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1. Introduction. This article is concerned with the following question.
Suppose that {αi}1≤i≤m is a sequence of distinct elements in an integral
domain A and that γ is a common multiple of the αi in A. Let φ be a function
from the nonzero elements of A to R+ satisfying φ(xy) = φ(x)+φ(y) for all
nonzero x, y in A. If, for some s in [0, 1], we have φ(αi) ≥ sφ(γ) for all i, then
the question is to obtain a lower bound for sup1≤i<j≤m φ(αi − αj) in terms
of φ(γ), m and s. This question is relevant, for example, to the problem of
determining upper bounds for the number of integer points on small arcs
of conics considered in [2], [3], [6], [5], and the problem of showing that the
number of divisors of an integer N lying in certain arithmetical progressions
is bounded independently of N , considered in [8].

In most situations where the aforementioned question is of interest, the
integral domain A is either a factorial ring or a Dedekind domain and,
indeed, it is by assuming that A has one of these properties that this question
has been studied. For instance, when A is a factorial ring we have φ(αi−αj)
≥ φ((αi, αj)) for 1 ≤ i < j ≤ m, where (αi, αj) is the greatest common
divisor of αi and αj in A. A special case of the overlapping theorem of [7]
(see also [8]) then provides a lower bound for sup1≤i<j≤m φ((αi, αj)), and
therefore for sup1≤i<j≤m φ(αi − αj), in terms of φ(γ), m and s. When A is
a Dedekind domain, and assuming that φ extends in a natural manner to
the ideals of A, one uses Theorem 1.1 of [6] which provides a lower bound
for φ((ai, aj)), where the ideal (ai, aj) is the greatest common divisor of the
ideals ai and aj generated, respectively, by αi and αj in A, and passes to a
lower bound for sup1≤i<j≤m φ(αi −αj) in terms of φ(γ), m and s by noting
that the ideal generated in A by αi − αj is contained in (ai, aj).

In this article we present a simple identity for the Vandermonde deter-
minant that immediately yields, for any integral domain A, a lower bound
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for sup1≤i<j≤m φ(αi−αj) in terms of φ(γ), without recourse to factorisation
in A. We show in Section 2 that this identity provides rather simple proofs
for a number of results given in [6] and [7], and use it to obtain the following
version of Theorem 1.2 of [6], which contains Theorem 1 of [2] and improves
on the main results of [3], [5].

Theorem 1.1. When d 6= 0,−1 is a squarefree integer and m, R are

integers with m ≥ 2, there are no more than m integer points on any arc of

length ≤ |R|s(m)/|d|r(m) on the conic

(∗) X2 + dY 2 = R,

where

s(m) =
1

4
− 1

8[m/2] + 4
,

r(m) =







1

2

(

1 −
[

1
2

(

m2

2 − m
)]

+ 1
(m

2

)

)

if m is odd ,

r(m + 1) if m is even.

We conclude in Section 3 with some notes relating to the contents of this
article.

2. An identity for the Vandermonde determinant. Throughout
this article, m shall denote an integer ≥ 2.

Lemma 2.1. Let A be a commutative ring and {αi}1≤i≤m and {βi}1≤i≤m

be sequences of m elements in A for which there exists a γ in A satisfying

αiβi = γ for all i. For each integer k satisfying 0 ≤ k ≤ m − 1,

(1) γk(k+1)/2
∏

1≤i<j≤m

(αi − αj)

=
∏

1≤i≤m

αk
i
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∣

∣
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∣
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∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

.

Proof. For 1 ≤ k ≤ m − 1 and 1 ≤ i ≤ m, we multiply the ith column
of the determinant on the right hand side of (1) by αk

i . For 1 ≤ i ≤ m and

1 ≤ j ≤ k the (i, j)th entry in the resulting determinant is βk−j+1
i αk

i =

(βiαi)
k−j+1αj−1

i = γk−j+1αj−1
i . Therefore γk−j+1 is common to each entry
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in the jth row, for 1 ≤ j ≤ k. Since
∏

1≤j≤k γk−j+1 = γk(k+1)/2, (1) now
follows on using the well known evaluation of the Vandermonde determinant,
to which it reduces when k = 0.

Definition 2.1. When A is a commutative ring and {αi}1≤i≤m and
{βi}1≤i≤m are sequences of elements of A, we write detk(α, β), for each
integer k satisfying 0 ≤ k ≤ m − 1, to denote the determinant on the right
hand side of (1).

The preceding definition allows us to rewrite the identity (1) in the fol-
lowing form. For all integers k satisfying 0 ≤ k ≤ m − 1 and {αi}1≤i≤m,
{βi}1≤i≤m and γ as in Lemma 2.1 we have

(2) γk(k+1)/2
∏

1≤i<j≤m

(αi − αj) = detk (α, β)
∏

1≤i≤m

αk
i .

In order to choose optimal values of k in the applications of (2) that we
consider below, we define, for any real number s in [0, m],

(3) K(s, m) = sup
0≤k≤m−1

(

sk − k(k + 1)

2

)

.

In this article K(s, m) plays essentially the same role as Ek(γ)
(k
2

)

in The-
orem 1.1 of [6] and, by (i) of Lemma 2.2 below, the same role as Q2(x)
in [7].

Proposition 2.1. Let A be an integral domain and α = {αi}1≤i≤m and

β = {βi}1≤i≤m be sequences of distinct nonzero elements of A. If γ is an

element of A such that αiβi = γ for each i, then detk(α, β) is a nonzero

element of A for all k with 0 ≤ k ≤ m − 1.

Suppose that φ is a function from the nonzero elements of A into R+

satisfying φ(xy) = φ(x)+φ(y) for all nonzero x, y in A, and that for some s
in [0, 1] we have φ(αi) ≥ sφ(γ) for all i. If φ(detk(α, β)) ≥ L for all k with

0 ≤ k ≤ m − 1, then

(4) sup
1≤i<j≤m

φ(αi − αj) ≥
K(sm, m)

(m
2

) φ(γ) +
L

(m
2

) .

Proof. Since A is an integral domain and α, β are sequences of distinct
nonzero elements of A, we have γ 6= 0. The left hand side of (2) is thus
distinct from 0 and therefore detk(α, β) is distinct from 0 for 0 ≤ k ≤ m−1.

To verify (4) we apply φ to both sides of (2) and obtain

(5)
k(k + 1)

2
φ(γ) +

(

m

2

)

sup
1≤i<j≤m

φ(αi − αj) ≥ smkφ(γ) + L

for 0 ≤ k ≤ m − 1. On rearranging terms and using (3) we obtain (4).
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Lemma 2.2. We have the following relations for K(s, m).

(i) For all s in [0, m],

K(s, m) =

(

s[s] − [s]([s] + 1)

2

)

≥ s(s − 1)

2
.

(ii) We have

K(m/2, m)
(

m
2

) =
1

4
− 1

8[m/2] + 4

when m is an odd integer.

(iii) If m is an integer ≥ 2, then for all s in [0, 1],

K(sm, m)
(

m
2

) ≥ s2 − s(1 − s)

m − 1
≥ s2 − 1

4(m − 1)
.

Proof. Let us verify (i). The function

f(t) = st − t(t + 1)

2
=

(

s − 1

2

)

t − t2

2

is a smooth strictly concave function on R that satisfies f(s) = f(s − 1).
The supremum of f(t) over the integers in [0, m− 1] is therefore attained at
an integer in [0, m−1]∩ [s−1, s]. If s is not an integer, then [s] is the unique
integer in this intersection and the required supremum is attained at [s]. If
s is an integer, then s = [s] and s− 1 are the integers in [0, m− 1]∩ [s− 1, s]
and, since f(s) = f(s − 1), we see that the required supremum is attained
at [s] as well. Moreover, f([s]) ≥ f(s) = s(s − 1)/2. We set m = 2k + 1
and s = m/2 in (i) to obtain K(m/2, m) = k2/2, from which (ii) follows on
dividing by

(m
2

)

and rearranging terms. We obtain (iii) from (i) on noting
that s(1 − s) ≤ 1/4 when s is in [0, 1].

The following corollary to Proposition 2.1 is implicit in [6, proof of The-
orem 1.2], where only the case of this corollary for quadratic extensions of
Q is required and this is obtained in [6] by an application of Theorem 1.1
of [6].

Corollary 2.1. Suppose that K is number field of degree n over Q

and that {αi}1≤i≤m is a sequence of distinct nonzero elements of the ring

A of integers of K. Let N (x) denote the norm of an element x of K. If

|N (αi)| = R for each i then

(6) sup
1≤i<j≤m

|N (αi − αj)|1/n ≥ RK(m/n,m)/(m

2
).

Proof. Since |N (αi)| = R for each i, we see that R belongs to the ideal
generated by each αi in A. Thus on setting γ = R, there exists, for each i,
a βi in A such that αiβi = γ. Let φ be the function x 7→ |N (x)|1/n. Since R
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is in Z, we have φ(R) = R and hence φ(αi) = φ(γ)1/n for all i. The corollary
now follows from Proposition 2.1 applied with L = 1 and s = 1/n.

The following corollary to Proposition 2.1 is implicit in the proof of
Proposition 1 of H. Lenstra [8], whose method is closely related to the over-
lapping theorem of [7]. Conversely, as is evident from the first paragraph on
page 336 of [8], the corollary below easily implies Proposition 1 of [8], and
moreover, as shown on pages 6 to 8 of [7], implies Lemma 3.1 of [1].

Corollary 2.2. Let s be a real number in (0, 1) and {di}1≤i≤m be dis-

tinct positive divisors of an integer N ≥ 1 and satisfying di ≥ N s for all i.
If each di belongs to the arithmetic progression amod q, where (a, q) = 1,
q ≥ 1, then

(7) sup
1≤i<j≤m

|di − dj| ≥ qNK(sm,m)/(m

2
).

Proof. We take A = Z and set αi = di, βi = N/di and γ = N and
take φ to be the function x 7→ log |x|. Since each αi ≡ a mod q, we see

that
∏

1≤i<j≤m(αi − αj) is divisible by q(
m

2
). As (a, q) = 1, we deduce that

∏

1≤i≤m αk
i 6≡ 0 mod q for any integer k ≥ 0. The identity (2) then shows

that detk(α, β) is divisible by q(
m

2
) for all integers k with 0 ≤ k ≤ m − 1,

and hence that we may take L =
(m

2

)

log q when applying Proposition 2.1.

The following corollary to Proposition 2.1 generalises Theorem 1.4 of [6].

Corollary 2.3. Suppose that E is an integral domain and X = (Xι)ι∈I

is a family of indeterminates indexed by a set I. Let {Pi(X)}1≤i≤m be a

sequence of distinct polynomials in E[X]. If R(X) is a common multiple

of the polynomials Pi(X) in E[X] and if , for some s in [0, 1], deg(Pi) ≥
sdeg(R) for all i, then

(8) sup
1≤i<j≤m

deg(Pi − Pj) ≥ deg(R)
K(sm, m)

(

m
2

) ,

where deg(u) denotes the total degree of a polynomial u(X) in E[X].

Proof. Since E is an integral domain, so is E[X], and deg(uv) = deg(u)
+ deg(v) for u and v in E[X]. We apply Proposition 2.1 with A = E[X],
αi = Pi(X), βi = Qi(X) such that Pi(X)Qi(X) = R(X), γ = R(X), φ taken
to be the function u 7→ deg(u) and L = 0.

We shall presently verify Theorem 1.1, the essential point in the proof
being a refinement of the lower bound for |N (detk(α, β))| used in the proof
of Corollary 2.1 when K is a quadratic extension of Q.

Proof of Theorem 1.1. We shall show that when m ≥ 2 is odd, there are
in fact no more than m−1 integer points on any arc of length |R|s(m)/|d|r(m)

on the conic X2 + dY 2 = R. The theorem for m even follows from this
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conclusion on applying it to m + 1 and noting that s(m) = s(m + 1) and
r(m) = r(m + 1) when m is an even integer ≥ 2.

Let us thus assume that m is an odd integer ≥ 2, and that {pi}1≤i≤m

is a sequence of m integer points pi = (xi, yi) on X2 + dY 2 = R. If the
points pi lie on an arc of length l, then l > ‖pi − pj‖2 for all (i, j), where
‖ ‖2 denotes the Euclidean distance. We set, for each i, αi = xi +

√
−d yi

and βi = xi −
√
−d yi. Since d is a squarefree integer 6= 0,−1, we know that

Q(
√
−d) is a quadratic extension of Q and the triangle inequality gives

(9) |d|l2 > |d| ‖pi − pj‖2
2 ≥ |N (αi − αj)|

for all (i, j), where N is the norm on Q(
√
−d). Plainly, αiβi = R for all i,

1 ≤ i ≤ m, and α = {αi} and β = {βi} sequences of distinct nonzero
elements of the ring of integers of Q(

√
−d). On applying the identity (2) and

taking norms of both sides we see, for all integer k satisfying 0 ≤ k ≤ m−1,
that

(10)
∏

1≤i<j≤m

N (αi − αj) = Rkm−k(k+1)N (detk(α, β)).

Let us verify that for any integer k with 0 ≤ k ≤ m − 1,

|N (detk(α, β))| ≥ |d|t(m), where t(m) =

[

1

2

(

m2

2
− m

)]

+ 1.

Indeed, let p be a prime divisor of d. If h of the xi belong to the same
residue class modulo p, then vp(

∏

1≤i<j≤m N (αi − αj)) ≥ h(h− 1)/2. Since

x2
i ≡ R mod p, each xi lies in one of no more than 2 residue classes modulo p.

Consequently, for some integer h, 0 ≤ h ≤ m, we have

(11) vp

(

∏

1≤i<j≤m

N (αi − αj)
)

≥ h(h − 1)

2
+

(m − h)(m − h − 1)

2
≥ t(m).

Suppose that p divides d but not R. It then follows from (10) that
vp(N (detk(α, β))) = vp(

∏

1≤i<j≤m N (αi−αj)) and hence vp(N (detk(α, β)))

≥ t(m) for such primes p. Suppose now that p divides d and R. Then each
of the ideals 〈αi〉 and 〈βi〉 in the ring A of integers of Q(

√
−d) is divisible

by p, the unique prime ideal lying above the ramified prime p in Q(
√
−d).

On expanding the determinants detk(α, β) with respect to any row, we see
that for all integers k with 0 ≤ k ≤ m − 1,

(12) vp(〈detk(α, β)〉) ≥ k(k + 1)

2
+

(m − 1 − k)(m − k)

2
≥ t(m) ,

where 〈detk(α, β)〉 is the ideal generated by detk(α, β) in A. Thus, we have
vp(N (detk(α, β))) ≥ t(m) even in the case when p divides d and R. Since d is
a squarefree integer, we deduce that |N (detk(α, β))| ≥ |d|t(m). On combining
this lower bound with (9) and (10) we then conclude that for all integers k
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satisfying 0 ≤ k ≤ m − 1,

(13) (|d|l2)(m

2
) > (R2)(km/2−k(k+1)/2)|d|t(m).

Finally, on using (ii) of Lemma 2.2 and recalling the definitions of s(m)
and r(m), we see that l > |R|s(m)/|d|r(m). In other words, when m is an odd
integer ≥ 2 there are no more than m−1 integer points on any arc of length
|R|s(m)/|d|r(m) on the conic X2 + dY 2 = R.

Remark 2.1. Theorem 1.2 in [6] states that if d 6= 0, 1 is a fixed square-
free integer, then on the conic X2 − dY 2 = N , an arc of length Nα with
α = 1/4 − 1/(8[k/2] + 4) contains at most k lattice points. This statement,
as well as Theorem 1 of [3], appears to be inaccurate with regard to the
dependence of the lengths of the arcs on d. As Example 2.1 below shows,
there are infinitely many integers R ≥ 1 such that there are arcs of length
213/6R1/6/d1/3 containing three integer points on the ellipses X2+dY 2 = R2

for any integer d ≥ 1, while Theorem 1.2 of [6] implies that there are no
more than two integer points on any arc of length R1/6 on these conics.

The following example was kindly supplied to the author by Prof. Joseph
Oesterlé.

Example 2.1. Let t and d be integers ≥ 1 and let u = d2t + dt− d + 1.
Let pi = (xi, yi), 1 ≤ i ≤ 3, be points in the plane with coordinates xi, yi

given below:

(14)

x1 = dt(2dt − 1)u − 1, y1 = t(2dt + 1)u + 1,

x2 = x1 + 2dt + 2, y2 = y1 − 2dt,

x3 = x1 − 2dt, y3 = y1 + 2dt − 2.

We then verify that x2
i + dy2

i = x2
1 + dy2

1 for 1 ≤ i ≤ 3 and, on setting R =
x2

1+dy2
1 , we see that all the pi are integer points on the ellipse X2+dY 2 = R.

Set D = sup1≤i<j≤3 ‖pi − pj‖2 and let l be the length of the shortest arc on
the ellipse containing all the pi. Then as t → +∞ we have

(15) R ∼ 4d7(d + 1)t6, D ∼ 4
√

2 dt, l ∼ D,

where the relation l ∼ D follows on noting that D/R1/2 → 0 as t → +∞.
Since d ≥ 1, it follows from (15) that

(16) l <
213/6R1/6

d1/3
for all sufficiently large t.

Example 2.1 shows that the conclusion of Theorem 1.1 is essentially (that
is, up to a constant) best possible for m = 2. Prof. Cilleruelo kindly informed
the author that A. Granville and himself have constructed examples that
show that the exponent of R provided by this theorem when m = 3 is
also best possible when the conic in question is a circle. It is not known if
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this still is the case for m ≥ 4. Indeed, a recent conjecture (Conjecture 14
on page 11 of [4]) of J. Cilleruelo and A. Granville predicts a considerable
improvement on Theorem 1.1, at least when the conic in question is a circle,
when m is large. On page 15 of the same article, Cilleruelo and Granville
give a flowchart relating their conjecture to a number of other interesting
conjectures on the interface between Fourier analysis and number theory.

3. Notes. The author arrived at the identity (∗) of Section 1 as one way
of generalising the elementary formula abc = 4∆R, where a, b and c are the
sides of a triangle, ∆ its area and R the radius of its circumcircle. Indeed,
if one applies the identity with m = 3, k = 1, αi elements of C denoting
the vertices of the triangle, βi = αi, γ = R2, one arrives at the formula
abc = 4∆R on taking absolute values of both sides of the resulting relation
and noting that |det1(α, β)| = 4∆. The use of the formula abc = 4∆R in
obtaining the case of Theorem 1.1 when m = 2 and when the conic in this
theorem is a circle is described on page 899 of [2].

The use of a relation between matrices of the form (fi(xj)) and (xi−1
j ),

where xj are elements of a commutative ring A—usually a subring of the
complex numbers—and fi suitable functions on this ring, the index i varying
over the integers in an interval [1, k] and j in a finite set, to study the gaps
between the xj is well known in the context of the Bombieri–Pila method.
Indeed, even the simplest of such relations, namely the case when the fi are
polynomials, may be used to deduce interesting conclusions, as for example,
in the second proof of Theorem 10 on page 7 of [4]; the identity (∗) may
certainly be viewed from this perspective as well.

Finally, we note that there are applications, described in [7], of even the
particular case of the overlapping theorem that we have been concerned with
here, on which the identity of this article does not shed any light.
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