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Sumsets without powerful numbersbyArt	uras Dubikas and Andrius Stankevi£ius (Vilnius)
1. Introdution. Let A = {a1 < a2 < · · · } be an in�nite sequeneof positive integers. There are many interesting and important problemsonerning various arithmetial properties of sumsets A + A := {a + a′ |

a, a′ ∈ A} (see, e.g., a reent book [18℄). An old problem of Erd®s andSilverman is to determine the maximal density of a set A suh that thesumset A+A ontains no squares. It is onjetured that the maximal densityis 11/32. Massias produed a orresponding set A as a union of eleven in�nitearithmeti progressions with di�erene 32 eah. It remains to prove thatevery set whose upper density is stritly greater than 11/32 ontains two (notneessarily distint) elements whih sum to a perfet square. See the papersof Lagarias, Odlyzko and Shearer [9℄, [10℄ and Shoen [17℄ for some progressonerning this problem. See also the papers of Alon and Freiman [1℄, Erd®sand Freiman [4℄, Lipkin [12℄ and Sárközy [16℄, where various tehniques areused to treat similar problems on sets whose subset sums ontain or do notontain squares, powers, et.An interesting variation of this problem due to Lua [13℄ asks whether anin�nite set obtained by adding any number of distint elements of an in�nitesequene A an be free of squares and, more generally, free of powers. Theondition that the elements of A in the sum are distint is natural andneessary in order to avoid the trivial situation when taking a + · · ·+ a, say,
a times one gets a2. Lua proved that suh a sequene A exists (see also[2℄ for a ��nite� version of this problem). However, in his example the set Ais very sparse. The nth element an is, roughly speaking, doubly exponentialin n. Another onstrution whih redued Lua's bound was given by the �rstauthor and �arka in [3℄. However, the bound in [3℄ is still exponential. Morepreisely, in [3℄ it was shown that, for any ε > 0, there is a positive onstant
K = K(ε) and a sequene A whose distint elements do not sum to a powerand whose nth element is bounded as an < K exp(εn) for eah n ∈ N.2000 Mathematis Subjet Classi�ation: 11A41, 11A99, 11B05, 11B99.Key words and phrases: powerful number, in�nite sequene, prime number, sumset.[381℄ © Instytut Matematyzny PAN, 2007



382 A. Dubikas and A. Stankevi£iusThe aim of this note is to produe some sequenes A that are even moredense. This allows us to improve the exponential bound an < K exp(εn)to the polynomial bound an < c0n
c. In addition, we strengthen the orre-sponding arithmetial ondition for the resulting sumset {ai1 + · · · + ail |

l ∈ N, aij ∈ A, aiu 6= aiv}. This set of all possible sums of distint an'swill be not only �free of powers� but also, more generally, �free of powerfulnumbers�. A number a > 1 is alled powerful if for every prime number pdividing a, p2 also divides a. These numbers were studied already in 1934by Erd®s and Szekeres [5℄. Sometimes powerful numbers (named �power-ful� by Golomb in [7℄) are alled squareful, square-full, or 2-full. Golomb[7℄ proved that the number of powerful numbers ≤ x is ∼ b
√

x, where
b = ζ(3/2)/ζ(3) = 2.173 . . . . See [8℄ for more open problems onerningpowerful numbers.Theorem 1. There is an in�nite sequene A = {a1 < a2 < · · · } ofpositive integers satisfying an ≤ 2n9 for eah n ∈ N suh that the sum of anynumber of distint elements of A is not a powerful number.For every n ≥ 2, the fator 2 an be replaed by a smaller onstant. How-ever, in general, we do not know how to improve the exponent 9. In our nexttheorem, we slightly improve the bound by replaing 2n9 by n9 exp(−f(n))for eah n large enough, where f(n) tends to in�nity a little more slowlythan log n.Theorem 2. There is an in�nite sequene A = {a1 < a2 < · · · } ofpositive integers satisfying

an < n9 exp

(

−(log 2)2 log n

(log log n)2

)

for eah su�iently large n suh that the sum of any number of distintelements of A is not a powerful number.It seems likely that this statement �squeezes� almost everything from ourmethod, so any further improvement seems to be of interest. (In fat, we donot give a formal proof that our hoie of parameters in Setion 3 is optimal.)In our �nal theorem we improve the exponent 9 in Theorem 1 and replaeit by 3 + ε, but only for some in�nite subsequene of N rather than for allsu�iently large n.Theorem 3. For any sequene of real numbers gn, n = 1, 2, . . . , with
gn → ∞ as n → ∞, there is an in�nite sequene A = {a1 < a2 < · · · }of positive integers satisfying an < gnn3 for in�nitely many n ∈ N suhthat the sum of any number of distint elements of A is not a powerfulnumber.



Sumsets without powerful numbers 383Note that in Theorem 3 the sequene gn, n = 1, 2, . . . , may tend toin�nity at any presribed rate.In ontrast to Theorem 3, a result of Lev (see Theorem 5′ in [11℄) statesthat if a sequene A = {a1 < a2 < · · · } of positive integers satis�es an <
n2/(50 log n) for all su�iently large n ∈ N then the sums of distint elementsof A ontain an in�nite arithmeti progression of the form d, 2d, 3d, . . . . Thisprogression obviously ontains in�nitely many squares, so gnn3 in Theorem 3annot be replaed by n2/(50 log n). See also [6℄ and [14℄ for some previouswork on this problem.In the next setion, we present a general onstrution of sets whose subsetsums avoid powerful numbers. An easy appliation of this onstrution leadsto Theorem 1 immediately. In Setions 3 and 4, by a more elaborate hoieof parameters, we prove Theorems 2 and 3, respetively.2. Constrution of A and the proof of Theorem 1. Let p1 <p2 < · · ·be an arbitrary sequene of prime numbers. Put p0 := 1, and

Ak :=
{

(jp2
k + pk)

k−1
∏

i=0

p2
i

∣

∣

∣
j = 0, 1, . . . , pk − 2

}

for k ≥ 1. The set Ak ontains pk − 1 distint elements. Note that thesmallest element of Ak is greater than the largest element of Ak−1, beause
pkp

2
k−1

> (pk−1 − 2)p2
k−1

+ pk−1. It follows that Ak and Al are disjoint if
k 6= l. Put

A :=
∞
⋃

k=1

Ak = {a1 < a2 < · · · }.

We laim that the sum of any number of distint elements of A annotbe a powerful number. Indeed, by onstrution, the sum of any number ofdistint elements of Ak is divisible by pk, but not by p2
k. Furthermore, everyelement of Al, where l > k, is divisible by p2

k. Suppose that S is a sum ofseveral distint elements of A. Let k be the least positive integer suh thatat least one element of Ak is one of the summands of S. Then, by the above,
S is divisible by pk, but not by p2

k. So S is not a powerful number.Next, for every n ∈ N, there is a unique positive integer k satisfying
pk−1 ≤ n < pk.Clearly, the nth element of A, an, does not exeed the nth element of Ak. Itfollows that

an ≤ ((n − 1)p2
k + pk)

k−1
∏

i=0

p2
i = (np2

k − p2
k + pk)

k−1
∏

i=0

p2
i < n(pkpk−1 . . . p1)

2.



384 A. Dubikas and A. Stankevi£iusIn order to prove Theorems 1 and 2, we shall �rst hoose ertain sequenesof prime numbers p1 < p2 < · · · and then derive upper bounds for theorresponding produts pkpk−1 . . . p1 in terms of n.Proof of Theorem 1. Set p0 := 1, p1 := 2, p2 := 5. For any real x ≥ 9,the interval (x, 4x/3) ontains a prime number (see [15℄). So, for eah k ≥ 3,let pk be the least prime number satisfying
p1 . . . pk−1 < pk < 1.4p1 . . . pk−1.We have p3 = 11 and a1 = 2, a2 = 20, a3 = 120, . . . , a10 = (4 · 112 + 11) ·

52 · 22 = 49500. One an hek easily that an ≤ 2n9 for eah n ≤ 10, withequality for n = 1 only.Suppose that pk−1 ≤ n < pk, where k ≥ 3. On applying the above upperbound for pk and then the above lower bound for pk−1 (the lower bound
pk > pk−1 . . . p1 holds for every k ∈ N), we obtain

pkpk−1 . . . p1 < 1.4p2
k−1(pk−2 . . . p1)

2 < 1.4p2
k−1p

2
k−1 = 1.4p4

k−1.Using pk−1 ≤ n, we dedue that pkpk−1 . . . p1 < 1.4n4. Hene
an < n(pkpk−1 . . . p1)

2 < n(1.4n4)2 < 2n9for eah n ≥ 11.3. Proof of Theorem 2. This time, by Bertrand's postulate, for eah
k ∈ N and eah real τk > 1, there is a prime number pk satisfying

τkp0p1 . . . pk−1 < pk < 2τkp0p1 . . . pk−1.Fix any suh pk. Reall that p0 = 1. (The τk will be hosen later.) Now,
pkpk−1 . . . p1 < 2τkp

2
k−1(pk−2 . . . p1)

2 < 2τkp
2
k−1(pk−1/τk−1)

2

= 2τkτ
−2

k−1
p4

k−1.Using pk−1 ≤ n, as above, we dedue that
an < n(pkpk−1 . . . p1)

2 < n(2τkτ
−2

k−1
n4)2 = 4τ2

k τ−4

k−1
n9.It remains to give an upper bound for the fator 4τ2

k τ−4

k−1
in terms of n.Using pj > τjpj−1 . . . p1 for j = k − 1, k − 2, . . . , 1, we obtain

n ≥ pk−1 > τk−1pk−2 . . . p1 > τk−1τk−2(pk−3 . . . p1)
2

> τk−1τk−2τ
2
k−3(pk−4 . . . p1)

4 > τk−1τk−2τ
2
k−3τ

4
k−4(pk−5 . . . p1)

8 > · · ·
> τk−1τk−2τ

2
k−3τ

4
k−4 . . . τ2k−3

1 .Similarly, using pj < 2τjpj−1 . . . p1 for j = k, k − 1, . . . , 1, we obtain
n < pk < 2τkpk−1 . . . p1 < 4τkτk−1(pk−2 . . . p1)

2 < 8τkτk−1τ
2
k−2(pk−3 . . . p1)

4

< 16τkτk−1τ
2
k−2τ

4
k−3(pk−4 . . . p1)

8 < · · · < 22k−1

τkτk−1τ
2
k−2τ

4
k−3 . . . τ2k−2

1 .



Sumsets without powerful numbers 385Therefore, putting
µk := τ2k−2

1 τ2k−3

2 . . . τ2
k−2τk−1,one �nds that

τk−1µk−1 < n < 22k−1

τkµk.Selet
τk := exp(2k/

√
k + 1)for k ∈ N. Sine τ2k−j−1

j = exp(2k−1/
√

j + 1) for 1 ≤ j ≤ k − 1, we �nd that
µk = τ2k−2

1 τ2k−3

2 . . . τ2
k−2τk−1 = exp

(

2k−1

k
∑

j=2

1√
j

)

for k ≥ 2. Below, we shall use the following standard estimate:
2(
√

k + 1 −
√

2) =

k+1\
2

dx√
x

<
k

∑

j=2

1√
j

<

k\
1

dx√
x

= 2(
√

k − 1).

Using the upper bound of this estimate, we get log µk < 2k(
√

k−1). Thisimplies that
n < 22k−1

τkµk = exp(2k−1 log 2 + 2k/
√

k + 1 + log µk)

< exp(2k(0.35 + (k + 1)−1/2 +
√

k − 1)) < exp(2k
√

k)for k ≥ 2. Similarly, using ∑k
j=2

1/
√

j > 2(
√

k + 1 −
√

2), we get log µk >

2k(
√

k + 1 −
√

2), so log µk−1 > 2k−1(
√

k −
√

2). It follows that
n > τk−1µk−1 > µk−1 > exp(2k−1(

√
k −

√
2)) > exp(2k−2

√
k − 1)for k ≥ 7. Summarizing, we dedue that

2k−2
√

k − 1 < log n < 2k
√

kfor eah k ≥ 7.Next, by the hoie of τk, we have
τ2
k τ−4

k−1
= exp(2k+1((k + 1)−1/2 − k−1/2)).The inequality

k−1/2 − (k + 1)−1/2 =

√
k + 1 −

√
k

√

k(k + 1)
=

1
√

k(k + 1)(
√

k + 1 +
√

k)

>
1

2(k + 1)3/2implies that τ2
k τ−4

k−1
< exp(−2k(k + 1)−3/2). Thus

4τ2
k τ−4

k−1
< 4 exp(−2k(k + 1)−3/2) = exp(log 4 − 2k(k + 1)−3/2).



386 A. Dubikas and A. Stankevi£iusReall that an < 4τ2
k τ−4

k−1
n9. Hene, in order to prove the required in-equality

an < n9 exp

(

−(log 2)2 log n

(log log n)2

)

,it remains to verify that
2k(k + 1)−3/2 − log 4 > (log 2)2 log n/(log log n)2.For this, we shall use the estimates 2k−2

√
k − 1 < log n < 2k

√
k for log n.Firstly,

2k(k + 1)−3/2 =
2k
√

k
√

(k + 1)3k
>

log n
√

(k + 1)3k
>

log n

(k + 1)2
,beause 2k

√
k > log n. Seondly, for k ≥ 257, the inequality 2k+2 ≤

2k−2
√

k − 1 < log n implies that k + 1 < (log log n)/log 2 − 1. Hene
2k(k + 1)−3/2 − log 4 >

log n

(k + 1)2
− log 4 >

log n

((log log n)/log 2 − 1)2
− log 4.This is greater than (log 2)2 log n/(log log n)2 for eah su�iently large n.4. Proof of Theorem 3. Choose any sequene of prime numbers pk,

k = 1, 2, . . . , satisfying pk > pk−1 and
(pk−1pk−2 . . . p1)

2 < gpk
.Let A be the set de�ned in Setion 2. We shall prove that an < gnn3 forevery n of the form n = pk, where k ≥ 2. Put

m := (p1 − 1) + · · · + (pk − 1) = p1 + · · · + pk − k.The inequality p1 + · · · + pk−1 ≥ 2(k − 1) ≥ k implies that n = pk ≤ m. Bythe hoie of m, the mth element of A is equal to the largest element of Ak.Using the ondition imposed on the growth of pk's, we �nd that
an ≤ am = ((pk − 2)p2

k + pk)
k−1
∏

i=1

p2
i < p3

k

k−1
∏

i=1

p2
i < p3

kgpk
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