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1. Introduction. Let

Ek(z) = 1 +
(2πi)k

(k − 1)!ζ(k)

∞
∑

n=1

σk−1(n)qn

be the normalized Eisenstein series of weight k for Γ = SL2(Z), where
q = e2πiz. The identities

(1) E4 · E4 = E8, E4 · E6 = E10, E4 · E10 = E14, E6 · E8 = E14

are well-known and follow from the fact that the vector space of modu-
lar forms of level 1 and weight k is 1-dimensional for k ∈ {4, 6, 8, 10, 14}.
Elementary proofs of these identities can be found in [7].

Comparing Fourier coefficients of the power series in the products, we
get interesting identities involving the divisor functions σk(n) =

∑

d|n dk.
For example, E4 · E4 = E8 gives

(2) σ7(n) = σ3(n) + 120
n−1
∑

m=1

σ3(m)σ3(n − m).

Similar identities can be found by comparing coefficients in the other prod-
ucts.

Let ∆l denote the unique cuspidal eigenform of weight l in Sl(Γ ) for
l ∈ {12, 16, 18, 20, 22, 26}. Along with the identities in (1) we have

(3)

E4 · ∆12 = ∆16, E4 · ∆16 = ∆20, E4 · ∆18 = ∆22,

E4 · ∆22 = ∆26, E6 · ∆12 = ∆18, E6 · ∆16 = ∆22,

E6 · ∆20 = ∆26, E8 · ∆12 = ∆20, E8 · ∆18 = ∆26,

E10 · ∆12 = ∆22, E10 · ∆16 = ∆26, E14 · ∆12 = ∆26.
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These give all cases where the product of two Hecke eigenforms is an eigen-
form. This was proven both by Duke in [2] and by Ghate in [4] using the
Rankin–Selberg method. That is, the product of two Hecke eigenforms is
a Hecke eigenform if and only if it is forced to be by dimension considera-
tions. In [3] the first author found all cases where the product of two Hecke
eigenforms is another Hecke eigenform for the congruence subgroup Γ0(p),
for p ≥ 5 prime.

It is still possible that the product of more than two eigenforms is an
eigenform. In particular, if the product of two or more Eisenstein series is
another Eisenstein series, then we may obtain identities similar to (2). The
goal of this paper is to show that this does not happen. That is, the product
of an arbitrary number of Hecke eigenforms is never a Hecke eigenform
except in the cases obtained from (1) and (3). Note that E2

4 ·E6 = E14, but
this is trivially obtained from the identities E4 ·E4 = E8 and E6 ·E8 = E14.
Other such products are obtained similarly.

In the first cases we prove that the product of an arbitrary number of
Eisenstein series is never an Eisenstein series except when trivially obtained
from (1). We consider products of the form

Ek1
· · ·Ekn = El

where l = k1 + · · · + kn and n > 1. Assume that ki ≤ kj when i < j.

Theorem 1. Let Ek be the normalized Eisenstein series of weight k for

the full modular group Γ . If

Ek1
· · ·Ekn = El

then l ∈ {8, 10, 14}.
The proof uses the nature of the zeros of the Eisenstein series and the

growth of the coefficients

Ck =
(2πi)k

ζ(k)(k − 1)!
.

The second case is to prove that the product of a cuspidal eigenform
f ∈ Sl(Γ ) and an arbitrary number of Eisenstein series is not a cuspidal
eigenform.

Theorem 2. Let Ek be the normalized Eisenstein series of weight k for

the full modular group Γ and let f be a Hecke eigenform in Sl(Γ ). If

f · Ek1
· · ·Ekn

is a Hecke eigenform then l +
∑n

i=1 ki ∈ {16, 18, 20, 22, 26}.
Note that this is sufficient to prove our claim since if more than one of

the factors is a cuspform, then the product cannot be an eigenform.



Products of Hecke eigenforms 313

2. Proof of Theorem 1. Note that repeat factors can occur as in
E2

4 = E8 and E2
4 · E6 = E14. The first lemma states that only E4 can occur

as a repeat factor and it can only occur with multiplicity two.

Lemma 1. If Ek1
· · ·Ekn = El where k1 ≤ · · · ≤ kn, then

k1 < · · · < kn or 4 = k1 = k2 < k3 < · · · < kn.

Proof. Let vz(f) be the order of vanishing of the modular form f at the
point z. We have

v∞(f) +
1

2
vi(f) +

1

3
v̺(f) +

∑

z

′
vz(f) =

k

12
,

where the sum is over the points in the fundamental domain other than i
and ̺ = e2πi/3 and k is the weight of the modular form [5]. If we write
k = 12r + s, where r is an integer and s ∈ {0, 4, 6, 8, 10, 14}, then Ek(z) has
exactly r zeros on the unit circle between i and ̺, and each of these zeros
is a simple zero [6].

Let ar be the number of ki’s congruent to r modulo 12. Noting that
Ek(i) = 0 if and only if k ≡ 2 (mod4) and that i is a simple zero, we have

(4) a2 + a6 + a10 =

{

0 if l ≡ 0 (mod4),

1 if l ≡ 2 (mod4).

In particular, we cannot have repeated factors of Ek for k ≡ 2, 6, 10 (mod12).
Similarly, if we note that Ek(̺) = 0 if and only if k ≡ 2, 4 (mod6), and

the zero is a simple zero when k ≡ 4 (mod6) and a double zero when k ≡ 2
(mod6), then we have

(5) 2a2 + a4 + 2a8 + a10 =







0 if l ≡ 0 (mod6),

1 if l ≡ 4 (mod6),

2 if l ≡ 2 (mod6).

In particular, we cannot have repeated factors of Ek for k ≡ 2, 8 (mod12),
and we cannot have more than two factors of Ek for k ≡ 4 (mod12).

It remains to show that there cannot be any repeat factors of Ek for
k ≡ 0, 4 (mod12) and k ≥ 12. This follows from the fact that Ek(e

iθ) has
the required number of zeros on the interval θ ∈ (π/2, 2π/3), and each of
these zeros is a simple zero.

Recall that the Fourier expansion of the Eisenstein series is

Ek(z) = 1 + Ck

∞
∑

n=1

σk−1(n)qn

where Ck = (2πi)k/ζ(k)(k − 1)!. If we have

Ek1
· · ·Ekn = El,
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then by comparing the q-coefficient in the product we have

(6) Ck1
+ · · · + Ckn = Cl.

The following two lemmas concern the growth of the coefficients Ck.

Lemma 2. If 10 ≤ l < k or l = 8& k ≥ 12 or l = 6& k ≥ 14 or

l = 4& k ≥ 20 then

|Ck| ≤ 2(l−k)/2|Cl|.
Proof. As

1 ≤ ζ(k) ≤ 1 +

∞\
1

x−k dx =
k

k − 1

for k even, we have

|Ck+2|
|Ck|

≤ (2π)2ζ(k)

k(k + 1)ζ(k + 2)
≤ (2π)2

(k + 1)(k − 1)
.

Therefore for k ≥ 10, |Ck+2| < 1
2 |Ck|. By induction, the result holds for

all k.
We obtain the other cases by examining the list

C4 = 240, C6 = −504, C8 = 480, C10 = −264, C12 =
65520

691
,

C14 = −24, C16 =
16320

3617
, C18 = −28728

43867
, C20 =

13200

174611
.

Lemma 3. The series
∑∞

j=2 C2j is absolutely convergent and for m ≥ 5
we have ∞

∑

j=m

|C2j| < 2|C2m|.

Proof. Absolute convergence follows immediately from Lemma 2 and the
ratio test. For the upper bound,

∞
∑

j=m

|C2j| = |C2m| + |C2m+2| + |C2m+4| + · · ·

< |C2m| + 1

2
|C2m| + 1

4
|C2m| + · · ·

= |C2m|
(

1 +
1

2
+

1

4
+ · · ·

)

= 2|C2m|.

The following lemma establishes that in all but a finite number of cases
the product of an arbitrary number of Eisenstein series is not an Eisenstein
series.

Lemma 4. If k1 ≥ 10 or k1 ∈ {4, 6, 8} and k2 ≥ 12 then

Ek1
· · ·Ekn 6= El.
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Proof. Suppose that

Ek1
· · ·Ekn = El.

Equating the q-coefficients we have

Ck1
+ · · · + Ckn = Cl.

For k1 ≥ 10, we find from Lemma 1 that the ki are distinct and therefore

|Ck1
| ≤ |Ck2

| + |Ck3
| + · · · + |Cl|

< |Ck1
|(2(k1−k2)/2 + 2(k1−k3)/2 + · · · + 2(k1−l)/2)

< |Ck1
|
(

1

2
+

1

4
+

1

8
+ · · ·

)

= |Ck1
|,

which is a contradiction.
For k1 ∈ {4, 6, 8} and k2 ≥ 12 we have

|Ck1
| ≤ |Ck2

| + |Ck3
| + · · · + |Cl| <

∞
∑

m=k2/2

|C2m| < 2|Ck2
| < 200.

However, for k1 ∈ {4, 6, 8} we have |Ck1
| ≥ 240.

The remaining cases are

(k1, k2) ∈ {(4, 4), (4, 6), (4, 8), (4, 10), (6, 8), (6, 10), (8, 10)}.
The cases (k1, k2) = (4, 8) or (8, 10) cannot happen, since this would contra-
dict (5). That is, the order of vanishing at ̺ = e2πi/3 would be too great to
be an Eisenstein series. Similarly, the case (k1, k2) = (6, 10) cannot happen
as this would contradict (4). That is, the order of vanishing at i would be
too great.

Note that (k1, k2) ∈ {(4, 4), (4, 6), (4, 10), (6, 8)} occur in (1). It remains
to show that there are no other such identities with these as factors.

Lemma 5. Let

Ek1
· · ·Ekn = El

where (k1, k2) ∈ {(4, 4), (4, 6), (4, 10), (6, 8)}. If (k1, k2) ∈ {(4, 6), (4, 10),
(6, 8)} then n = 2 and we have E4·E6 = E10, E4·E10 = E14, or E6·E8 = E14.

If k1 = k2 = 4 then either n = 2 and we have E4 · E4 = E8, or n = 3 and

we have E4 · E4 · E6 = E14.

Proof. First consider (k1, k2) = (6, 8). Suppose that

E6 · E8 · Ek3
· · ·Ekn = El.

Rewrite the above equation by substituting E14 for E6 ·E8. Note that none of
the other factors can be E14 by Lemma 1. So this equation can be rewritten
with the smallest factor greater than or equal to E10, but we have shown
this cannot happen. Therefore, there can be no other factors in the product,
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and (k1, k2) = (6, 8) implies that the only identity is E6 · E8 = E14. The
other cases are handled similarly.

This finishes the proof of Theorem 1.

3. Proof of Theorem 2. We begin with a preliminary lemma.

Lemma 6. Let f be a cusp form and a Hecke eigenform of weight l for Γ .

If f · Ek1
· · ·Ekn is an eigenform then kj ∈ {4, 6, 8, 10, 14} for 1 ≤ j ≤ n.

Proof. Let f · g = h, where f =
∑∞

m=1 amqm with a1 = 1, g = 1 +
∑∞

m=1 γmqm and h =
∑∞

m=1 bmqm with aj and bj algebraic integers for all j.
Since γ1 = b2 − a2 and γm = bm+1 − am+1 − amγ1 − am−1γ2 − · · · − a2γm−1

for m ≥ 2, by induction it follows that γj is also an algebraic integer for
every j.

As f and f ·Ek1
· · ·Ekn are eigenforms, they have algebraic integer coef-

ficients. From the previous paragraph, we deduce that Ek1
· · ·Ekn also has

algebraic integer coefficients. Since each Ekj
has rational Fourier coefficients,

it follows that Ek1
· · ·Ekn has Fourier coefficients in Z.

Let p be the largest prime that occurs in the denominators of the reduced
forms of all of the Ckj

’s and suppose exactly m of these Ckj
’s have a factor

of p in the denominator. Without loss of generality we can suppose that
these are Ck1

, . . . , Ckm . The qmth Fourier coefficient of Ek1
· · ·Ekn is

(6)
∑

j

Ckj
σkj−1(m) +· · ·+

∑

j1,...,jr
m1+···+mr=m

Ckj1
· · ·Ckjr

σkj1
−1(m1) · · ·σkjr−1(mr)

+ · · · +
∑

j1,...,jm

Ckj1
· · ·Ckjm

.

If pr is the highest power of p that occurs in the denominators of all of the
above terms then only Ck1

· · ·Ckm has a factor of pr in the denominator. It
follows that the reduced form of the rational number (6) must have a factor
of pr in its denominator, and so cannot be an integer. Therefore we must
have Ckj

∈ Z for every j and the lemma follows from Lemma 2.

Hence we may consider products of the form h = f ·Ea
4 ·Eb

6 ·Ec
8 ·Ed

10 ·Ee
14.

Since we have the identities in (1), we only need to consider products of the
form h = f · Eb

4 · Ec
6, where f is a cusp form in Sl(Γ ).

Note that Eb
4 = 1 +

∑∞
n=1 bnqn, where

b1 = 240b,

b2 = 240(120b2 − 111b),

b3 = 240(9600b3 − 26640b2 + 17068b),
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and Ec
6 = 1 +

∑∞
n=1 cnqn, where

c1 = −504c,

c2 = 504(252c2 − 285c),

c3 = −504(42336c3 − 143640c2 + 101548c).

We can expand h = f ·Eb
4 ·Ec

6 = (
∑∞

n=1 anqn)(1+
∑∞

n=1 bnqn)(1+
∑∞

n=1 cnqn)
as

h = q + (a2 + (b1 + c1))q
2 + (a3 + a2(b1 + c1) + (b2 + b1c1 + c2))q

3

+ (a4 + a3(b1 + c1) + a2(b2 + b1c1 + c2) + (b3 + b2c1 + b1c2 + c3))q
4

+ · · · .

Since h is an eigenform for the weight l + 4b + 6c operator T (2) and f is
an eigenform for the weight l operator T (2), we have

(a2 + (b1 + c1))
2 − 2l+4b+6c−1

= a2
2 − 2l−1 + a3(b1 + c1) + a2(b2 + b1c1 + c2) + (b3 + b2c1 + b1c2 + c3).

Solving for 2l we obtain

2l =
2

24b+6c − 1
(a3(−b1 − c1) + a2(2b1 + 2c1 − b2 − b1c1 − c2)

+ (b1 + c1)
2 − (b3 + b2c1 + b1c2 + c3)).

From the Ramanujan–Petersson estimate |ap| ≤ 2p(l−1)/2 (see [1]) we have

2l ≤ 2

24b+6c − 1
(2 · 3(l−1)/2|b1 + c1|

+ 2 · 2(l−1)/2|2b1 + 2c1 − b2 − b1c1 − c2|

+ |(b1 + c1)
2 − (b3 + b2c1 + b1c2 + c3)|).

Therefore l must satisfy at least one of the following inequalities:

(

2√
3

)l

≤ 12√
3(24b+6c − 1)

|b1 + c1| =
12√

3(24b+6c − 1)
|240b − 504c|,(7)

(
√

2)l ≤ 23/2 · 3
24b+6c − 1

|2b1 + 2c1 − b2 − b1c1 − c2|(8)

=
23/2 · 3

24b+6c − 1
|27120b + 142632c − 28800b2

+120960bc − 127008c2|,
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2l ≤ 2 · 3
24b+6c − 1

|(b1 + c1)
2 − (b3 + b2c1 + b1c2 + c3)|(9)

=
2 · 3

24b+6c − 1
|6451200b2 + 20805120bc − 72140544c2

− 4096320b − 2304000b3 + 14515200cb2 − 30481920bc2

+51180192c + 21337344c3|.
If we let x = max{b, c}, then we have

l ≤ sup

{ log
(

6048x√
3 (16x−1)

)

log(2/
√

3)
,
log

(

23/2·1085598x2

16x−1

)

log(
√

2)
,
log

(

792836144x3

16x−1

)

log(2)

}

.

If x ≥ 7 then l < 12, and since there are no cusp forms of weight l for
l < 12, there are no solutions. So we only have the cases where Eb

4 ·Ec
6 with

b, c ≤ 6. By substituting directly into inequalities (7), (8), and (9) we see
that l < 12 in all cases except

(b, c) ∈ {(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0), (4, 0)}.
The cases (b, c) ∈ {(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)} were handled in [2].

And so we are left with the cases (b, c) = (0, 2) where l < 18, (b, c) = (1, 2)
where l < 13, (b, c) = (0, 3) where l < 18, and (b, c) = (0, 4) where l < 13.
These cases give the possible eigenforms

∆12 · E2
6 , ∆16 · E2

6 , ∆12 · E2
6 · E4, ∆12 · E3

4 , ∆16 · E3
4 , ∆12 · E4

4 .

The products ∆16 ·E2
6 and ∆12 ·E2

6 ·E4 are the same, as are the products
∆16 · E3

4 and ∆12 · E4
4 . So we are left with checking if the products

∆12 · E2
6 = q − 1032q2 + 245196q3 + 10965568q4 + · · · ,

∆12 · E2
6 · E4 = q − 792q2 − 324q4 + 67590208q4 + · · · ,

∆12 · E3
4 = q + 696q2 + 162252q3 + 12831808q4 + · · · ,

∆12 · E4
4 = q + 936q2 + 331452q3 + 53282368q4 + · · ·

are eigenforms. Since these products are not eigenvectors of the Hecke op-
erator T (2), they are not Hecke eigenforms.
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