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1. Introduction. Let A = {a; < az < ---} be an infinite sequence
of positive integers. There are many interesting and important problems
concerning various arithmetical properties of sumsets A + A := {a + d' |
a,a’ € A} (see, e.g., a recent book [18]). An old problem of Erdés and
Silverman is to determine the maximal density of a set A such that the
sumset A+ A contains no squares. It is conjectured that the maximal density
is 11/32. Massias produced a corresponding set A as a union of eleven infinite
arithmetic progressions with difference 32 each. It remains to prove that
every set whose upper density is strictly greater than 11/32 contains two (not
necessarily distinct) elements which sum to a perfect square. See the papers
of Lagarias, Odlyzko and Shearer [9], [10] and Schoen [17] for some progress
concerning this problem. See also the papers of Alon and Freiman [1|, Erdés
and Freiman [4], Lipkin [12| and Sarkozy [16], where various techniques are
used to treat similar problems on sets whose subset sums contain or do not
contaln squares, powers, etc.

An interesting variation of this problem due to Luca [13] asks whether an
infinite set obtained by adding any number of distinct elements of an infinite
sequence A can be free of squares and, more generally, free of powers. The
condition that the elements of A in the sum are distinct is natural and
necessary in order to avoid the trivial situation when taking a + - - - 4+ a, say,
a times one gets a®. Luca proved that such a sequence A exists (see also
[2] for a “finite” version of this problem). However, in his example the set A
is very sparse. The nth element a,, is, roughly speaking, doubly exponential
in n. Another construction which reduced Luca’s bound was given by the first
author and Sarka in [3]. However, the bound in [3] is still exponential. More
precisely, in [3| it was shown that, for any € > 0, there is a positive constant
K = K(¢) and a sequence A whose distinct elements do not sum to a power
and whose nth element is bounded as a,, < K exp(en) for each n € N.
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The aim of this note is to produce some sequences A that are even more
dense. This allows us to improve the exponential bound a, < K exp(en)
to the polynomial bound a, < con€. In addition, we strengthen the corre-
sponding arithmetical condition for the resulting sumset {a;, + -+ + a;, |
l €N a € A, a;, # a;,}. This set of all possible sums of distinct a,’s
will be not only “free of powers” but also, more generally, “free of powerful
numbers”. A number a > 1 is called powerful if for every prime number p
dividing a, p? also divides a. These numbers were studied already in 1934
by Erdés and Szekeres [5]. Sometimes powerful numbers (named “power-
ful” by Golomb in [7]) are called squareful, square-full, or 2-full. Golomb
[7] proved that the number of powerful numbers < z is ~ by/x, where
b = ((3/2)/((3) = 2.173.... See [8] for more open problems concerning
powerful numbers.

THEOREM 1. There is an infinite sequence A = {a; < ag < ---} of
positive integers satisfying a, < 2n° for each n € N such that the sum of any
number of distinct elements of A is not a powerful number.

For every n > 2, the factor 2 can be replaced by a smaller constant. How-
ever, in general, we do not know how to improve the exponent 9. In our next
theorem, we slightly improve the bound by replacing 2n? by n? exp(—f(n))
for each n large enough, where f(n) tends to infinity a little more slowly
than logn.

THEOREM 2. There is an infinite sequence A = {a1 < ag < ---} of
positive integers satisfying

(log 2)? log n)

9 —
(n <1 exp( (loglogn)?

for each sufficiently large n such that the sum of any number of distinct
elements of A is not a powerful number.

It seems likely that this statement “squeezes” almost everything from our
method, so any further improvement seems to be of interest. (In fact, we do
not give a formal proof that our choice of parameters in Section 3 is optimal.)

In our final theorem we improve the exponent 9 in Theorem 1 and replace
it by 3 4+ ¢, but only for some infinite subsequence of N rather than for all
sufficiently large n.

THEOREM 3. For any sequence of real numbers gn,, n = 1,2,..., with
gn — 00 as m — 00, there is an infinite sequence A = {a1 < ag < ---}
of positive integers satisfying a, < gyn> for infinitely many n € N such
that the sum of any number of distinct elements of A is not a powerful
number.
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Note that in Theorem 3 the sequence g,, n = 1,2,..., may tend to
infinity at any prescribed rate.

In contrast to Theorem 3, a result of Lev (see Theorem 5 in [11]) states
that if a sequence A = {a; < az < ---} of positive integers satisfies a,, <
n?/(501ogn) for all sufficiently large n € N then the sums of distinct elements
of A contain an infinite arithmetic progression of the form d, 2d, 3d, . ... This
progression obviously contains infinitely many squares, so g,n> in Theorem 3
cannot be replaced by n?/(501logn). See also [6] and [14] for some previous
work on this problem.

In the next section, we present a general construction of sets whose subset
sums avoid powerful numbers. An easy application of this construction leads
to Theorem 1 immediately. In Sections 3 and 4, by a more elaborate choice
of parameters, we prove Theorems 2 and 3, respectively.

2. Construction of A and the proof of Theorem 1. Let p; <ps <---
be an arbitrary sequence of prime numbers. Put pg := 1, and

k—1
ap={Gpt+po [10F |7 =010 pe -2}

=0
for k > 1. The set A contains p, — 1 distinct elements. Note that the
smallest element of A, is greater than the largest element of Aj_1, because
p;mii1 > (pr—1 — 2)pi71 + pr_1. It follows that Ay and A; are disjoint if
k # 1. Put

A::UAkZ{a1<CL2<"-}.
k=1

We claim that the sum of any number of distinct elements of A cannot
be a powerful number. Indeed, by construction, the sum of any number of
distinct elements of Ay, is divisible by py, but not by p%. Furthermore, every
element of A;, where [ > k, is divisible by pi. Suppose that S is a sum of
several distinct elements of A. Let k be the least positive integer such that
at least one element of Ay is one of the summands of S. Then, by the above,
S is divisible by pg, but not by pz. So S is not a powerful number.

Next, for every n € N, there is a unique positive integer k satisfying

Pk—1 <N < P.
Clearly, the nth element of A, a,, does not exceed the nth element of A. It
follows that
k—1 k—1

an < ((n—1)p; +pi) [ [ 27 = (p} — 07 + o) [[ 07 < n(orprr - 1)
=0 =0
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In order to prove Theorems 1 and 2, we shall first choose certain sequences
of prime numbers p; < py < --- and then derive upper bounds for the
corresponding products pgpr_1 ...p1 in terms of n.

Proof of Theorem 1. Set pg := 1, p1 := 2, po := 5. For any real x > 9,
the interval (x,4x/3) contains a prime number (see [15]). So, for each k > 3,
let pr be the least prime number satisfying

P1---Pk—1 <pr < Lldpr...pg-1.
We have p3 = 11 and a; = 2, ag = 20, a3 = 120, ..., ajo = (4- 112 +11) -
52 .22 = 49500. One can check easily that a, < 2n° for each n < 10, with
equality for n = 1 only.

Suppose that pr_1 < n < p, where k > 3. On applying the above upper
bound for pj and then the above lower bound for py_; (the lower bound
Pk > Pk—1 - --p1 holds for every k € N), we obtain

PePi—1---P1 < LAPE_ 1 (Pr—2 .. p1)* < LAPE_1pi_ = L4pj_,.
Using pip_1 < n, we deduce that pppi_i...p1 < 1.4n*. Hence
an < n(pppr_1--.p1)? < n(1.4n")? < 2n°
for each n > 11.

3. Proof of Theorem 2. This time, by Bertrand’s postulate, for each
k € N and each real 7 > 1, there is a prime number p; satisfying
TkPOP1 - - - Pk—1 < Pk < 2TkPOP1 - - - Pk—1-
Fix any such pg. Recall that pg = 1. (The 74 will be chosen later.) Now,

PePr—1---P1 < 2Tkpf 1 (P2 - 1) < 27k} 1 (Ph—1/Th-1)*
—2
= 2Tk7k—1pi—1'
Using pip_1 < n, as above, we deduce that
an < n(PpPr—1 - - .p1)2 < n(27k7'k__21n4)2 = 47’,37,:11719.
It remains to give an upper bound for the factor 47’,?71:11 in terms of n.
Using p; > 7jpj—1...p1 for j =k —1,k—2,...,1, we obtain
N> Pp_1 > Tho1Pk—2 - P1L > Tho1Th—2(Ph—3 - - - 1)
2 4 2 4 8
> T 1Tk—2Tj—3(Pk—a -+ P1)" > T 1Th—2T 3T a(Ph—5-- - P1)° >+~
> 2 4 2k—3
Similarly, using p; < 27jp;_1...p1 for j =k, k—1,...,1, we obtain

n < pr < 27pr_1---p1 < 47761 (Pr—2 - P1)* < 8TkTh_1TF_o(Ph—3 - .- P1)*

2 4 8 2k—1 2 4 2k—2
< 167K TE—1Tjr— T3 (Pt .. 1)° < -+ - < 2 ThTh—1Th—9Tjs—5 - - - Ti
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Therefore, putting
2k—2 2k—3 2
/,Lk = Tl T2 P Tk—QTk—:l?
one finds that
2k71
Th—1Hk—1 <N <27 Trfig.
Select

7 = exp(28 /VE + 1)

for k € N. Since Tfki];l =exp(2F1/\/7F1) for 1 <j < k—1, we find that

k
k—2 k—3 _
P = 7‘12 7‘22 ...T,?_QTk_l = exp (2’€ ! E
j=2

7)
Vi
for k > 2. Below, we shall use the following standard estimate:

k+1 k

k
SWVEFT-va) = | oy L rdr_m iy

Using the upper bound of this estimate, we get log uy, < 2F(vE—1). This

implies that
n < 22k717'k,uk = exp(2¥log 2 4+ 28 /VE + 1 4 log 1y,
< exp(28(0.35 + (k+1)72 + V& — 1)) < exp(2¥Vk)
for k > 2. Similarly, using Z?:Q 1/v/7 > 2(Vk +1 —+2), we get log juy >
2F(VE+ T —v/2), s0 log pip—1 > 2871 (vVEk — v/2). Tt follows that
n>Tp_1Mk—1 > Mk—1 > eXp(Qk_l(\/E — \/5)) > eXp(Qk_Q\/ k— 1)
for k > 7. Summarizing, we deduce that
22k —1 <logn < 2"Vk

for each k > 7.
Next, by the choice of 7, we have

Ty = e (1) KT,
The inequality
~1/2 _ VE+1-VEk _ 1
k(k+1) VEE+1D)(VE+ 1+ VEk)
1

> -
2(k +1)3/2
implies that T,?Tk_:ll < exp(~2*(k +1)7%?). Thus
drfry < dexp(=2"(k+1)7%%) = exp(log 4 — 2" (k + 1) /7).

kY2 — (k+1)
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Recall that a, < 47’,37,;41n9. Hence, in order to prove the required in-

equality
o (log 2)%logn
an < n’exp| ——————5
" P (loglogn)?

it remains to verify that
2%k +1)73/2 —log4 > (log2)?logn/(loglog n)?.

For this, we shall use the estimates 28"2y/k — 1 < logn < 2¥v/k for logn.
Firstly,

26k logn logn

> > 2 )
VEFI3E T JEFD)IE T (k+1)
because 2¥vk > logn. Secondly, for k > 257, the inequality 2F+2 <
28=2\/k — 1 < logn implies that k + 1 < (loglogn)/log?2 — 1. Hence
logn logn

———— —log4 >
k+12 %7 ((loglogn)/log2 — 1)2
This is greater than (log2)?logn/(loglogn)? for each sufficiently large n.

25 (k+1)7%2 =

2 (k +1)73/2 —log4 > —log4.

4. Proof of Theorem 3. Choose any sequence of prime numbers py,
k=1,2,..., satisfying pr > pr_1 and
(Pe—1Pk—2 - - -P1)* < Gp-
Let A be the set defined in Section 2. We shall prove that a, < g,n® for
every n of the form n = pg, where k > 2. Put
m:=pPi—)+-+pr—1)=p1+--+pp— k.

The inequality p; + -+ 4+ pr—1 > 2(k — 1) > k implies that n = py, < m. By
the choice of m, the mth element of A is equal to the largest element of Ay.
Using the condition imposed on the growth of pi’s, we find that

k—1 k—1
an < am = ((px — 200} + o) [ [ 7 < 0 ] 07 < pilgp, = gnn®.
=1 =1
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