
ACTA ARITHMETICA130.4 (2007)

Sumsets without powerful numbersbyArt	uras Dubi
kas and Andrius Stankevi£ius (Vilnius)
1. Introdu
tion. Let A = {a1 < a2 < · · · } be an in�nite sequen
eof positive integers. There are many interesting and important problems
on
erning various arithmeti
al properties of sumsets A + A := {a + a′ |

a, a′ ∈ A} (see, e.g., a re
ent book [18℄). An old problem of Erd®s andSilverman is to determine the maximal density of a set A su
h that thesumset A+A 
ontains no squares. It is 
onje
tured that the maximal densityis 11/32. Massias produ
ed a 
orresponding set A as a union of eleven in�nitearithmeti
 progressions with di�eren
e 32 ea
h. It remains to prove thatevery set whose upper density is stri
tly greater than 11/32 
ontains two (notne
essarily distin
t) elements whi
h sum to a perfe
t square. See the papersof Lagarias, Odlyzko and Shearer [9℄, [10℄ and S
hoen [17℄ for some progress
on
erning this problem. See also the papers of Alon and Freiman [1℄, Erd®sand Freiman [4℄, Lipkin [12℄ and Sárközy [16℄, where various te
hniques areused to treat similar problems on sets whose subset sums 
ontain or do not
ontain squares, powers, et
.An interesting variation of this problem due to Lu
a [13℄ asks whether anin�nite set obtained by adding any number of distin
t elements of an in�nitesequen
e A 
an be free of squares and, more generally, free of powers. The
ondition that the elements of A in the sum are distin
t is natural andne
essary in order to avoid the trivial situation when taking a + · · ·+ a, say,
a times one gets a2. Lu
a proved that su
h a sequen
e A exists (see also[2℄ for a ��nite� version of this problem). However, in his example the set Ais very sparse. The nth element an is, roughly speaking, doubly exponentialin n. Another 
onstru
tion whi
h redu
ed Lu
a's bound was given by the �rstauthor and �arka in [3℄. However, the bound in [3℄ is still exponential. Morepre
isely, in [3℄ it was shown that, for any ε > 0, there is a positive 
onstant
K = K(ε) and a sequen
e A whose distin
t elements do not sum to a powerand whose nth element is bounded as an < K exp(εn) for ea
h n ∈ N.2000 Mathemati
s Subje
t Classi�
ation: 11A41, 11A99, 11B05, 11B99.Key words and phrases: powerful number, in�nite sequen
e, prime number, sumset.[381℄ 
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382 A. Dubi
kas and A. Stankevi£iusThe aim of this note is to produ
e some sequen
es A that are even moredense. This allows us to improve the exponential bound an < K exp(εn)to the polynomial bound an < c0n
c. In addition, we strengthen the 
orre-sponding arithmeti
al 
ondition for the resulting sumset {ai1 + · · · + ail |

l ∈ N, aij ∈ A, aiu 6= aiv}. This set of all possible sums of distin
t an'swill be not only �free of powers� but also, more generally, �free of powerfulnumbers�. A number a > 1 is 
alled powerful if for every prime number pdividing a, p2 also divides a. These numbers were studied already in 1934by Erd®s and Szekeres [5℄. Sometimes powerful numbers (named �power-ful� by Golomb in [7℄) are 
alled squareful, square-full, or 2-full. Golomb[7℄ proved that the number of powerful numbers ≤ x is ∼ b
√

x, where
b = ζ(3/2)/ζ(3) = 2.173 . . . . See [8℄ for more open problems 
on
erningpowerful numbers.Theorem 1. There is an in�nite sequen
e A = {a1 < a2 < · · · } ofpositive integers satisfying an ≤ 2n9 for ea
h n ∈ N su
h that the sum of anynumber of distin
t elements of A is not a powerful number.For every n ≥ 2, the fa
tor 2 
an be repla
ed by a smaller 
onstant. How-ever, in general, we do not know how to improve the exponent 9. In our nexttheorem, we slightly improve the bound by repla
ing 2n9 by n9 exp(−f(n))for ea
h n large enough, where f(n) tends to in�nity a little more slowlythan log n.Theorem 2. There is an in�nite sequen
e A = {a1 < a2 < · · · } ofpositive integers satisfying

an < n9 exp

(

−(log 2)2 log n

(log log n)2

)

for ea
h su�
iently large n su
h that the sum of any number of distin
telements of A is not a powerful number.It seems likely that this statement �squeezes� almost everything from ourmethod, so any further improvement seems to be of interest. (In fa
t, we donot give a formal proof that our 
hoi
e of parameters in Se
tion 3 is optimal.)In our �nal theorem we improve the exponent 9 in Theorem 1 and repla
eit by 3 + ε, but only for some in�nite subsequen
e of N rather than for allsu�
iently large n.Theorem 3. For any sequen
e of real numbers gn, n = 1, 2, . . . , with
gn → ∞ as n → ∞, there is an in�nite sequen
e A = {a1 < a2 < · · · }of positive integers satisfying an < gnn3 for in�nitely many n ∈ N su
hthat the sum of any number of distin
t elements of A is not a powerfulnumber.



Sumsets without powerful numbers 383Note that in Theorem 3 the sequen
e gn, n = 1, 2, . . . , may tend toin�nity at any pres
ribed rate.In 
ontrast to Theorem 3, a result of Lev (see Theorem 5′ in [11℄) statesthat if a sequen
e A = {a1 < a2 < · · · } of positive integers satis�es an <
n2/(50 log n) for all su�
iently large n ∈ N then the sums of distin
t elementsof A 
ontain an in�nite arithmeti
 progression of the form d, 2d, 3d, . . . . Thisprogression obviously 
ontains in�nitely many squares, so gnn3 in Theorem 3
annot be repla
ed by n2/(50 log n). See also [6℄ and [14℄ for some previouswork on this problem.In the next se
tion, we present a general 
onstru
tion of sets whose subsetsums avoid powerful numbers. An easy appli
ation of this 
onstru
tion leadsto Theorem 1 immediately. In Se
tions 3 and 4, by a more elaborate 
hoi
eof parameters, we prove Theorems 2 and 3, respe
tively.2. Constru
tion of A and the proof of Theorem 1. Let p1 <p2 < · · ·be an arbitrary sequen
e of prime numbers. Put p0 := 1, and

Ak :=
{

(jp2
k + pk)

k−1
∏

i=0

p2
i

∣

∣

∣
j = 0, 1, . . . , pk − 2

}

for k ≥ 1. The set Ak 
ontains pk − 1 distin
t elements. Note that thesmallest element of Ak is greater than the largest element of Ak−1, be
ause
pkp

2
k−1

> (pk−1 − 2)p2
k−1

+ pk−1. It follows that Ak and Al are disjoint if
k 6= l. Put

A :=
∞
⋃

k=1

Ak = {a1 < a2 < · · · }.

We 
laim that the sum of any number of distin
t elements of A 
annotbe a powerful number. Indeed, by 
onstru
tion, the sum of any number ofdistin
t elements of Ak is divisible by pk, but not by p2
k. Furthermore, everyelement of Al, where l > k, is divisible by p2

k. Suppose that S is a sum ofseveral distin
t elements of A. Let k be the least positive integer su
h thatat least one element of Ak is one of the summands of S. Then, by the above,
S is divisible by pk, but not by p2

k. So S is not a powerful number.Next, for every n ∈ N, there is a unique positive integer k satisfying
pk−1 ≤ n < pk.Clearly, the nth element of A, an, does not ex
eed the nth element of Ak. Itfollows that

an ≤ ((n − 1)p2
k + pk)

k−1
∏

i=0

p2
i = (np2

k − p2
k + pk)

k−1
∏

i=0

p2
i < n(pkpk−1 . . . p1)

2.



384 A. Dubi
kas and A. Stankevi£iusIn order to prove Theorems 1 and 2, we shall �rst 
hoose 
ertain sequen
esof prime numbers p1 < p2 < · · · and then derive upper bounds for the
orresponding produ
ts pkpk−1 . . . p1 in terms of n.Proof of Theorem 1. Set p0 := 1, p1 := 2, p2 := 5. For any real x ≥ 9,the interval (x, 4x/3) 
ontains a prime number (see [15℄). So, for ea
h k ≥ 3,let pk be the least prime number satisfying
p1 . . . pk−1 < pk < 1.4p1 . . . pk−1.We have p3 = 11 and a1 = 2, a2 = 20, a3 = 120, . . . , a10 = (4 · 112 + 11) ·

52 · 22 = 49500. One 
an 
he
k easily that an ≤ 2n9 for ea
h n ≤ 10, withequality for n = 1 only.Suppose that pk−1 ≤ n < pk, where k ≥ 3. On applying the above upperbound for pk and then the above lower bound for pk−1 (the lower bound
pk > pk−1 . . . p1 holds for every k ∈ N), we obtain

pkpk−1 . . . p1 < 1.4p2
k−1(pk−2 . . . p1)

2 < 1.4p2
k−1p

2
k−1 = 1.4p4

k−1.Using pk−1 ≤ n, we dedu
e that pkpk−1 . . . p1 < 1.4n4. Hen
e
an < n(pkpk−1 . . . p1)

2 < n(1.4n4)2 < 2n9for ea
h n ≥ 11.3. Proof of Theorem 2. This time, by Bertrand's postulate, for ea
h
k ∈ N and ea
h real τk > 1, there is a prime number pk satisfying

τkp0p1 . . . pk−1 < pk < 2τkp0p1 . . . pk−1.Fix any su
h pk. Re
all that p0 = 1. (The τk will be 
hosen later.) Now,
pkpk−1 . . . p1 < 2τkp

2
k−1(pk−2 . . . p1)

2 < 2τkp
2
k−1(pk−1/τk−1)

2

= 2τkτ
−2

k−1
p4

k−1.Using pk−1 ≤ n, as above, we dedu
e that
an < n(pkpk−1 . . . p1)

2 < n(2τkτ
−2

k−1
n4)2 = 4τ2

k τ−4

k−1
n9.It remains to give an upper bound for the fa
tor 4τ2

k τ−4

k−1
in terms of n.Using pj > τjpj−1 . . . p1 for j = k − 1, k − 2, . . . , 1, we obtain

n ≥ pk−1 > τk−1pk−2 . . . p1 > τk−1τk−2(pk−3 . . . p1)
2

> τk−1τk−2τ
2
k−3(pk−4 . . . p1)

4 > τk−1τk−2τ
2
k−3τ

4
k−4(pk−5 . . . p1)

8 > · · ·
> τk−1τk−2τ

2
k−3τ

4
k−4 . . . τ2k−3

1 .Similarly, using pj < 2τjpj−1 . . . p1 for j = k, k − 1, . . . , 1, we obtain
n < pk < 2τkpk−1 . . . p1 < 4τkτk−1(pk−2 . . . p1)

2 < 8τkτk−1τ
2
k−2(pk−3 . . . p1)

4

< 16τkτk−1τ
2
k−2τ

4
k−3(pk−4 . . . p1)

8 < · · · < 22k−1

τkτk−1τ
2
k−2τ

4
k−3 . . . τ2k−2

1 .
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µk := τ2k−2

1 τ2k−3

2 . . . τ2
k−2τk−1,one �nds that

τk−1µk−1 < n < 22k−1

τkµk.Sele
t
τk := exp(2k/

√
k + 1)for k ∈ N. Sin
e τ2k−j−1

j = exp(2k−1/
√

j + 1) for 1 ≤ j ≤ k − 1, we �nd that
µk = τ2k−2

1 τ2k−3

2 . . . τ2
k−2τk−1 = exp

(

2k−1

k
∑

j=2

1√
j

)

for k ≥ 2. Below, we shall use the following standard estimate:
2(
√

k + 1 −
√

2) =

k+1\
2

dx√
x

<
k

∑

j=2

1√
j

<

k\
1

dx√
x

= 2(
√

k − 1).

Using the upper bound of this estimate, we get log µk < 2k(
√

k−1). Thisimplies that
n < 22k−1

τkµk = exp(2k−1 log 2 + 2k/
√

k + 1 + log µk)

< exp(2k(0.35 + (k + 1)−1/2 +
√

k − 1)) < exp(2k
√

k)for k ≥ 2. Similarly, using ∑k
j=2

1/
√

j > 2(
√

k + 1 −
√

2), we get log µk >

2k(
√

k + 1 −
√

2), so log µk−1 > 2k−1(
√

k −
√

2). It follows that
n > τk−1µk−1 > µk−1 > exp(2k−1(

√
k −

√
2)) > exp(2k−2

√
k − 1)for k ≥ 7. Summarizing, we dedu
e that

2k−2
√

k − 1 < log n < 2k
√

kfor ea
h k ≥ 7.Next, by the 
hoi
e of τk, we have
τ2
k τ−4

k−1
= exp(2k+1((k + 1)−1/2 − k−1/2)).The inequality

k−1/2 − (k + 1)−1/2 =

√
k + 1 −

√
k

√

k(k + 1)
=

1
√

k(k + 1)(
√

k + 1 +
√

k)

>
1

2(k + 1)3/2implies that τ2
k τ−4

k−1
< exp(−2k(k + 1)−3/2). Thus

4τ2
k τ−4

k−1
< 4 exp(−2k(k + 1)−3/2) = exp(log 4 − 2k(k + 1)−3/2).



386 A. Dubi
kas and A. Stankevi£iusRe
all that an < 4τ2
k τ−4

k−1
n9. Hen
e, in order to prove the required in-equality

an < n9 exp

(

−(log 2)2 log n

(log log n)2

)

,it remains to verify that
2k(k + 1)−3/2 − log 4 > (log 2)2 log n/(log log n)2.For this, we shall use the estimates 2k−2

√
k − 1 < log n < 2k

√
k for log n.Firstly,

2k(k + 1)−3/2 =
2k
√

k
√

(k + 1)3k
>

log n
√

(k + 1)3k
>

log n

(k + 1)2
,be
ause 2k

√
k > log n. Se
ondly, for k ≥ 257, the inequality 2k+2 ≤

2k−2
√

k − 1 < log n implies that k + 1 < (log log n)/log 2 − 1. Hen
e
2k(k + 1)−3/2 − log 4 >

log n

(k + 1)2
− log 4 >

log n

((log log n)/log 2 − 1)2
− log 4.This is greater than (log 2)2 log n/(log log n)2 for ea
h su�
iently large n.4. Proof of Theorem 3. Choose any sequen
e of prime numbers pk,

k = 1, 2, . . . , satisfying pk > pk−1 and
(pk−1pk−2 . . . p1)

2 < gpk
.Let A be the set de�ned in Se
tion 2. We shall prove that an < gnn3 forevery n of the form n = pk, where k ≥ 2. Put

m := (p1 − 1) + · · · + (pk − 1) = p1 + · · · + pk − k.The inequality p1 + · · · + pk−1 ≥ 2(k − 1) ≥ k implies that n = pk ≤ m. Bythe 
hoi
e of m, the mth element of A is equal to the largest element of Ak.Using the 
ondition imposed on the growth of pk's, we �nd that
an ≤ am = ((pk − 2)p2

k + pk)
k−1
∏

i=1

p2
i < p3

k

k−1
∏

i=1

p2
i < p3

kgpk
= gnn3.A
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