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1. Introduction. The Riemann Existence Theorem asserts that every
compact Riemann surface is (analytically isomorphic to) a complex algebraic
curve. In other words, if f is a non-constant meromorphic function on a
compact Riemann surface S, then the field of all meromorphic functions
on S is a finite extension of C(f).

One of the most common ways of defining Riemann surfaces is realizing
them as finite ramified coverings of the Riemann sphere P1(C). Moreover,
even if the covering is purely topological, the C-analytic structure on the
Riemann sphere lifts, in a unique way, to the covering surface. Thus, the
Riemann Existence Theorem can be restated as follows.

Theorem 1.1. Let M be a finite subset of P1(C). Then for any finite
covering of P1(C) by a closed oriented surface, unramified outside M, there
exists a complex algebraic curve C and a rational function x ∈ C(C) such
that our covering is isomorphic (1) to C(C) x→ P1(C), the covering defined
by x. Moreover, the couple (C, x) is unique up to a naturally defined isomor-
phism (2).

We refer to [4] for several more precise statements.
The purpose of this article is to give an effective description of the

curve C, or, more precisely, of the couple (C, x), in terms of the degree of the
initial topological covering and the set M of ramification points, provided
those points are defined over the field Q̄ of all algebraic numbers. In this

2010 Mathematics Subject Classification: Primary 11G30; Secondary 14H25, 14H05,
14H55, 11G50.
Key words and phrases: Riemann existence theorem, algebraic functions, coverings.

(1) Two morphisms S1
π1→ S and S2

π2→ S of topological spaces are isomorphic if there

exists a homeomorphism S1
ϕ→ S2 such that π1 = π2 ◦ ϕ.

(2) If (C′, x′) is another such couple, then the field isomorphism C(x) → C(x′) given
by x 7→ x′ extends to a field isomorphism C(C)→ C(C′).
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case the curve C is also defined over Q̄ (this is the “easy” direction of the
Theorem of Belyi). We produce a plane model of C over Q̄ such that one of
the coordinates is x, and we give explicit bounds for the degree and height
of the defining equation of this model, and of the degree and discriminant
of the number field over which this model is defined.

Notice that we do not produce a new proof of the Riemann Existence
Theorem. In fact, we do use both the existence and uniqueness statements
of Theorem 1.1.

Let us state our principal result. Everywhere in this article, by height we
mean logarithmic affine height ; see Section 2.

Theorem 1.2. Let S → P1(C) be a finite covering of degree n ≥ 2
by a closed oriented surface S of genus g, unramified outside a finite set
M ⊂ P1(Q̄). Put (3)

K = Q(M), h = max{h(α) : α ∈ M}, Λ = (2(g + 1)n2)10gn+12n.

Then there exist a number field L containing K, an algebraic curve C defined
over L and rational functions x, y ∈ L(C) such that L(C) = L(x, y) and the
following is true.

(a) The covering C(C) x→ P1(C) defined by x is isomorphic to the given
covering S → P1(C).

(b) The rational functions x, y ∈ L(C) satisfy the equation f(x, y) = 0,
where f(X,Y ) ∈ L[X,Y ] is an absolutely irreducible polynomial and

(1.1) degX f = g + 1, degY f = n, h(f) ≤ Λ(h+ 1).

(c) The degree and the discriminant of L over K satisfy

(1.2) [L : K] ≤ Λ,
logNK/QDL/K

[L : Q]
≤ Λ(h+ 1),

where NK/Q is the norm map.

The principal motivation of this theorem lies in the field of effective Dio-
phantine analysis, where the covering technique is widely used. It happens
quite often that only the degree of the covering and the ramification points
are known, and to work with the covering curve, one needs to have an ef-
fective description of it. In particular, in [2] we use Theorem 1.2 to get a
user-friendly version of the Chevalley–Weil theorem, one of the main tools
of Diophantine analysis.

In brief, our method of proof is as follows. First, we use the existence part
of Theorem 1.1 to show the existence of C and x. Next, we define “quasi-
canonically” a generator y of Q̄(C) over Q̄(x), and denote by f(X,Y ) the

(3) A pedantic reader may complain that the definition of h below is formally incorrect,
because h(·) is the affine height, and M is a subset of the projective line. Of course, this
can be easily overcome, for instance by writing P1 = A1 ∪ {∞} and defining h(∞) = 0.
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irreducible polynomial satisfying f(x, y) = 0. Further, we show that the co-
efficients of this polynomial satisfy a certain system of algebraic equations
and inequalities, and we use the uniqueness part of Theorem 1.1 to show
that the system has finitely many solutions. (To be more precise, the coef-
ficients of f form only a part of the variables involved in the equations and
inequalities.) Using this, we estimate the height of the polynomial, and the
degree and discriminant of the number field generated by its coefficients.

This argument is inspired by the work of Zverovich [13], who applies
a rather similar approach, though he works only in the complex domain.
The system of equations considered by Zverovich is simpler than ours, but
we could not understand one key point in his proof of the finiteness of the
number of solutions. See more on this in Section 16.

Our result is sensitive only to the set M of ramification points, and the
degree n of the covering. It would be interesting to obtain a more precise
result, which depends on the more subtle elements of the “covering data”,
like the monodromy permutations associated to every ramification point.
Probably, the “correct” statement of Theorem 1.2 must involve the notion
of the Hurwitz space associated to the given topological covering (see [5]).
Another interesting problem is to characterize our curve not in terms of the
defining equation, but in more invariant terms, for instance, to estimate its
Faltings height.

In our result, the quantity Λ depends exponentially on n. This improves
on Theorem 3A from [1], where the dependence is doubly exponential. There
are strong reasons to believe that the “correct” estimate is polynomial in n.
Indeed, this is the case for a similar problem over a function field, in the
recent work of Edixhoven et al. [7].

In Sections 2–4 we collect various auxiliary facts needed for the proof of
Theorem 1.2. The proof itself occupies Sections 5–15. In Section 16 we very
briefly discuss the work of Zverovich.

Notation and conventions. If F (X) is a polynomial in X over some
field (or integral domain), and β is an element of this field (or domain), then
we denote by ordX=β F the order of vanishing of F at β. Sometimes we write
simply ordβ or even ord, when this does not lead to confusion. We employ
the same notation not only for polynomials, but also for formal power series
in X − β.

We denote by α the finite point (α : 1) of the projective line P1, and
by ∞ the infinite point (1 : 0).

More specific notation will be introduced at appropriate places.

2. Heights and algebraic equations. Let α = (α1, . . . , αN ) ∈ Q̄N be
a point with algebraic coordinates in the affine space of dimension N . Let K
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be a number field containing α1, . . . , αN and MK the set of its valuations.
We assume that every valuation v ∈MK is normalized so that its restriction
to Q is the standard infinite or p-adic valuation. Also, we let Kv be the
v-adic completion of K (in the case of an infinite v, the field Kv is either R
or C). For v ∈MK we put

|α|v = max{|α1|v, . . . , |αN |v}.

We now define the absolute logarithmic affine height (or simply height) of
the point α as

(2.1) h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log+ |α|v,

where log+ x := log max{1, x}. It is well-known and easy to verify that the
expression on the right is independent of the choice of the field K. The height
of α ∈ Q̄ is, by definition, the height of the one-dimensional vector (α).

For a polynomial f with algebraic coefficients we denote by h(f) the
height of the vector of its coefficients, ordered somehow. More generally,
the height h(f1, . . . , fs) of a finite system of polynomials is, by definition,
the height of the vector formed by all the non-zero coefficients of all these
polynomials.

2.1. Estimates for sums and products of polynomials. The fol-
lowing is an immediate consequence of Lemma 1.2 from [9].

Lemma 2.1. Let f1, . . . , fs be polynomials in Q̄[X1, . . . , Xn] and put

d = max{deg f1, . . . ,deg fs}, h = h(f1, . . . , fs).

Let also g be a polynomial in Q̄[Y1, . . . , Ys]. Then

(a) h(
∏s
i=1 fi) ≤

∑s
i=1 h(fi) + log(n+ 1)

∑s−1
i=1 deg fi,

(b) h(g(f1, . . . , fs)) ≤ h(g) + (h+ log(s+ 1) + d log(n+ 1)) deg g.

Remark 2.2. Item (b) of Lemma 2.1 extends to a slightly more general
situation when the polynomial g depends, besides Y1, . . . , Ys, on some other
indeterminates T1, . . . , Tr, but one substitutes new polynomials only for the
Yi’s, leaving the Tj ’s intact. In this case we again have the estimate

h(g(f1, . . . , fs, T1, . . . , Tr)) ≤ h(g) + (h+ log(s+ 1) + d log(n+ 1)) degY g

(independently of r and degT g). Indeed, we can write g =
∑

k gk(Y )hk(T ),
where hk(T ) are pairwise distinct monomials in T = (T1, . . . , Tr), and apply
Lemma 2.1(b) to each gk.

Here is a particular case of Lemma 2.1, where a slightly sharper estimate
holds (see [9, end of Section 1.1.1]).
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Lemma 2.3. Let (fij)ij be an s×s matrix of polynomials in Q̄[X1, . . . , Xn]
of degrees and heights bounded by d and h, respectively. Then

h(det(fij)ij) ≤ s(h+ log s+ d log(n+ 1)).

We need one more technical lemma.

Lemma 2.4. Let g(X,Y ) ∈ Q̄[X,Y ] be of X-degree m, and fix ρ ∈ Q̄.
Put

f(X,Y ) := (X − ρ)mg((X − ρ)−1, Y ).

Then
h(f) ≤ h(g) +mh(ρ) + 2m log 2.

Proof. The polynomials g(X,Y ) and g̃(X,Y ) := Xmg(X−1, Y ) have the
same coefficients and thereby the same height. Applying Lemma 2.1 and
Remark 2.2, we obtain the result.

2.2. Bounds for solutions of algebraic equations. By an algebraic
set we mean a subset of Q̄N defined by a system of polynomial equations.
We treat algebraic sets as in [12, 16. Kapitel] (where they are called algebra-
ische Mannigfaltigkeiten), that is, purely set-theoretically, without counting
multiplicities. By a component of an algebraic set we mean an irreducible
component.

Let p1(X), . . . , pk(X) be polynomials in X = (X1, . . . , XN ) with alge-
braic coefficients. By an isolated solution of the system of polynomial equa-
tions

(2.2) p1(X) = · · · = pk(X) = 0

we mean a zero-dimensional component of the algebraic set in Q̄N defined
by (2.2). (Existence of such a component implies that k ≥ N .) Our aim is to
bound the height of an isolated solution in terms of the degrees and heights
of the polynomials p1, . . . , pk.

Such a bound follows from the arithmetical Bézout inequality due to
Bost, Gillet and Soulé [3] and Philippon [10]. Krick, Pardo and Sombra [9]
did a great job of producing a user-friendly version of this fundamental
result. We very briefly recall some facts from [9] which will be used here.
For an affine algebraic set V ⊂ AN defined over Q̄, Krick, Pardo and Sombra
[9, Section 1.2] define the height of V , to be denoted by hKPS(V ). We do
not reproduce here the full definition of this height function, but only list
four of its properties.

Proposition 2.5. The Krick–Pardo–Sombra height function has the fol-
lowing properties.

• (Positivity) For any V we have hKPS(V ) ≥ 0.
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• (Additivity) The height function is “additive” in the following sense:
for any V1 and V2 without common components we have

hKPS(V1 ∪ V2) = hKPS(V1) + hKPS(V2).

• (One-point set) If {α} is an algebraic set, then h(α) ≤ hKPS({α}).
• (Bézout inequality) Let V be the algebraic set defined by

p1(X) = · · · = pN (X) = 0,

where pi(X) ∈ Q̄(X) for i = 1, . . . , N . Put

(2.3)
∇ = deg p1 · · · deg pN , Σ =

1
deg p1

+ · · ·+ 1
deg pN

,

h = max{h(p1), . . . ,h(pN )}.
Then

(2.4) hKPS(V ) ≤ ∇Σh+ 2∇N log(N + 1).

Proof. The positivity and additivity follow immediately from the def-
inition. For the height of a one-point set see [9, end of Section 1.2.3]; in
fact, hKPS({α}) is defined as the right-hand side of (2.1) but with log+ |α|v
replaced by log(1 + |α1|2v + · · · + |αN |2v)1/2 for archimedean v. Finally, for
the Bézout inequality see Corollary 2.11 from [9], or, more precisely, the
displayed inequality just before the beginning of Section 2.2.3 on page 555
there.

We adapt the work of Krick, Pardo and Sombra as follows.

Proposition 2.6. Let K be a number field and let p1(X), . . . , pk(X) ∈
K[X] be polynomials in X = (X1, . . . , XN ). Let α be an isolated solution
of (2.2) and L = K(α) the number field generated by the coordinates of α.
Then k ≥ N . Further, assume that

deg p1 ≥ · · · ≥ deg pk.

Let also ∇, Σ be defined as in (2.3) and h = max{h(p1), . . . ,h(pk)}. Then

[L : K] ≤ ∇,(2.5)
[L : K]h(α) ≤ ∇Σh+ 2∇N log(N + 1),(2.6)

logNK/QDL/K

[L : Q]
≤ 2∇Σh+ 5∇N log(N + 1),(2.7)

where DL/K is the discriminant of L over K and NK/Q is the norm map.

The following consequence is immediate.

Corollary 2.7. In the set-up of Proposition 2.6, denote by V the al-
gebraic subset of Q̄N defined by (2.2), and let W be another algebraic subset
of Q̄N such that the difference set V \W is finite. Then every α ∈ V \W
satisfies (2.5)–(2.7).
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For the proof of Proposition 2.6 we shall use the following lemma, due
to Silverman [11, Theorem 2].

Lemma 2.8. Let K be a number field and let α be a point in Q̄N . Let
L = K(α). Then

logNK/QDL/K

[L : Q]
≤ 2([L : K]− 1)h(α) + log[L : K].

Proof of Proposition 2.6. We denote by V the algebraic set defined
by (2.2). Since it has a 0-dimensional component α, we have k ≥ N . Among
the k polynomials p1, . . . , pk one can select N polynomials q1, . . . , qN such
that α is an isolated solution of the system q1(X) = · · · = qN (X). The alge-
braic set defined by this system has at most deg q1 · · · deg qN ≤ ∇ irreducible
(over Q̄) components: this follows from the geometric Bézout inequality. In
particular, there are at most ∇ isolated solutions. Since a K-conjugate of an
isolated solution is again an isolated solution, we must have (2.5).

Further, the four properties in Proposition 2.5 imply that

(2.8)
∑

{α} component of V

h(α) ≤ hKPS(V ) ≤ ∇Σh+ 2∇N log(N + 1),

where the sum is over the 0-dimensional components of V (Q̄). Since all
conjugates of α have the same height, the left side of (2.8) exceeds [L :K]h(α),
which proves (2.6). Combining it with Lemma 2.8, we obtain (2.7).

3. Power series. In this section K is a field of characteristic 0 and
f(X,Y ) ∈ K[[X]][Y ] is a polynomial in Y with coefficients in the ring K[[X]]
of formal power series. We denote by ord the order of vanishing at 0. By the
initial segment of length κ (or simply κ-initial segment) of a power series
y =

∑∞
k=0 γkX

k we mean y =
∑κ

k=0 γkX
k.

Lemma 3.1. Let ỹ =
∑κ

k=0 γkX
k ∈ K[X] be a polynomial in X of degree

at most κ. Assume that

ord f(X, ỹ) > 2κ, ord f ′Y (X, ỹ) = κ.

Then there exists a unique formal power series y =
∑∞

k=0 γkX
k ∈ K[[X]]

such that f(X, y) = 0 and ỹ is the initial segment of y of length κ.

Proof. By Hensel’s Lemma, there exists a unique power series y such
that f(X, y) = 0 and ord(y − ỹ) > κ. The last inequality implies that ỹ is
the initial segment of y of length κ.

Lemma 3.2.

(a) Let y ∈ K[[X]] be a formal power series such that f(X, y) = 0. We
define κ = ord f ′Y (X, y) and we let ỹ be the initial segment of y of
length κ. Then ord f(X, ỹ) > 2κ and ord f ′Y (X, ỹ) = κ.
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(b) Let y1, y2 ∈ K[[X]] be distinct formal power series such that

f(X, y1) = f(X, y2) = 0,

and let κ1, κ2 be defined as κ in (a). Then the kth coefficients of y1

and y2 are distinct for some k ≤ min{κ1, κ2}.
Proof. Since ỹ is the κ-initial segment of y, we have ord(y − ỹ) > κ.

Hence

f(X, ỹ) = f(X, y) + f ′Y (X, y)(y − ỹ) + terms of order > 2κ.

Since f(X, y) = 0 and ord f ′Y (X, y) = κ, the right-hand side is of order > 2κ.
Similarly,

f ′Y (X, ỹ) = f ′Y (X, y) + terms of order > κ,

which implies that the right-hand side is of order κ. We have proved part (a).
For (b), Lemma 3.1 implies that yj is the single power series satisfying

f(X, yj) = 0 and having ỹj as an initial segment. Since the series y1 and y2

are distinct, none of ỹj can be an initial segment of the other (4), whence
the result.

Lemma 3.3. Suppose K is algebraically closed and let y1, . . . , y` ∈ K[[X]]
be pairwise distinct formal power series such that

f(X, y1) = · · · = f(X, y`) = 0.

Assume that the polynomial f is monic in Y (that is, f = Y n+ terms of
lower degree in Y ) and

(3.1)
∑̀
j=1

ord f ′Y (yj) = ord d(X),

where d(X) is the Y -discriminant of f . Then f splits into linear factors
over the ring K[[X]]:

f(X,Y ) = (Y − y1) · · · (Y − yn),

where y1, . . . , yn ∈ K[[X]].

Proof. Since f is monic, it splits, by the Puiseux theorem, into linear
factors over the ring K[[X1/e]] for some e:

f(X,Y ) = (Y − y1) · · · (Y − yn),

where y`+1, . . . , yn ∈ K[[X1/e]]. Further, d(X) =
∏n
j=1 f

′
Y (yj), which, to-

gether with (3.1) implies that

(3.2) ord f ′Y (yj) = 0 (j = `+ 1, . . . , n).

(4) If, say, ey1 is an initial segment of ey2 then the same argument as above shows that
ord f ′Y (X, ey2) = ord f ′Y (X, ey1), that is, κ1 = κ2, whence ey1 = ey2. Lemma 3.1 now implies
that y1 = y2, a contradiction.
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If we now write yj = aj0 + aj1X
1/e + · · · , then (3.2) implies that

ord f ′Y (X, aj0) = 0 (j = `+ 1, . . . , n).

Lemma 3.1 now implies that in each of the rings K[[X]] and K[[X1/e]], the
polynomial f has exactly one root with initial term aj0. Hence yj ∈ K[[X]]
for j = `+ 1, . . . , n, as desired.

4. Miscellaneous lemmas

Lemma 4.1. Let C be a smooth projective curve defined over an alge-
braically closed field K of characteristic 0. Let x ∈ K(C) have only simple
poles, and let y ∈ K(C) have a single (possibly, multiple) pole which is a
pole of x as well. Then K(C) = K(x, y).

Proof. Since x has only simple poles in K(C), the place at∞ of the field
K(x) splits completely in K(C). Let P be the pole of y, and let P̃ be the
place of K(x, y) below P . Then P̃ is above the place at ∞ of K(x). Hence
P̃ also splits completely in K(C).

Now assume that K(x, y) is a proper subfield of K(C). Then there are
at least two places of K(C) above P̃ . In particular, there is a place P ′ 6= P

above P̃ . This P ′ must be a pole of y, a contradiction.

Lemma 4.2. Let K be an algebraically closed field of characteristic 0,
and V a non-empty quasiprojective variety over K. Let {(Ct, Dt) : t ∈ V } be
an algebraic family of curves supplied with an effective divisor. Also, let s be
a positive integer. Assume that there exists τ ∈ V such that Cτ is irreducible
and h0(Dτ ) = s. Then the set{

t ∈ V : either Ct is reducible
or Ct is irreducible and h0(Dt) > s

}
is not Zariski dense in V .

Proof. This is a consequence of the theorems of Bertini and semi-contin-
uity (see, for instance, Theorem 12.8 in [8, Chapter III]).

Lemma 4.3. Given a positive integer n and a finite set M ⊂ C, there
exist only finitely many extensions of the rational function field C(x) of de-
gree n, unramified outside M.

Proof. This lemma (which may be viewed as an analogue of the Hermite
theorem for function fields) is an immediate consequence of the uniqueness
statement of Theorem 1.1. Alternatively, it is a direct consequence of the
fact that the fundamental group of a compact Riemann surface is finitely
generated.
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5. Launching the proof of Theorem 1.2. Let S → P1(C) be a
covering as in the statement of Theorem 1.2. According to Theorem 1.1,
our covering is isomorphic to C(C) x→ P1(C), where C is a complex algebraic
curve and x is a rational function on C. Since all ramification points of the
latter covering are algebraic, the curve C and the function x are definable
over Q̄.

We are going to find a number field L ⊃ K, a rational function y ∈
L(C) such that Q̄(C) = Q̄(x, y), and an absolutely irreducible polynomial
f(X,Y ) ∈ L[X,Y ] such that f(x, y) = 0 and the degrees degX f , degY f ,
the height h(f), as well as the degree [L : K] and the relative discriminant of
L/K satisfy the required (in)equalities. To achieve this, we define algebraic
sets V and W in a high-dimensional affine space such that the set V \W
contains a point having the coefficients of f as part of its coordinates. We
then show that the set V \ W is finite and use Corollary 2.7 to bound
its elements (and thereby the coefficients of f). As a by-product, we will
also bound the degree and the discriminant of the field generated by the
coefficients.

We write
M = {α1, . . . , αµ}.

For the main part of the proof we shall assume that the curve C is unramified
over ∞ (that is, ∞ is not one of the points α1, . . . , αµ), and that C has
no Weierstrass point above ∞. In other words, the poles of x are neither
ramified nor Weierstrass. The general case easily reduces to this one (see
Section 15).

Now we start the detailed proof. Since it is going to be long and involved,
we divide it into short logically complete steps.

6. The function y and polynomial f(X,Y ). Fix a pole P of x.
Since P is not a Weierstrass point of C, we have

h0(mP ) = 2, h0((m− 1)P ) = 1

with m = g(C) + 1.
Since x is unramified above the infinity, x−1 can serve as a local param-

eter at P . If y belongs to H0(mP ), but not to H0((m − 1)P ), then y has
the Puiseux expansion at P of the form

∑∞
k=−m ckx

−k with c−m 6= 0. Since
h0(mP ) = 2, there exists a unique y ∈ H0(mP ) with the properties

(6.1) c−m = 1, c0 = 0.

In the sequel y will be the function satisfying these conditions.
The function y has a single pole P which is a pole of x as well. Lemma 4.1

implies now that Q̄(C) = Q̄(x, y) (here we use the assumption that x is
unramified above ∞). Also, since y has no poles outside the poles of x,
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it is integral over the ring Q̄[x]. Hence, there exists a unique absolutely
irreducible polynomial f(X,Y ) ∈ Q̄[X,Y ], monic in Y , such that f(x, y) = 0
and

degY f = [Q̄(C) : Q̄(x)] = n.

We also have

degX f = [Q̄(C) : Q̄(y)] = deg (y)∞ = m,

where (y)∞ = mP is the divisor of poles of y. We write

(6.2) f(X,Y ) = Y n +
n−1∑
j=0

m∑
i=0

θijX
iY j .

7. Discriminant, its roots, and Puiseux expansions. Let d(X) be
the discriminant of f(X,Y ) with respect to Y . Every αi is a root of d(X).
Besides the αi’s, the polynomial d(X) may have other roots; we denote them
β1, . . . , βν . Thus, we have

(7.1) d(X) = δ

µ∏
i=1

(X − αi)σi
ν∏
i=1

(X − βi)τi ,

where δ ∈ Q̄∗ and where σi and τi are positive integers.
Now fix i ∈ {1, . . . , ν}. Since x is unramified over βi, the function y has n

Puiseux expansions at βi of the form

yij =
∞∑
k=0

γijk(x− βi)k (j = 1, . . . , n).

We put
κij = ordβi f

′
Y (x, yij).

Then

(7.2) κi1 + · · ·+ κin = τi.

We may assume that κi1 ≥ · · · ≥ κin and we define `i from the condition

(7.3) κi`i > 0, κij = 0 for j > `i.

Then (7.2) reads

(7.4)
`i∑
j=1

κij = τi,

which implies that

(7.5)
∑

1≤i≤ν
1≤j≤`i

(κij + 1) ≤
∑

1≤i≤ν
1≤j≤`i

2κij = 2(τ1 + · · ·+ τν) ≤ 2 deg d(X).

This inequality will be used in Section 9.
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We also let ỹij be the initial segment of the series yij of length κij :

(7.6) ỹij =
κij∑
k=0

γijk(x− βi)k.

By Lemma 3.2 we have

ordβi f(x, ỹij) > 2κij , ordβi f
′
Y (x, ỹij) = κij .

Lemma 3.2 also implies that, for every fixed i, none of ỹi1, . . . , ỹin is an initial
segment of any other. In other words, for any distinct j1, j2 ∈ {1, . . . , n}
there exists a non-negative integer λ(i, j1, j2) ≤ min{κij1 , κij2} such that

γij1λ(i,j1,j2) 6= γij2λ(i,j1,j2).

8. Expansions at infinity. We also have the Puiseux expansions of y
at infinity:

(8.1)

y∞j =
∞∑
k=0

γ∞jkx
−k (j = 2, . . . , n),

y∞1 =
∞∑

k=−m
γ∞1kx

−k.

We define the polynomials

g(T, Y ) = Tmf(T−1, Y ), h(T, Y ) = Tm(n+1)f(T−1, T−mY )

and put t = x−1, so that the expansions (8.1) can be written in powers of t.
Now we define the numbers

κ∞j = ordt=0 g
′
Y (t, y∞j) (j = 2, . . . , n),

κ∞1 = ordt=0 h
′
Y (t, tmy∞1).

We have h(T, TmY ) = Tmng(T, Y ), whence

κ∞1 = mn+ ordt=0 g
′
Y (t, y∞1).

Hence the sum κ∞1 + κ∞2 + · · ·+ κ∞n is bounded by mn plus the order at
T = 0 of the Y -discriminant of g(T, Y ). Bounding the latter order by the
degree of this discriminant, we obtain

(8.2) κ∞1 + κ∞2 + · · ·+ κ∞n ≤ mn+ deg d(X).

Putting

(8.3) `∞ = n,

we rewrite (8.2) as

(8.4)
∑

1≤j≤`∞

(κ∞j + 1) ≤ (m+ 1)n+ deg d(X).

This will be used in Section 9.
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Further, for j = 2, . . . , n let ỹ∞j be the initial segment of the series y∞j
of length κ∞j , and let ỹ∞1 be the initial segment of y∞1 of length κ∞1:

ỹ∞j =
κ∞j∑
k=0

γ∞jkt
k (j = 2, . . . , n),(8.5)

ỹ∞1 =
κ∞1−m∑
k=−m

γ∞1kt
k.(8.6)

Then we have

ordt=0 g(t, ỹ∞j) > 2κ∞j , ordt=0 g
′
Y (t, ỹ∞j) = κ∞j (j = 2, . . . , n),

ordt=0 h(t, tmỹ∞1) > 2κ∞1, ordt=0 h
′
Y (t, tmỹ∞1) = κ∞1.

Identities (6.1) now become

γ∞1,−m = 1, γ∞10 = 0.

As in the finite case, for any distinct j1, j2 ∈ {2, . . . , n} there exists a non-
negative integer λ(∞, j1, j2) ≤ min{κ∞j1 , κ∞j2} such that

γ∞j1λ(∞,j1,j2) 6= γ∞j2λ(∞,j1,j2).

9. Indeterminates. We consider the vector

ϕ = (θ, α, β, γ, δ) ∈ Q̄Ω,

where the dimension Ω is defined below in (9.1). Here:

• θ = (θij)0≤i≤m
0≤j≤n−1

is the vector of coefficients of f (see (6.2));

• α = (αi)1≤i≤µ and β = (βi)1≤i≤ν are the vectors of roots of the dis-
criminant d(X), and δ is its leading coefficient (see (7.1));

• γ = (γ
ij

)i∈{1,...,ν,∞}
1≤j≤`i

, where `i are defined in (7.3) and (8.3), and γ
ij

is the vector of coefficients of the initial segment ỹij of the Puiseux
expansion yij (see (7.6), (8.5) and (8.6)); that is, γ

ij
= (γijk)0≤k≤κij

for (i, j) 6= (∞, 1) and γ∞1
= (γ∞1k)−m≤k≤κ∞1−m.

We are only interested in the vectors θ and α, but we cannot study them
separately from the other vectors defined above.

The dimension Ω is defined by

(9.1) Ω = (m+ 1)n+ µ+ ν +
∑

1≤i≤ν
1≤j≤`i

(κij + 1) +
∑

1≤j≤`∞

(κ∞j + 1) + 1.

We have

(9.2) Ω ≤ 2(m+ 1)n+ 4 deg d(X) + 1 ≤ 10mn+ 2n− 8m+ 1,

where we use (7.5), (8.4) and the estimates µ+ ν ≤ deg d(X) ≤ 2m(n− 1).
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We shall define algebraic sets V and W in Q̄Ω such that ϕ ∈ V \W and
V \W is finite. This will allow us to use Corollary 2.7 to bound the height
of ϕ. This would imply a bound on the height of θ, which is the height of
the polynomial f .

To define our algebraic sets, we introduce the vector of indeterminates Φ
whose coordinates correspond to the coordinates of ϕ:

Φ = (Θ,A,B, Γ ,∆),

where

Θ = (Θij)0≤i≤m
0≤j≤n−1

, A = (Ai)1≤i≤µ, B = (Bi)1≤i≤ν , Γ = (Γ ij) i∈{1,...,ν,∞}
1≤j≤`i

with

Γ ij = (Γijk)0≤k≤κij for (i, j) 6= (∞, 1), Γ ∞1 = (Γ∞1k)−m≤k≤κ∞1−m.

10. The algebraic set V . The first series of equations defining the
algebraic set V is

(10.1) Ai = αi (i = 1, . . . , µ).

To write down the rest of the equations we introduce the polynomials
F (X,Y ), D(X), G(T, Y ) and H(T, Y ) with coefficients in Z[Θ], which corre-
spond to the polynomials d(X), g(T, Y ) and h(T, Y ) from Sections 7 and 8.
More specifically, we put

F (X,Y ) = Y n +
n−1∑
j=0

m∑
i=0

ΘijX
iY j ∈ Z[Θ][X,Y ],

we define D(X) to be the Y -discriminant of F (X,Y ) and we put

G(T, Y ) = TmF (T−1, Y ), H(T, Y ) = Tm(n+1)F (T−1, T−mY ).

The second series of equations comes from the equality

(10.2) D(X) = ∆

µ∏
i=1

(X −Ai)σi
ν∏
i=1

(X − Bi)τi ,

where the quantities σi and τi are defined in (7.1). In order to define the
third set of equations we introduce the polynomials

Ỹij =
κij∑
k=0

Γijk(X − Bi)k (1 ≤ i ≤ ν, 1 ≤ j ≤ `i),

Ỹ∞j =
κ∞j∑
k=0

Γ∞jkT
k (2 ≤ j ≤ `∞)
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and the Laurent polynomial

Ỹ∞1 =
κ∞1−m∑
k=−m

Γ∞1kT
k.

The equations come from the relations

ordX=Bi F (X, Ỹij) > 2κij

ordX=Bi F
′
Y (X, Ỹij) ≥ κij

(1 ≤ i ≤ ν, 1 ≤ j ≤ `i),(10.3)

ordT=0G(T, Ỹ∞j) > 2κ∞j

ordT=0G
′
Y (T, Ỹ∞j) ≥ κ∞j

(2 ≤ j ≤ `∞),(10.4)

ordT=0H(T, TmỸ∞1) > 2κ∞1

ordT=0H
′
Y (T, TmỸ∞1) ≥ κ∞1.

(10.5)

The final two equations are

(10.6) Γ∞1,−m = 1, Γ∞10 = 0.

The following statement is immediate in view of the definitions and prop-
erties from Sections 7 and 8.

Proposition 10.1. The vector ϕ belongs to the set V .

11. The algebraic set W . We write

W = W1 ∪W2 ∪W3 ∪W4 ∪W5 ∪W6,

where the sets W1, . . . ,W6 are defined below.
The set W1 is defined by ∆ = 0. Next, put

W2 =
⋃

1≤i≤µ
1≤j≤ν

W
(ij)
2 , W3 =

⋃
1≤i<j≤ν

W
(ij)
3 ,

where W (ij)
2 is defined by Ai = Bj and W

(ij)
3 is defined by Bi = Bj .

Further, we put
W4 =

⋃
i∈{1,...,ν,∞}

1≤j≤`i

W
(ij)
4 ,

where the set W (ij)
4 is defined by the relations

ordX=Bi F
′
Y (X, Ỹij) > κij when i 6=∞,(11.1)

ordT=0G
′
Y (T, Ỹ∞j) > κ∞j when i =∞ and j 6= 1,(11.2)

ordT=0H
′
Y (T, TmỸ∞1) > κ∞1 when (i, j) = (∞, 1).(11.3)
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Further, we put

W5 =
( ⋃

1≤i≤ν
1≤j1<j2≤`i

W
(ij1j2)
5

)
∪
( ⋃

2≤j1<j2≤`∞

W
(∞j1j2)
5

)
,

where W (ij1j2)
5 is defined by Γij1λ(i,j1,j2) = Γij2λ(i,j1,j2) and W

(∞j1j2)
5 is de-

fined by Γ∞j1λ(∞,j1,j2) = Γ∞j2λ(∞,j1,j2), the numbers λ(i, j1, j2) being defined
at the end of Sections 7 and 8.

Finally, Lemma 4.2 implies that there is a proper Zariski-closed sub-
set W6 of V such that ϕ /∈ W6 and for any ϕ̂ = (θ̂, α̂, β̂, γ̂, δ̂) ∈ V \W6 the
polynomial

(11.4) Y n +
n−1∑
j=0

m∑
i=0

θ̂ijX
iY j

is irreducible and has the following property. Let x̂ and ŷ be the coordinate
functions on the curve Ĉ defined by (11.4). Then the effective divisor (ŷ)∞
satisfies h0((ŷ)∞) = 2.

The following statement is again immediate.

Proposition 11.1. The vector ϕ does not belong to the set W .

12. Finiteness of V \W . Here we prove that the set V \W is finite.
Let ϕ̂ = (θ̂, α̂, β̂, γ̂, δ̂) be a point in V \W . Then α̂ = α because of (10.1).

Put

f̂(X,Y ) = Y n +
n−1∑
j=0

m∑
i=0

θ̂ijX
iY j .

It is a Q̄-irreducible polynomial (because ϕ̂ /∈ W6) and defines an algebraic
curve Ĉ together with rational functions x̂, ŷ ∈ Q̄(Ĉ) satisfying f̂(x̂, ŷ) = 0.
Notice that this implies that ŷ is integral over Q̄[x̂].

Let d̂(X) be the Y -discriminant of f̂(X,Y ). Then

d̂(X) = δ̂

µ∏
i=1

(X − αi)σi
ν∏
i=1

(X − β̂i)τi

because ϕ̂ satisfies (10.2). Since ϕ̂ /∈ W2 ∪W3, the numbers β̂i are pairwise
distinct and also distinct from every αi.

The covering Ĉ bx→ P1 can be ramified only over the roots of d̂(X), and,
perhaps, over infinity. We want to show that x̂ is unramified over the num-
bers β̂i and over infinity.
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Fix a root β̂i and define

(12.1) ˜̂yij(X) =
κij∑
k=0

γ̂ijk(X − β̂i)k (j = 1, . . . , `i).

Then
ordbβi f̂(X, ˜̂yij) > 2κij , ordbβi f̂ ′Y (X, ˜̂yij) = κij ,

because ϕ̂ satisfies (10.3) and does not satisfy (11.1). Also, none of ˜̂yij is an
initial segment of another, because ϕ̂ /∈W5.

Using Lemma 3.1, we find `i pairwise distinct Puiseux expansions

ŷi1, . . . , ŷi`i ∈ Q̄[[X − β̂i]]

of ŷ at β̂i satisfying ordbβi f̂ ′Y (X, ŷij) = κij . Since

`i∑
j=1

ordbβi f̂ ′Y (X, ŷij) =
`i∑
j=1

κij = τi = ordbβi d̂(X)

by (7.4), Lemma 3.3 implies that all n Puiseux expansions of x̂ at β̂i are in
Q̄[[X − β̂i]], which means that x̂ is unramified over β̂i.

In a similar way we prove that x̂ is unramified over infinity (here `∞ = n
and we do not need Lemma 3.3). Moreover, ŷ has at infinity n− 1 Puiseux
expansions without negative powers and one expansion starting from de-
gree −m. Since ŷ is integral over Q̄[x̂], we have (ŷ)∞ = mP̂ , where P̂ is a
pole of x̂. Since ϕ̂ /∈W6, we have h0(mP̂ ) = 2.

Thus, each ϕ̂ ∈ V \W gives rise to a pair (Ĉ, x̂), where Ĉ is an alge-
braic curve and x̂ a rational function on Ĉ of degree n, unramified outside
the points αi. By Lemma 4.3, there are only finitely many possibilities for
(Ĉ, x̂). Fix one. Since h0(mP̂ ) = 2, the function ŷ is uniquely defined by
the equations (10.6). It follows that the polynomial f̂ is uniquely defined as
well. Hence so is δ̂, and the vector β̂ is uniquely defined up to ordering its
components. Having this order fixed, we find that γ̂ is uniquely defined.

This proves that the set V \W is finite.

13. Estimating the equations defining V . In this section we esti-
mate the degrees and heights of the equations defining the algebraic set V .

Since κij ≤ deg d(X) ≤ 2m(n − 1), the equations defined by (10.3) are
of degree at most

n(2m(n− 1) + 1) + 1 ≤ 2mn2.

Here the “1” inside the parentheses is the degree of Ỹij in Γ , and the “1”
outside the parentheses is the degree of F (and of F ′Y ) in Θ.
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A straightforward verification shows that the degrees of the other equa-
tions are bounded by 2mn2 as well.

Now let us estimate the heights of the equations. The heights of the µ
equations (10.1) are obviously bounded by h = max{h(α1), . . . ,h(αµ)}.

Estimating the heights of the remaining equations can be done with
Lemma 2.1. All of the polynomials occurring below have rational integer co-
efficients. We define the size of a polynomial p with coefficients in Z (denoted
by ‖p‖) to be the sup-norm of the vector of its coefficients. For a non-zero
polynomial p we have h(p) ≤ log ‖p‖, with equality if the coefficients are
coprime. In particular, h(p) = 0 if p is of size 1, which is the case for many
polynomials below.

The left-hand side of (10.2) is a determinant of order 2n−1 whose entries
are polynomials in the n(m + 1) + 1 variables X and Θ, each entry being
of degree at most m + 1 and of size at most n. Hence its height can be
estimated using Lemma 2.3:

h(D) ≤ (2n−1)
(
log n+log(2n−1)+(m+1) log(n(m+1)+2)

)
≤ 10(mn)2.

The right-hand side of (10.2) is a product of at most 2m(n−1) polynomials
of degree 1 and size 1 in µ+ν+1 variables A, B and X. Lemma 2.1(a) allows
us to estimate the height of the right-hand side by 2m(n− 1) log(ν + µ+ 1)
≤5(mn)2. We thereby bound the heights of the equations coming from (10.2)
by 10(mn)2.

Equations (10.6) are, obviously, of height 0. The heights of the equations
coming from (10.3)–(10.5) can be estimated using Lemma 2.1(b). For i 6=∞
the polynomial Ỹij is in the κij + 2 ≤ 2mn variables X, Bj , Γ ij . It is of
degree κij + 1 ≤ 2mn− 1 and of size bounded by 2κij ≤ 4mn. Lemma 2.1(b)
together with Remark 2.2 bounds the height of the polynomials F (X, Ỹij)
and F ′Y (X, Ỹij) by the quantities

(mn log 4 + log 2 + 2mn log(2mn+ 1))(m+ n)

and
log n+ (mn log 4 + log 2 + 2mn log(2mn+ 1))(m+ n− 1),

respectively. Both are at most 6(mn)3, which bounds the heights of the
equations coming from (10.3). Similarly, one bounds by 12(mn)3 the heights
of the equations coming from (10.4) and (10.5).

Finally, we summarize all these calculations in the following proposition.

Proposition 13.1. The algebraic set V is defined by equations of degree
bounded by 2mn2 and height bounded by h+ 12(mn)3.

14. The height of ϕ and the field K(ϕ). Now we may apply Proposi-
tion 2.6, or, more precisely, Corollary 2.7 to bound the height of the vector ϕ,
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and the number field generated by its coordinates. Recall that ϕ belongs to
Q̄Ω, where the dimension Ω satisfies

Ω ≤ 10mn+ 2n− 7

(see (9.2)). If we define ∇ and Σ as in Proposition 2.6, we will have

h(f) ≤ h(ϕ) ≤ ∇Σ(h+ 12(mn)3) + 2∇Ω log(Ω + 1).

Furthermore, the field L = K(ϕ) satisfies [L : K] ≤ ∇ and

NK/QDL/K

[L : Q]
≤ 2∇Σ(h+ 12(mn)3) + 5∇Ω log(Ω + 1).

Since the degrees of the equations defining V are bounded by 2mn2, we have

∇ ≤ (2mn2)Ω ≤ (2mn2)10mn+2n−7.

Obviously, Σ ≤ Ω ≤ 12mn. After trivial calculations we obtain

(14.1) h(f) ≤ Λ′(h+ 1), [L : K] ≤ Λ′,
logNK/QDL/K

[L : Q]
≤ Λ′(h+ 1)

with Λ′ = (2mn2)10mn+2n−3. Since m = g + 1, this proves Theorem 1.2 in
the case when there are no ramified points and no Weierstrass points among
the poles of x.

15. The general case. We no longer assume that the set of poles of x
has no Weierstrass and no ramified points (called bad points in what follows).
Since there exist at most g3−g Weierstrass points and at most 2g ramified
points, there exists ρ ∈ Z satisfying

|ρ| ≤ g3 + g ≤ m3

(recall that m = g + 1) such that the fiber of x above ρ contains no bad
points. It follows that the function x̌ = (x− ρ)−1 has no bad points among
its poles, and the previous argument applies to it. We find a number field L,
a rational function y ∈ L(C) such that L(C) = L(x̌, y), and a polynomial
f̌(X,Y ) ∈ L[X,Y ] such that f̌(x̌, y) = 0,

degX f̌ = m = g + 1, degY f̌ = n,

and (14.1) holds with f replaced by f̌ and h replaced by

ȟ := max{h((α1 − ρ)−1), . . . ,h((αµ − ρ)−1)}.

Obviously
ȟ ≤ h+ log(2 max{1, |ρ|}) ≤ h+ 3 log(2m),

which proves (1.2) after a short calculation. Further, the polynomial

f(X,Y ) := (X − ρ)mf̌((X − ρ)−1, Y )
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satisfies f(x, y) = 0 and

h(f) ≤ h(f̌) + 3m log(2m)

by Lemma 2.4. Again a trivial calculation implies (1.1). Theorem 1.2 is
completely proved.

16. On the work of Zverovich. As we already indicated in the intro-
duction, the prototype of our proof is the work of Zverovich [13]. Given a
covering C x→ P1 and a point α ∈ P1, define the total ramification of x at α
to be the quantity

e(α) = ex(α) = (e1 − 1) + · · ·+ (es − 1),

where e1, . . . , es are the ramification indices of x over α. In particular,
e(α) > 0 if and only if x is ramified over α.

Loosely, Zverovich’s argument is as follows. He defines x, y and the poly-
nomial f in (almost) the same way as we do. Then, denoting by d(X) the
Y -discriminant of f , one has the equality

d(X) =
µ∏
i=1

(X − αi)e(αi)ψ(X)2,

where ψ is a polynomial. Zverovich considers the equations which follow
from the relation

(16.1) D(X) =
µ∏
i=1

(X − αi)e(αi)Ψ(X)2,

where the unknowns are the coefficients of the variable polynomials F and Ψ ,
and, as in our argument, D(X) is the Y -discriminant of the variable poly-
nomial F . He adds to this two equations similar to our normalization equa-
tions (10.6). He observes that (f, ψ) satisfies his system of equations, and
wants to prove that the system has finitely many equations.

Unfortunately, Zverovich’s proof of finiteness seems to be incomplete. In
fact, he implicitly assumes that, for any solution (f̂ , ψ̂) of (16.1), the curve Ĉ
defined by f̂(X,Y ) = 0 is ramified over the points α1, . . . , αµ, and moreover
the total ramification is the same as for our curve. If this were true, then
Zverovich would have correctly proved that there is no other ramification,
and Lemma 4.3 would imply finiteness. The problem is that a curve defined
by a polynomial satisfying Zverovich’s equations is not obliged a priori to
have the same ramification at the points α1, . . . , αµ as our curve, and without
this his argument does not seem to work.

We failed to repair Zverovich’s argument and had to invent another sys-
tem of equations defining our polynomial f , which is much more complicated
than his. It would be of interest to reconsider his work and justify his ar-
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gument. This would not only improve on the estimates of this article, but
would also probably imply a relatively practical algorithm (see [6] for some
indications) for actual calculation of the polynomial f . Evidently, our equa-
tions are too bulky for this purpose.
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rème d’existence de Riemann, in [5], 27–41.

[5] B. Deschamps (ed.), Arithmétique des revètements algébriques (Saint-Étienne,
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