contradiction by replacing M, N and x with $-M, N-M$ and $x + M$ (resp. with $-N, M-N$ and $x + N$) in the above argument. Therefore, $E(F) \not\supset \mathbb{Z}/8\mathbb{Z}$. Since it is clear that $E(F) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, we obtain the assertion.

When $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, the structure of $E(F)_{(2)}$ depends on whether $E_{-1}(\mathbb{Q})_{\text{tors}}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Note that in this case $E_{-1}(\mathbb{Q})_{\text{tors}}$ is isomorphic to either $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ (see Theorem 2.4(iii)).

Proposition 4.6. Assume that $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$. If $E_{-1}(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, then $E(F)_{(2)} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. Otherwise, $E(F)_{(2)} \simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$.

Proof. We may assume that $M = s^2$ and $N = t^2$, where s and t are relatively prime integers with $s > t > 0$. Then

$$E(\mathbb{Q})_{\text{tors}} = (Q_1) \oplus (P_2) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z},$$

where $P_2 = (st, st(s+t))$ and $Q_1 = (-s^2, 0)$. Note that $[2]P_2 = (0, 0)$. By Lemma 2.3, $E(F) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ and there exist points P_3 and Q_2 of order 8 and order 4, respectively, in $E(F)$ such that $[2]P_3 = P_2$, $[2]Q_2 = Q_1$ and $x(P_3) = st + s\sqrt{t(s+t)} + t\sqrt{s(s+t)} + (s+t)\sqrt{st}$, $x(Q_2) = -s^2 + s\sqrt{s^2 - t^2}$.

Suppose that \(P_3 \in 2E(F) \). Since
\[
x(P_3) = \sqrt{st}\left\{ \frac{1}{\sqrt{2}} (\sqrt{s} + \sqrt{t} + \sqrt{s+t}) \right\}^2,
\]
we see that \(x(P_3) \) is a square in \(F \) if and only if \(\sqrt{st} \) is a square in \(F \); hence by Lemma 3.4, \(st \) is a square in \(\mathbb{Q} \). This means that there exist positive integers \(u, v \) such that \(s = u^2, t = v^2 \), since \((s, t) = 1 \). Thus
\[
x(P_3) + M = u^2v^2 + u^2v\sqrt{u^2 + v^2} + uv^2\sqrt{u^2 + v^2} + (u^2 + v^2)uv + u^4
\]
\[
= u(u+v)\sqrt{u^2 + v^2}(v + \sqrt{u^2 + v^2}).
\]
Since \((u, v) = 1\), we have \((v, u^2 + v^2) = 1\). Note that by Theorem 2.2(ii), \(u^2 + v^2 \) is not a square in \(\mathbb{Q} \), since \(E(Q)_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \). Suppose that the square-free part of \(u^2 + v^2 \) is 2. If we write \(u^2 + v^2 = 2w^2 \) with some integer \(w > 0 \), then \(x(P_3) + M = uw(u+v)(2w+v\sqrt{2}) \). Since \(x(P_3) + M \) is a square in \(F \), we can write \(2w + v\sqrt{2} = c(a+b\sqrt{2}) \), where \(c \in \mathbb{Q} \) and \(a, b \in \mathbb{Z} \) with \((a, b) = 1\). Then \(c(a^2 + 2b^2) = 2w \) and \(2abc = v \), which means that \(v(a^2 + 2b^2) = 4abw \). Since \(v \) is odd because of \(u^2 + v^2 = 2w^2 \), we must have \(a^2 + 2b^2 \equiv 0 \pmod{4} \), that is, \(a \equiv b \equiv 0 \pmod{2} \), which contradicts \((a, b) = 1\). Therefore there exists an odd prime \(l \) which divides the square-free part of \(u^2 + v^2 \). However for such a prime \(l \), \(\sqrt{l} \) does not divide \(v + \sqrt{u^2 + v^2} \) in \(O_F \) because of \((v, u^2 + v^2) = 1\) and Lemma 3.1; hence there exists an integer \(i \) such that \(x(P_3) + M \) is divisible not by \(l^{i+1} \) but by \(l^i \sqrt{l} \) in \(O_F \), which contradicts Lemma 3.2. It follows that \(x(P_3) + M \) is not a square in \(F \), and from Lemma 2.3 that \(P_3 \notin 2E(F) \).

Case 1: \(E_{-1}(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \). In this case, by Theorem 2.4(iii), \(s^2 - t^2 \) is not a square in \(\mathbb{Q} \). Suppose that \(E(F) \supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \), that is, \(Q_2 \in 2E(F) \). Then by Lemma 2.3, \(x(Q_2) \), \(x(Q_2) + M \) and \(x(Q_2) + N \) are all squares in \(F \). Since \(x(Q_2) + M = s\sqrt{s^2 - t^2} \), Lemma 3.4 implies that \(x(Q_2) + M \) is a square in \(F \) if and only if \(s^2 - t^2 \) is a square in \(\mathbb{Q} \), which contradicts the assumption. Hence \(E(F) \not\cong \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). Using Lemma 2.3, we can find a point \(P'_3 \) of order 8 in \(E(F) \) such that \([2]P'_3 = P_2 + Q_1 = P'_2 \) and \(x(P'_3) = -st + s\sqrt{-t(s-t) - t\sqrt{s(s-t)} + (s-t)\sqrt{-st}} \), where \(P'_2 = (-st, -st(s-t)) \). Since \(x(P'_3) \) is obtained by substituting \(-t \) into \(t \) in \(x(P_3) \), it is easy to see that \(x(P'_3) + M \) is not a square in \(F \). It follows from Lemma 2.3 that \(P'_3 \notin 2E(F) \). Put \(Q'_2 := P'_3 - P_3 \in E(F) \). Then \([2]Q'_2 = P'_2 - P_2 = Q_1 \). Suppose that there exists a point \(P \) of order 16 in \(E(F) \). Then \([2]P = [a]P_3 + [b]Q_2 \) for some integers \(a \in \{1, 3, 5, 7\} \) and \(b \in \{0, 1, 2, 3\} \), since \(E(F) \not\cong \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). Now we define a point \(Q \in \langle P_3 \rangle \oplus \langle Q'_2 \rangle \) as follows:

\[
Q := \begin{cases}
-[(a-1)/2]P_3 - [b/2]Q'_2 & \text{if } b = 0, 2, \\
-[(a-1)/2]P_3 - [(b-1)/2]Q'_2 & \text{if } b = 1, 3.
\end{cases}
\]
Then \([2](P + Q) = P_3\) or \(P_3'\). Since \(P + Q \in E(F)\), we must have either \(P_3 \in 2E(F)\) or \(P_3' \in 2E(F)\), which is a contradiction. Therefore, \(E(F) \not\cong \mathbb{Z}/16\mathbb{Z}\). Consequently, \(E(F)(2) \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}\).

Case 2: \(E_{-1}(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}\). In this case, by Theorem 2.4(iii), \(s^2 - t^2 = r^2\) for some integer \(r > 0\). Then \(x(Q_2) = s(r - s)\). By Lemma 2.3, \(E(F) \supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}\). In fact, there exists a point \(Q_3\) of order 8 in \(E(F)\) such that \([2]Q_3 = Q_2\) and \(x(Q_3) = s\sqrt{r(r - s) + (s - r)\sqrt{-r^2 + r\sqrt{s(s - r) + s(r - s)}}}\). Thus

\[
x(Q_3) + M = \sqrt{-rs} \left\{ \frac{1}{\sqrt{2}} (\sqrt{s - \sqrt{-r}} + \sqrt{s - r}) \right\}^2.
\]

However, by Proposition 2.5 and \((r, s) = 1\) it is easy to see that \(rs\) is not a square in \(\mathbb{Q}\). It follows from Lemma 3.4 that \(x(Q_3) + M\) is not a square in \(F\), and from Lemma 2.3 that \(Q_3 \not\in 2E(F)\).

Next, we show that \(E(F) \not\cong \mathbb{Z}/16\mathbb{Z}\). Using Lemma 2.3, we can find a point \(R_3\) of order 8 in \(E(F)\) such that \([2]R_3 = R_2\) and

\[
x(R_3) = \sqrt{rt} \frac{1 + \sqrt{-1}}{\sqrt{2}} \left\{ \frac{\sqrt{r + s} + \sqrt{r - s}}{\sqrt{2}} \right\}^2 + t\sqrt{r} \left\{ \frac{1 + \sqrt{-1}}{\sqrt{2}} \right\}^2 \frac{\sqrt{r + s} + \sqrt{r - s}}{\sqrt{2}} + r\sqrt{t} \frac{1 + \sqrt{-1}}{\sqrt{2}} \frac{\sqrt{r + s} + \sqrt{r - s}}{\sqrt{2}} + t(r\sqrt{-1} - t),
\]

where \(R_2 = (t(r\sqrt{-1} - t), rt(r\sqrt{-1} - t))\) and \([2]R_2 = (-t^2, 0)\). Then we have

\[
x(R_3) + N = \sqrt{rt} \frac{1 + \sqrt{-1}}{\sqrt{2}} \left\{ \frac{\sqrt{r + s} + \sqrt{r - s}}{\sqrt{2}} + \sqrt{r} \right\} \times \left\{ \frac{\sqrt{r + s} + \sqrt{r - s}}{\sqrt{2}} + \sqrt{t} \frac{1 + \sqrt{-1}}{\sqrt{2}} \right\}.
\]

Put

\[
A := \frac{\sqrt{r + s} + \sqrt{r - s}}{\sqrt{2}} + \sqrt{r}, \quad B := \frac{\sqrt{r + s} + \sqrt{r - s}}{\sqrt{2}} + \sqrt{t} \frac{1 + \sqrt{-1}}{\sqrt{2}}.
\]

Note that \(A, B, x(R_3) + N \in \mathcal{O}_F\) and that both \(A\) and \(B\) divide \(x(R_3) + N\) in \(\mathcal{O}_F\). Suppose that \(x(R_3) + N\) is a square in \(\mathcal{O}_F\).

First, suppose that there exists an odd prime \(\ell\) which divides the square-free part of \(t\). Since \(r < s\), \(\sqrt{r + s}\) and \(\sqrt{r - s}\) are linearly independent over \(\mathbb{Z}\); and since \((r + s, r - s)\) divides \((2r, 2s) = 2\), \(l\) does not divide \((r + s, r - s)\). Hence by Lemma 3.1, \(\sqrt{\ell}\) does not divide \(\sqrt{r + s} + \sqrt{r - s}\) in \(\mathcal{O}_F\), which means that \(\sqrt{\ell}\) does not divide \(B\) in \(\mathcal{O}_F\). If \(\sqrt{r + s}, \sqrt{r - s}\) and \(\sqrt{2}r\) are linearly independent over \(\mathbb{Z}\), then it is clear that \(\sqrt{\ell}\) does not divide \(A\).
in \(\mathcal{O}_F \) because of \((l, 2r) = 1\) and Lemma 3.1. Otherwise, the square-free part of \(r + s \) equals that of \(2r \); it is either 1 or 2, since \(s = m^2 + n^2 \) and \(r = 2mn \) or \(m^2 - n^2 \) for some relatively prime integers \(m, n \). Then the square-free part of \(r - s \) is either \(-1\) or \(-2\). Thus \(A \) can be expressed as

\[
A = a_0 + a_1\sqrt{-1} + a_2\sqrt{2} + a_3\sqrt{-2}
\]

with integers \(a_0, a_1, a_2, a_3 \). Hence by Lemma 3.1 there exists an integer \(i \) such that \(A \) is divisible not by \(l^i \sqrt{i} \) but by \(l^{i+1} \) in \(\mathcal{O}_F \). Therefore for some integer \(e \), \(x(R_3) + N \) is divisible not by \(l^{e+1} \) but by \(l^{e+1} \sqrt{i} \) in \(\mathcal{O}_F \). It follows from Lemma 3.2 that \(x(R_3) + N \) is not a square in \(\mathcal{O}_F \), which contradicts the assumption. Therefore, either \(t = (t')^2 \) or \(t = 2(t')^2 \) for some integer \(t' \).

Secondly, suppose that there exists an odd prime \(p \) which divides the square-free part of \(r \). In the same way as above, we easily see that \(\sqrt{p} \) does not divide \(A \) in \(\mathcal{O}_F \), that \(B \) can be expressed as

\[
B = a_0 + a_1\sqrt{-1} + a_2\sqrt{2} + a_3\sqrt{-2}
\]

with integers \(a_0, a_1, a_2, a_3 \) (since either \(t = (t')^2 \) or \(t = 2(t')^2 \)) and that \(x(R_3) + N \) is not a square in \(\mathcal{O}_F \), which contradicts the assumption. Therefore, either \(r = (r')^2 \) or \(r = 2(r')^2 \) for some integer \(r' \). It follows that \(r = (r')^2 \) and \(t = (t')^2 \), \(r = 2(r')^2 \) and \(t = (t')^2 \) or \(r = (r')^2 \) and \(t = 2(t')^2 \). It is not difficult to see that none of these cases happens because of Proposition 2.5. It follows that \(x(R_3) + N \) is not a square in \(F \), and from Lemma 2.3 that \(R_3 \not\in 2E(F) \).

Now let \(P_4, Q_4, R_4 \) be points of order 16 on \(E \) such that \([2]P_4 = P_3\), \([2]Q_4 = Q_3\), \([2]R_4 = R_3\), and put \(\mathcal{P} := \{P_4 + P; P \in E[8]\}, \mathcal{Q} := \{Q_4 + P; P \in E[8]\}, \mathcal{R} := \{R_4 + P; P \in E[8]\} \). Then it is obvious that \(E[16] = E[8] \cup \mathcal{P} \cup \mathcal{Q} \cup \mathcal{R} \). Since \(P_4, Q_4, R_4 \) cannot be in \(E(F) \), we obtain \(E(F) \not\subset \mathbb{Z}/16\mathbb{Z} \). Consequently, \(E(F)_{(2)} \simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). This completes the proof of Proposition 4.6.

In order to prove Theorem 1, we need one more proposition due to Qiu and Zhang.

Proposition 4.7 ([7, Theorem 2 and Remark 2]). Let \(E \) be an elliptic curve over \(\mathbb{Q} \). Assume that \(E(\mathbb{Q})_{\text{tors}} = E(\mathbb{Q})_{(2)} \) and \(E_D(\mathbb{Q})_{\text{tors}} = E_D(\mathbb{Q})_{(2)} \) for all square-free integers \(D \). Then \(E(F)_{\text{tors}} = E(F)_{(2)} \).

Remark 4.8. Although Theorem 2 and Remark 2 in [7] are expressed in terms of a number field \(K \) of type \((2, \ldots, 2)\) instead of \(F \), it is clear that they are also valid for \(F \).

Now all we have to do is put the propositions together.

Proof of Theorem 1. Since if \(E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \) or \(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \), then \(E_D(\mathbb{Q})_{\text{tors}} = E_D(\mathbb{Q})_{(2)} \) for all square-free integers \(D \) by Theorem 2.4, (a) follows from Propositions 4.1 and 4.7; (c) follows from Propositions 4.6 and 4.7 (note that by Theorem 2.4(iii), \(M - N \) is a square if and only if \(E_{-1}(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \)). We obtain (b) just by combining Propositions...
4.5 and 4.3. In (d), if \(E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) for all \(D \), then \(E(F)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \) from Propositions 4.5 and 4.7; if \(E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \) (resp. \(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \)) for some \(D \), then (a) (resp. (b)) shows that \(E(F)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z} \) (resp. \(\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z} \)) through the isomorphism \(E \simeq E_D \) over \(F \); if \(E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \) and \(E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) (resp. \(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \)) for some \(D \), then (c) shows that \(E(F)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \) (resp. \(\mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \)). This completes the proof of Theorem 1.

5. A classification over number fields of type \((2, \ldots, 2)\). Let \(E : y^2 = x(x + M)(x + N) \) be an elliptic curve over \(\mathbb{Q} \), where \(M \) and \(N \) are integers with \(M > N \) such that \((M, N)\) is a square-free integer or 1. Let \(K \) be a number field of type \((2, \ldots, 2)\). It is not difficult to determine the structure of \(E(K)_{\text{tors}} \) because of Theorem 1.

Case 1: \(E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \). We may assume that \(M = u^4 \) and \(N = v^4 \), where \(u \) and \(v \) are relatively prime integers with \(u > v > 0 \) and \(u^2 + v^2 = w^2 \) for some integer \(w > 0 \).

(I) By Lemma 2.3, \(E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \) if and only if \(\sqrt{-1}, \sqrt{u^4 - v^4} \in K \). Since \(u^4 - v^4 = w^2(u^2 - v^2) \), we see that \(\sqrt{u^4 - v^4} \in K \) if and only if \(\sqrt{u^2 - v^2} \in K \). Hence, \(E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \) if and only if \(\sqrt{-1}, \sqrt{u^2 - v^2} \in K \).

(II) We find a necessary and sufficient condition for \(E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z} \). Let \(P_3 = (uw(u + w)(v + w), uw(u + v)(v + w)(w + u)) \in E(\mathbb{Q}) \) and \(P'_3 = P_3 + Q_1 \in E(\mathbb{Q}) \), where \(Q_1 = (-u^4, 0) \). Then \(P_3 \) and \(P'_3 \) are of order 8 and \(x(P'_3) = uw(u+w)(v-w) \). Assume that \(E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z} \). Then it is easy to see that either \(P_3 \) or \(P'_3 \) is contained in \(2E(K) \). By Lemma 2.3, this is equivalent to the condition that either

\[
\sqrt{uw(u+w)(v+w)}, \sqrt{uw(u+v)(w+v)} \in K
\]

or

\[
\sqrt{uw(u+w)(v-w)}, \sqrt{uw(u-v)(w-v)} \in K.
\]

On account of (I), we obtain the following: \(E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z} \) if and only if either \(\sqrt{-1} \notin K \) or \(\sqrt{u^2 - v^2} \notin K \) and either

\[
\sqrt{uw(u+w)(v+w)}, \sqrt{uw(u+v)(w+v)} \in K
\]

or

\[
\sqrt{uw(u+w)(v-w)}, \sqrt{uw(u-v)(w-v)} \in K.
\]

(III) Assume that \(E(K)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z} \). By Theorem 1(a), there exists a point \(P_3 \) of order 16 in \(E(F) \) such that \([2]P_4 = P_3 \). Let \(P''_3 := P_3 + Q_2 \), where \(Q_2 \) is a point of order 4 in \(E(K) \) such that \([2]Q_2 = Q_1 \). If \(P_4 \notin E(K) \), then it is not difficult to find that there exists a point \(P''_4 \in E(K) \) (of order 16) such that \([2]P''_4 = P''_3 \). However since \([2](P''_4 - P_4) = P''_3 - P_3 = Q_2 \), we have \(Q_2 \in 2E(F) \). Hence \(E(F) \supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \), which contradicts...
Theorem 1(a). Therefore we must have $P_4 \in E(K)$. On account of (I) and (II), we obtain the following: $E(K)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z}$ if and only if

$$\sqrt{-1}, \sqrt{u^2 - v^2}, \sqrt{uv(u + w)(v + w)}, \sqrt{uv(u + v)(w + v)} \in K.$$

(IV) In all other cases, we obtain $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ from Theorem 1(a).

CASE 2: $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$. By Theorem 1(b), we may restrict ourselves to the 2-primary part of $E(K)_{\text{tors}}$.

(I) By Lemma 2.3, $E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ if and only if $\sqrt{M}, \sqrt{N} \in K$, $\sqrt{-M}, \sqrt{-M + N} \in K$ or $\sqrt{-N}, \sqrt{-N - M} \in K$.

(II) By Lemma 2.3 and Theorem 1(b), $E(K)_{\text{tors}} \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z}$ if and only if $\sqrt{-1}, \sqrt{M}, \sqrt{N}, \sqrt{-M - N} \in K$.

(III) In all other cases, we obtain $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ from Theorem 1(b).

CASE 3: $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$. We may assume that $M = s^2$ and $N = t^2$, where s and t are relatively prime integers with $s > t > 0$. Put $r := \sqrt{s^2 - t^2}$.

(I) By Lemma 2.3, $E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ if and only if $\sqrt{-s^2}, r\sqrt{-1} \in K$, namely, $\sqrt{-1}, r \in K$.

(II) Assume that $E(K) \not\supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$. Let $P_1 = (0, 0), Q_1 = (-s^2, 0), P_2 = (st, st(s + t))$ and $P_2' = (-st, st(t - s))$, where $[2]P_2 = P_1$ and $P_2 + Q_1 = P_2'$. Then $E(K) \supset \mathbb{Z}/8\mathbb{Z}$ if and only if either $P_2 \in 2E(K)$ or $P_2' \in 2E(K)$.

By Lemma 2.3, this is equivalent to the condition that either $\sqrt{st}, \sqrt{s(s + t)} \in K$ or $\sqrt{-st}, \sqrt{s(s - t)} \in K$. On account of (I), we obtain the following: $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ if and only if either $\sqrt{-1} \not\in K$ or $r \not\in K$ and either $\sqrt{st}, \sqrt{s(s + t)} \in K$ or $\sqrt{-st}, \sqrt{s(s - t)} \in K$.

(III) We find a necessary and sufficient condition on which $E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. Assume that $E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$.

Let $P_2 = (st, st(s + t)), Q_2 = (s(r - s), rs(r - s)\sqrt{-1})$ and $R_2 = (t(r\sqrt{-1}-t), rt(r\sqrt{-1}-t))$, where $[2]P_2 = P_1$, $[2]Q_2 = Q_1$ and $[2]R_2 = R_1 = (-t^2, 0)$. Then it is obvious that $E(K) \supset \mathbb{Z}/8\mathbb{Z}$ if and only if P_2, Q_2 or R_2 is contained in $2E(K)$. By Lemma 2.3, this is equivalent to the condition that $\sqrt{st}, \sqrt{s(s + t)} \in K$, $\sqrt{s(r - s)}, \sqrt{rs} \in K$ or $\sqrt{r(t + \sqrt{-1})}, \sqrt{rt\sqrt{-1}} \in K$ (note that $\sqrt{-1} \in K$ by the assumption that $E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$). Since

$$\sqrt{r(t + \sqrt{-1})} = \pm \frac{\sqrt{2r}}{2} (\sqrt{r + s + \sqrt{r - s}})$$

and

$$\sqrt{rt\sqrt{-1}} = \pm \frac{\sqrt{2rt}}{2} (1 + \sqrt{-1}),$$
the third condition can be replaced with $\sqrt{2rt}, \sqrt{2r(r+s)}, \sqrt{2r(r-s)} \in K$. Further, since $\sqrt{2r(r-s)} = 2rt\sqrt{-1}/\sqrt{2r(r+s)}$, we see that $\sqrt{2r(r-s)} \in K$ if and only if $\sqrt{2r(r+s)} \in K$. Similarly we find that $\sqrt{s(r+s)} \in K$ if and only if $\sqrt{s(r-s)} \in K$. Hence $E(K) \supset \mathbb{Z}/8\mathbb{Z}$ if and only if $\sqrt{st}, \sqrt{s(s+t)} \in K$, $\sqrt{rs}, \sqrt{s(r+s)} \in K$ or $\sqrt{2rt}, \sqrt{2r(r+s)} \in K$ (on the assumption that $E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$). On account of (I), we obtain the following: $E(K) \supset \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ if and only if $\sqrt{-1}, r \in K$ and

$$\sqrt{st}, \sqrt{s(s+t)} \in K, \sqrt{rs}, \sqrt{s(r+s)} \in K \text{ or } \sqrt{2rt}, \sqrt{2r(r+s)} \in K.$$

(IV) We easily see that $E(K)_{\text{tors}} \simeq \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ if and only if $\sqrt{-1}, r, \sqrt{st}, \sqrt{s(s+t)}, \sqrt{rs}, \sqrt{s(r+s)}, \sqrt{2rt}, \sqrt{2r(r+s)} \in K$, that is,

$$\sqrt{-1}, r, \sqrt{rs}, \sqrt{st}, \sqrt{s(r+s)}, \sqrt{s(s+t)} \in K.$$

Note that this case can occur only if $r \in \mathbb{Q}$.

(V) In all other cases, we obtain $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ from Theorem 1(c).

Case 4: $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. If $E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ (resp. $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$) and $\sqrt{D} \in K$ for some square-free integer D, then we may consider ourselves to be in Case 1 (resp. Case 2, Case 3) through the isomorphism $E \simeq E_D$ over F. Hence in the case where $E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ for some D, assume that $\sqrt{D} \notin K$; in the case where $E_D(\mathbb{Q})_{\text{tors}} \simeq E_{-D}(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ for some D, assume that $\sqrt{-D} \notin K$ and $\sqrt{-D} \notin K$.

Case 4.1: $E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ for some square-free integer D. We may assume that $M = D(u'')^4$ and $N = D(v'')^4$, where u' and v' are relatively prime positive integers such that $(u'')^2 + (v'')^2$ is a square. By Lemma 2.3, it is clear that $E(K) \not\supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ because of $\sqrt{D} \notin K$.

(I) By Lemma 2.3, $E(K) \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ if and only if either $\sqrt{-D}$, $\sqrt{-D\{(u'')^4 - (v'')^4\}} \in K$ or $\sqrt{-D}, \sqrt{-D\{(u'')^4 - (v'')^4\}} \in K$, that is, $\sqrt{-D} \in K$ and either $\sqrt{(u'')^2 - (v'')^2} \in K$ or $\sqrt{(v'')^2 - (u'')^2} \in K$. Suppose that $E(K) \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. Then since $P_1 = (0,0) \notin 2E(K)$, either $Q_1 = (-D(u'')^4,0)$ or $R_1 = (-D(v'')^4,0)$ is contained in $4E(K)$; hence $P_1 \in 4E(F)$ implies that $E(F) \supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$, which contradicts Theorem 1(a). Therefore we obtain the following: $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ if and only if $\sqrt{-D} \in K$ and either

$$\sqrt{(u'')^2 - (v'')^2} \in K \text{ or } \sqrt{(v'')^2 - (u'')^2} \in K.$$

(II) In all other cases, we obtain $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Case 4.2: $E_D(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ for some square-free integer D. We may assume that $M = D(s')^2$ and $N = D(t')^2$, where s' and t' are relatively
prime positive integers. By Lemma 2.3, it is clear that $E(K) \not\subseteq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ because of $\sqrt{D} \notin K$.

(I) By Lemma 2.3, $E(K) \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ if and only if either $\sqrt{-D}$, $\sqrt{-D}\{(s')^2 - (t')^2\} \in K$ or $\sqrt{-D}, \sqrt{-D}\{(t')^2 - (s')^2\} \in K$, that is, $\sqrt{-D} \in K$ and either $(s')^2 - (t')^2 \in K$ or $(t')^2 - (s')^2 \in K$. Suppose that $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. Then since $P_1 = (0,0) \not\in 2E(K)$, either $Q_1 = (-D(s')^2,0)$ or $R_1 = (-D(t')^2,0)$ is contained in $4E(K)$; hence $P_1 \in 4E(F)$ implies that $E(F) \supset \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$.

Therefore we obtain the following: $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$. Hence by assumption we must have $\sqrt{-D} \notin K$, which is a contradiction. Therefore we obtain the following: $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Let d_2 be an integer such that $[K: \mathbb{Q}] = 2^d$. Then we write $K = K_d$.

Remark 5.1. The result of Qiu and Zhang ([7, Theorem 4]) is contained in Case 4.3. In fact, in Theorem 4 in [7], they classified $E(K)_{\text{tors}}$ on the assumption that M and N are relatively prime square-free integers, not equal to ± 1, which implies that $E(Q)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and $E(D)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ for all square-free integers D. From Lemma 2.3 we easily get the following:

(II) In all other cases, we obtain $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Case 4.3: $E_D(Q)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ for all square-free integers D. Assume that $E_D(Q)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ for some D. Then by Theorem 1(b) we know that $E(F)_{(2)} \simeq E_D(F)_{(2)} \simeq \mathbb{Z}/3\mathbb{Z}$, and by Theorem 2.2(iii) we may assume that the points of order 3 in $E(F)$ are $(Da^2b^2, \pm D\sqrt{D}a^2b^2(a+b)^2)$ with some integers a, b. It follows from $\sqrt{-D} \notin K$ that $E(K)_{(2)} = \{O\}$. Therefore this case can be treated just as the case where $E_D(Q)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ for all square-free integers D. Thus from Lemma 2.3 we easily get the following:

(II) $E(K) \supset \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ if and only if $\sqrt{M}, \sqrt{N} \in K$, $\sqrt{-M}, \sqrt{-M+N} \in K$.

(III) In all other cases, we obtain $E(K)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Remark 5.1. The result of Qiu and Zhang ([7, Theorem 4]) is contained in Case 4.3. In fact, in Theorem 4 in [7], they classified $E(K)_{\text{tors}}$ on the assumption that M and N are relatively prime square-free integers, not equal to ± 1, which implies that $E(Q)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and $E(D)_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ for all square-free integers D. ([7, Lemma 2]).

Let d be an integer such that $[K: \mathbb{Q}] = 2^d$. Then we write $K = K_d$. We conclude this paper to give the minimal d_m for which each type above can be realized as $E(K_{d_m})_{\text{tors}}$ with some E and some K_{d_m}. Close examination will show the following:

- In Case 1, we have $d_m = 4$ for the type $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/16\mathbb{Z}$.
- In Case 2, we have $d_m = 3$ for the type $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z}$.
- In Case 3, we have $d_m = 4$ for the type $\mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$.
- For all other types, we have $d_m = 2$.
It is easy to see that this and the classification in this section together imply Theorem 3 in [7] and Main Theorems 4.1 and 4.2 in [5], which are stated for K_2.

References

Mathematical Institute
Tohoku University
Sendai 980-8578, Japan
E-mail: fyasut@yahoo.co.jp

Received on 10.12.2002
and in revised form on 28.1.2004 (4421)