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Generalizations of some irreducibility results by Schur
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T. N. Shorey (Mumbai) and R. Tijdeman (Leiden)

1. Introduction. Let a ≥ 0 and a0, a1, . . . , an be integers with

(1.1) |a0| = |an| = 1.

In this paper we study whether the polynomial

(1.2) f(x) = an
xn

(n+ a)!
+ an−1

xn−1

(n− 1 + a)!
+ · · ·+ a1

x

(1 + a)!
+ a0

1
a!

can have a factor of given degree over the rationals. In 1929 Schur [26], [27]
proved that a polynomial of the form (1.2) satisfying (1.1) is irreducible if
a = 0 and also if a = 1 unless n + 1 is a power of 2 when it may have a
linear factor or n = 8 when it may even have a quadratic factor. Also for
a = 2 and many other values of a the polynomial f may have a linear factor.
On the other hand, a factor of degree > n/2 of f has a cofactor of degree
at most n/2. Therefore we consider the question whether f has a factor of
degree k with

2 ≤ k ≤ n/2,
which we always assume unless specified otherwise. One of our results reads
as follows.

Theorem 1.1. Let a and k be integers such that

2 ≤ k ≤ n/2, 0 ≤ a ≤ 3k/2.

Let f(x) be given by (1.2) where a0, a1, . . . , an are integers satisfying (1.1).
Assume that f(x) has a factor of degree k. Then

(n, k, a) ∈ {(6, 2, 3), (7, 2, 2), (7, 2, 3), (7, 3, 3), (8, 2, 1),(1.3)
(8, 3, 2), (12, 3, 4), (13, 2, 3), (22, 2, 3), (46, 3, 4), (78, 2, 3)}.

We shall show that all the cases listed in (1.3) can indeed be realized
by some factorizations. The factorizations for the last two cases are due to
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the referee. See after the proofs of Lemma 4.1 and Theorem 1.1. In Theo-
rem 4.4 we give a similar result for k ≥ 5 with the upper bound 30 for a. In
Theorem 5.1 we show that the requirement that a is bounded by a constant
times k can be relaxed to

a < ck log k
log log k

log log log k

for some constant c.
We also relax the restriction (1.1). Filaseta [9] showed in 1996 that

if a = 0, |a0| = 1 and 0 < |an| < n, then (1.2) is irreducible unless
(n, an) ∈ (6,±5), (10,±7). He also considered values of an less than n3/2/

√
2.

He further proved a theorem due to Lam that (1.2) is irreducible if a = 0 and
gcd(a0an, n!) = 1. Allen and Filaseta [1] computed for every n the smallest
integer M = M(n) such that the polynomial f(x) given by (1.2) with a = 1,
|a0| = 1, |an| = M may be reducible for suitable coefficients ai.

For an integer ν > 1, we denote by ω(ν) and P (ν) the number of distinct
prime divisors and the greatest prime factor of ν, respectively. Further we
put ω(1) = 0 and P (1) = 1. We obtain the following result for the situation
that a0 = ±1 and an is a prime power, or conversely.

Theorem 1.2. Let f(x) be given by (1.2). Let n ≥ 1, 2 ≤ k ≤ n/2,
0 ≤ a ≤ .75k and ω(ana0) = 1. Assume that f(x) has a factor of degree k.
Then k ≤ 5 unless (n, k, a) ∈ {(22, 9, 6), (23, 9, 5), (24, 9, 4)} and P (a0an)
= 23. If 3 ≤ k ≤ 5, then n+ a ≤ 32 unless

(n, k, a) ∈ {(47, 4, 3), (48, 4, 3), (48, 3, 2), (79, 3, 2), (80, 3, 2), (125, 4, 3)}.

If k = 2, then a = 1.

Theorem 7.1 provides a result in case an has more than one prime factor.
For real x and integer j we write (x)j = x(x+ 1) · · · (x+ j − 1). We can

express f(x) from (1.2) by

(1.4) a!f(x) =
n∑
j=0

aj
xj

(a+ 1)j
.

Since every product of j consecutive integers is divisible by j!, the hyperge-
ometric polynomial

(1.5) ga,b,c(x) :=
n∑
j=0

(a)j
(b)j(c)j

xj (a, b, c ∈ Z)

with c = 1, b = a + 1 is a special case of f(x) in (1.4) by choosing aj =
(a)j/(c)j . Some orthogonal polynomials can be expressed in the form (1.5)
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such as the Laguerre polynomials

L(α)
n (x) :=

n∑
j=0

(n+ α) · · · (j + 1 + α)
j!(n− j)!

(−x)j =
(α+ 1)n

(1)n
g−n,α+1,1(x),

where n is a positive integer and α a complex number. Schur [26] proved
in 1929 that L(0)

n (x) is irreducible for all n, and in 1931 that L(1)
n (x) is

irreducible for all n too [28]. Filaseta and Lam [12] proved the irreduciblity
for all but finitely many n of

L(α)
n (x) :=

n∑
j=0

aj
(n+ α) · · · (j + 1 + α)

j!(n− j)!
(−x)j

where α is a fixed rational number which is not a negative integer and
a0, a1, . . . , an are any integers with |a0| = |an| = 1. Filaseta, Kidd and Tri-
fonov [11] proved that either L(n)

n (x) is irreducible or it is a linear polynomial
times an irreducible polynomial of degree n − 1 and the latter possibility
is excluded when n ≡ 2 (mod 4) with n > 2. This settled completely the
inverse Galois problem that for every positive integer n, there exists an ex-
plicitly given Laguerre polynomial of degree n whose Galois group is the
alternating group An.

In 2008 Filaseta, Finch and Leidy [10] proved that L(α)
n (x) is irreducible

for 0 ≤ α ≤ 10 unless (n, α) ∈ {(2, 2), (4, 5), (2, 7)} in which cases L(α)
n (x)

is divisible by x − 6. A consequence of Theorem 4.4 of the present paper
is that for 5 ≤ k ≤ n/2, 0 ≤ α ≤ 30 the polynomial L(α)

n (x) has no factor
of degree k. We refer to [10] for a survey of irreducibility results connected
with orthogonal polynomials and, in particular, Laguerre polynomials.

First we restrict our attention to integral values of α. We extend the
range of a and c as follows.

Theorem 1.3. Let ε > 0 and 1 ≤ k ≤ n/2. Assume

(1.6) a = −n− s with s ≥ 0, b = α+ 1, c ≥ 1, s+ c <

(
1
3
− ε
)
k

where c, n, s and α are integers with 0 ≤ α ≤ k. Suppose that ga,b,c(x) is
divisible by a factor of degree k. Then k is bounded above by an effectively
computable number depending only on ε.

Consider the Bessel polynomials

yn(x) =
n∑
j=0

(n+ j)!
2j(n− j)!j!

xj .
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A simple calculation gives

(−x)nyn

(
2
x

)
= n!L(−2n−1)

n (x) = (−2n)n g−n,−2n,1(x).

In 2002 Filaseta and Trifonov [13] proved that L(−2n−1)
n (x), hence yn(x), is

irreducible for all n. We also consider factors of functions g−n,b,1 for neg-
ative b. The irreducibility of g−n,−n−s,1 has been proved by Schur [26] for
s = 0, by Hajir [15] for s = 1, by Sell [29] for s = 2, and for 3 ≤ s ≤ 7 and
n ≥ n0(s) by Hajir [16]. We consider s bounded in terms of k and settle the
following result.

Theorem 1.4. Let 2 ≤ k ≤ n/2. Let ga,b,c(x) be given by (1.5) such that
a = −n, b = α + 1, c = 1 where α = −n − s − 1 and s is an integer with
0 ≤ s ≤ .95k. Then ga,b,c(x) has no factor of degree k.

So far we have been assuming that a is an integer. In Section 10 we study
the case of rational a. Let a > 0 be a rational number such that

a = u+
α

β

where u, α, β are integers with u ≥ 0, 0 < α < β and gcd(α, β) = 1. Put

(α)β,m = α(α+ β) · · · (α+ (m− 1)β).

Hence (α)1,m = (α)m. Further put

F (x) := Fa(x) := an
βnxn

(α)β,n+u
+an−1

βn−1xn−1

(α)β,n−1+u
+· · ·+a1

βx

(α)β,1+u
+a0

1
(α)β,u

where a0, a1, . . . , an ∈ Z with |a0| = |an| = 1.
The height H(a) of a non-zero rational number a, in its reduced form,

is defined as the maximum of the absolute values of its numerator and
denominator. Then an analogue of Theorem 1.1 for the rational case is as
follows.

Theorem 1.5. Let 2 ≤ k ≤ n/2 and assume that F (x) has a factor of
degree k. Then there exist effectively computable absolute constants k0 and
C1 > 0 such that for k ≥ k0, we have

H(a) ≥ C1 log log k.

For further results in this direction we refer to Schur [27], and Allen
and Filaseta [2]. In a recent paper Finch and Saradha [14] have given more
precise information in case β = 2.

In our proofs we follow the p-adic method of Coleman and Filaseta. See
Lemma 2.13 and Corollary 2.14. This has been combined with a method
arising out of a theorem of Sylvester that a product of k consecutive positive
integers each exceeding k is divisible by a prime greater than k. See Lemmas
2.2–2.5, 2.7–2.9, 2.13 and Theorem 2.12. Further we need some results from
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prime number theory and factors of composite numbers; see Lemmas 2.6,
2.10 and 2.11. For the results from prime number theory we refer to [4]
and [17]. We also use the theory of linear forms in logarithms in the proofs
of Theorems 5.1 and 10.2. In many cases we show that the exceptions in our
theorems are unavoidable by giving examples of factorizations.

2. Lemmas. Let x, k be positive integers with x ≥ 2k. We put

k(x) = x(x− 1) · · · (x− k + 1) and (x)k = x(x+ 1) · · · (x+ k − 1).

Hence (x)k = k(x+ k − 1).

Lemma 2.1.

(a) If k > 4, x > 42 and P (k(x)) ≤ 41, then (x, k) = (290, 6) or k = 5
and x ∈ {52, 58, 66, 78, 156, 289, 290, 496, 1521}.

(b) For x > 100 the inequality P (3(x)) ≤ 29 is possible only if

x ∈ {116, 117, 121, 145, 154, 162, 170, 171, 176, 209, 210, 232, 290, 324, 325,
352, 392, 442, 495, 552, 784, 1276, 2002, 2025, 2432, 3250, 9802, 13312}.

(c) For x > 100 the inequality P (3(x)) ≤ 19 is possible only if

x ∈ {121, 154, 170, 171, 210, 325, 352, 442, 2432}.
(d) For x > 16 the inequality P (3(x)) ≤ 13 is possible only if

x ∈ {22, 26, 27, 28, 50, 56, 65, 66, 100, 352}.
(e) For x > 16 the inequality P (4(x)) ≤ 13 is possible only if

x ∈ {27, 28, 66}.
(f) For x > 100 the inequality P (x(x− 1)) ≤ 7 is possible only if

x ∈ {126, 225, 2401, 4375}.
(g) For x > 100 the inequality P (x(x− 2)) ≤ 7 is possible only if

x ∈ {128, 162, 245}.

Proof. (a) We use Table IA of [22]. We collect all the numbers for which
x, x − 1, x − 2, x − 3, x − 4 occur in the union of the tables for t ≤ 13.
(b) Check whether x and x−1 are both in the tables for t ≤ 10. (c) Use (b).
(d) Use (c). (e) Use (d). (f) Use Table IA of [22] for t ≤ 4. (g) Use Table IIA
of [22] for t ≤ 4.

Lemma 2.2. Let x ≥ 2k ≥ 4. Then

P (k(x)) > 1.8k

unless (x, k) ∈ {(9, 2), (10, 3), (9, 4), (10, 4), (27, 13), (28, 13)} or x = 2k with
k ∈ {2, 3, 4, 5, 8, 11, 13, 14, 18, 63}.
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Proof. For k = 2, the assertion follows from Lemma 2.1(f). For k ≥ 3
see [20, Corollary 1] = [18, Corollary 1.3.2].

Lemma 2.3. If x ≥ 2k ≥ 4, then

P (k(x)) > 1.95k

unless (x, k) ∈ {(4, 2), (9, 2), (10, 3)} or x ∈ {2k, . . . , 2k + h− 1} for k ∈ Eh
with 1 ≤ h ≤ 11 where

E11 := E10 := {58}, E9 := E8 := {58, 59}, E7 := E6 := {58, 59, 60},
E5 := E4 := E6 ∪ {12, 16, 46, 61, 72, 93, 103, 109, 151, 163},
E3 := E2 := E4 ∪ {4, 7, 10, 13, 17, 19, 25, 28, 32, 38, 43, 47, 62,

73, 94, 104, 110, 124, 152, 164, 269},
E1 := E2 ∪ {3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 23, 26, 29, 33, 35, 39,

41, 44, 48, 50, 53, 56, 63, 68, 74, 78, 81, 86,
89, 95, 105, 111, 125, 146, 153, 165, 173, 270}.

Proof. See [20, Theorem 2] = [18, Theorem 1.3.1].

Lemma 2.4. If k ≥ 2 and x ≥ max
(
2k + 13, 541

262k
)
, then

P (k(x)) > 2k.

Proof. See [20, Theorem 1(a)] = [18, Theorem 1.3.3(a)].

Lemma 2.5.

(a) Between 69 and 7000 there is no block of 21 consecutive integers each
of which is composed of primes ≤ 85.

(b) Let 21 ≤ k ≤ 25 and x > k. Assume that P (k(x)) ≤ 2.5k. Then
x ≤ 90.

Proof. (a) By direct calculation.
(b) By deleting the terms divisible by 11 ≤ p ≤ 2.5k, we check that there

are at least five terms in k(x) composed of 2, 3, 5 and 7. For each prime we
omit a term which contains the highest power of that prime. There remains
a term x∗ in k(x) divisible only by primes 2, 3, 5 and 7 such that

x ≤ x∗ + 24 ≤ 16 · 9 · 5 · 7 + 24 = 5064.

Note that 2.5k ≤ 85. Now apply part (a).

Lemma 2.6. Let p1 = 2 < p2 < · · · denote the sequence of primes. Then

pi+1 − pi ≤


6 if pi < 89,
14 if pi < 523,
34 if pi < 9551,
52 if pi < 31397
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and
pi+2 − pi ≤ 24 if pi < 541.

Proof. By direct calculation (cf. Lander and Parkin [21]).

Lemma 2.7. If 20 ≤ k < x ≤ 12k and x ≥ 60, then

P (k(x)) > x− 5k/6.

Proof. We put x = 1.072X. Then we observe that x − 5k/6 < X since
x ≤ 12k. By Lemma 2.6, for 60 ≤ x ≤ 128 the gaps between consecutive
primes are at most 14, which is ≤ 5k/6. Further X ≥ 120 when x > 128. It
is a direct consequence of [1, Lemma 3] that for X ≥ 120 there is a prime
in [X, 1.072X]. Thus (x− 5k/6, x] also contains a prime for x > 128.

We write ω(x) for the number of distinct primes which divide x.

Lemma 2.8.

(a) For k ≥ 3 and x ≥ 2k, we have

ω(k(x)) ≥

{
min

(
π(k) +

[
3
4π(k)

]
− 1 + δ(k), π(2k)− 1

)
for k ≤ 293,

π(k) +
[

3
4π(k)

]
− 1 for k > 293,

where δ(k) = 0 for k ≥ 17, δ(k) = 1 for 7 ≤ k ≤ 16 and δ(k) = 2
for 3 ≤ k ≤ 6.

(b) If x > 29
12k − 1 and (x, k) 6= (9, 4), then

ω(k(x)) ≥ π(2k).

Proof. (a) [19, Corollary 1] = [18, Theorem 1.2.1 and Corollary 1.2.2].
(b) [19, Theorem 2] = [18, Theorem 1.2.4].

Lemma 2.9. Let x ≥ k2 and k ≥ 19. Assume f1 < · · · < fµ are all
integers in [0, k) satisfying

P ((x− f1) · · · (x− fµ)) ≤ k.
Then µ < k − π(2k) + π(k).

Proof. [20, Lemma 4] = [18, Lemma 6.1.6].

Lemma 2.10.

(a) For any integer x ≥ 599 we have

x

log x

(
1 +

0.992
log x

)
≤ π(x).

(b) For any integer x > 1 we have

π(x) ≤ x

log x

(
1 +

1.2762
log x

)
.
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(c) For any integer x > 1 we have

px > x log x

where px denotes the xth prime.

Proof. For (a) and (b) see [6] or [7], for (c) see [24, p. 69].

Lemma 2.11. For any integer x > 1 we have
√

2πx e−xxxe1/(12x+1) < x! <
√

2πx e−xxxe1/(12x).

Proof. See [23].

For s a non-negative integer we put k(x)(s) to be some product obtained
from k(x) by omitting any s terms.

Theorem 2.12. Let k ≥ 10 and x ≥ 2k. Then

(2.1) P (k(x)(1)) > 1.5k or (x, k) ∈ {(26, 13), (27, 13), (28, 13), (28, 14)}.
Proof. We find by direct calculation that the only solutions with x < 62

are given by the exceptions in (2.1). Let 10 ≤ k < 19 and x ≥ 62. Suppose
(2.1) does not hold. Then P (k(x)(1)) ≤ 27. Hence at least five consecutive
integers are composed of primes at most 27. This is excluded by Lemma
2.1(a).

Thus k ≥ 19 and x ≥ 62. Then, by Lemmas 2.9 and 2.8(a), the number
of the integers i such that x− i is a term in k(x)(1) satisfying P (x− i) > k
is at least π(2k) − π(k) if x ≥ k2, min([3π(k)/4] − 2, π(2k) − π(k) − 2) if
x < k2, k ≤ 293 and [3π(k)/4] − 2 if x < k2, k > 293. Further we observe,
by Lemma 2.10(a),(b) for k > 2000 and direct computation for smaller x,
that

π(2k)− π(k) ≥ [3π(k)/4]− 2 for k > 284.

Therefore, by Lemma 2.10(c),

P (k(x)(1)) ≥ pK > K logK

where

K := K(k) =
{

min([3π(k)/4] + π(k)− 2, π(2k)− 2) if k ≤ 293,
[3π(k)/4] + π(k)− 2 if k > 293.

We check by using exact values of π function that pK > 1.5k for k ≤ 5393
unless k ∈ {20, 21, 28, 29}. For k > 5393, we derive from Lemma 2.10(a)
that K logK > 1.5k. Hence

P (k(x)(1)) > 1.5k.

Let k ∈ {20, 21, 28, 29}. We apply Lemma 2.9 when x > k2 and Lem-
ma 2.8(b) when x < k2. Then the assertion follows if x > 29

12k − 1 since

P (k(x)(1)) ≥ pπ(2k)−1 > 1.5k.
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Thus we assume 2k ≤ x ≤ 29
12k − 1. Then the assertion follows by direct

computation.

For a prime p and integers a and b with ab 6= 0 we make use of the p-adic
notation

ν(a/b) = νp(a/b) = e1 − e2 where pe1 ‖ a and pe2 ‖ b.
We define ν(0) =∞. Let f(x) =

∑n
j=0 fjx

j ∈ Z[x] with f0fn 6= 0. Let

S := {(0, ν(fn)), (1, ν(fn−1)), . . . , (n− 1, ν(f1)), (n, ν(f0))},
a set of points in the extended plane. We consider the lower edges along the
convex hull of the elements of S. The slopes of the edges are increasing when
calculated from left to right. We define the Newton function with respect to
the prime p as the real function Fp(x) on the interval [0, n] which has the
polygonal path formed by these edges as its graph. Hence Fp(i) = ν(fn−i)
for i = 0, n and at all points i where the slopes of the edges change.

The next lemma plays a fundamental role in this paper. It is a refinement
of a lemma due to Filaseta [8] which is based on a result of Dumas [5].

Lemma 2.13. Let k, n and r be integers with n ≥ 2k > 0. Let h(x) =∑n
j=0 bjx

j ∈ Z[x] and let p be a prime such that p - bn. Denote the Newton
function of h(x) with respect to p by Hp(x). Let a0, a1, . . . , an be integers with
p - a0, p - an. Put f(x) =

∑n
j=0 ajbjx

j. If Hp(k) > r and Hp(n)−Hp(n−k) <
r + 1, then f(x) cannot have a factor of degree k.

Proof. Suppose f(x) has a factor g(x) of degree k. Let Gp(x) be the
Newton function with respect to p of g(x). Then Gp(0) = 0 and Gp(k)
is an integer m, hence Gp(x) has average slope m/k on the interval [0, k].
It follows from Dumas’s theorem ([5], cf. [8, Lemma 1]) that the Newton
function Fp(x) with respect to p of f(x) has segments corresponding to the
irreducible factors of g(x), which has average slope m/k. Since the slopes of
the segments of Fp(x) are increasing and Fp(0) = 0, we obtain Fp(k) ≤ m
and Fp(n) − Fp(n − k) ≥ m. From the definition of f we see that Fp(x) ≥
Hp(x) for 0 ≤ x ≤ n, Fp(0) = Hp(0) = 0 and Fp(n) = Hp(n). It follows that
Fp(k) > r and Fp(n) − Fp(n − k) < r + 1. We conclude that r < m and
m < r + 1. Since m and r are integers, this yields a contradiction.

Almost always we apply Lemma 2.13 in the following form which is
equivalent with Lemma 2 of [8].

Corollary 2.14. Let k and n be integers with n ≥ 2k > 0. Let h(x) =∑n
j=0 bjx

j ∈ Z[x] and let p be a prime such that p - bn. Denote the Newton
function of h(x) with respect to p by Hp(x). Let a0, . . . , an be integers with
p - a0, p - an. Put f(x) =

∑n
j=0 ajbjx

j. If p | bj for j = 0, . . . , n − k and
the left derivative of Hp at n is < 1/k, then f(x) cannot have a factor of
degree k.
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Proof. Since p | bj for j = 0, . . . , n− k, we have Hp(k) > 0. Since the left
derivative of Hp at n is < 1/k and the derivative of Hp can only change at
integer points, we have Hp(n) − Hp(n − k) < 1. Apply Lemma 2.13 with
r = 0.

Lemma 2.15. The positive integers n for which

P (12(n)) ≤ 173

are precisely those with either n ≤ 178 or n ∈ {305, 306, 329, 330}.
Proof. See Bauer and Bennett [3].

3. Some preliminary estimates. We introduce the following nota-
tion. Let N = P a1

1 P a2
2 · · ·P arr where P1 > P2 > · · · > Pr are primes and

a1, a2, . . . , ar positive integers. Then we set

P (N) = P1(N) = P1, P2(N) = P2, . . . , Pr(N) = Pr.

Lemma 3.1. Let l ≥ 1, s ≥ 0, β > 1, ρ > 1, k ≥ 200, m = kρ and
x ≥ kβ be such that

(3.1) k − s− (π(m)− π(k))− (l − 1) > π(k).

Assume that

(3.2) Pl(k(x)(s)) ≤ m.
Then

(3.3) 1 > e
54
55k

β−1− βρ
logm

(1+ 1.2762
logm

)− l+s−1
k

β
(

1− 1
kβ−1

)
.

Proof. Assume (3.2). For every prime p with k < p ≤ m dividing k(x)(s),
at most one term of k(x)(s) is divisible by p and we omit it. We also omit the
terms of k(x)(s) divisible by P ′j = Pj(k(x)(s)) for each j < l with P ′j > m.
The remaining product is

(x− f1) · · · (x− fµ) where 0 ≤ f1 < · · · < fµ < k

and

(3.4) µ ≥ k − s− (π(m)− π(k))− (l − 1)

satisfying

(3.5) P ((x− f1) · · · (x− fµ)) ≤ k.
Notice that

(x− f1) · · · (x− fµ) | k!
(
x

k

)
.

Thus

(x− f1) · · · (x− fµ) ≤ k!
∏
p≤k

pordp((xk)) ≤ k!
∏
p≤k

plog x/log p = k!xπ(k).
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On the other hand

(x− f1) · · · (x− fµ) > (x− k)µ = xµ
(

1− k

x

)µ
.

By combining upper and lower estimates for (x− f1) · · · (x− fµ) we derive

k! > xµ−π(k)

(
1− k

x

)µ
.

Since x ≥ kβ and π(k) < µ ≤ k by (3.4) and (3.1), we obtain

(3.6) k! > kβ(µ−π(k))

(
1− 1

kβ−1

)k
.

By (3.4) and Lemma 2.10(b),

µ− π(k) ≥ k − π(m)− l − s+ 1 ≥ k − l − s+ 1− m

logm

(
1 +

1.2762
logm

)
.

Thus, applying Lemma 2.11, we get

√
2πk e−kkke

1
12k > k

β(k− m
logm

(1+ 1.2762
logm

)−l−s+1)
(

1− 1
kβ−1

)k
.

By taking kth roots on both the sides we have

(2πk)
1
2k e−1ke

1
12k2 > k

β(1− ρ
logm

(1+ 1.2762
logm

)− l+s−1
k

)
(

1− 1
kβ−1

)
.

Since k ≥ 200, we see that

log(2πk)
2k

+
1

12k2
<

1
55
.

Thus

1 > e
54
55k

β−1− βρ
logm

(1+ 1.2762
logm

)−β l+s−1
k

(
1− 1

kβ−1

)
.

Corollary 3.2. Under the conditions of Lemma 3.1 with β > 1.1 in-
equality (3.2) implies

β

(
1− ρ

logm

(
1 +

1.2762
logm

)
− l + s− 1

k

)
< 1.

Proof. For k ≥ 200 and β > 1.1 we have e54/55(1− k−(β−1)) > 1 and the
assertion follows from (3.3).

Corollary 3.3. Let l = 1, s = 0, β ≥ 3/2, ρ = 5/2, m = kρ and
x ≥ kβ. Then (3.2) implies
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(3.7) k ≤



310 if β = 3/2,
97 if β = 7/4,
48 if β = 2,
34 if β = 9/4,
25 if β = 5/2.

Proof. Suppose the assumptions of Corollary 3.3 are satisfied. If k > 20,
then (3.1) and (3.6) are valid. Corollary 3.2 implies that k ≤ 3000. By
using (3.6) and the exact values of the function π(x), we obtain the claimed
bounds.

Corollary 3.4. Let ε > 0, β = 3/2, ρ = 2 and

l + s < (1/3− ε)k.
Then (3.2) implies that k is bounded by an effectively computable number
depending only on ε.

Lemma 3.5. Let l = 1, s = 0, ρ = 5/2, m = kρ and x ≥ k3/2. Then
(3.2) implies that k ≤ 20.

Proof. Assume (3.2) holds with k > 20. Then (3.7) is valid. Further we
may suppose that none of the terms in k(x) is prime, otherwise

P (k(x)) > x− k ≥ k3/2 − k > 5k/2

contradicting (3.2). If k > 310, then the assertion of the lemma follows from
Corollary 3.3.

Let 97 < k ≤ 310. Then, by Corollary 3.3, x < k7/4 ≤ 3107/4 < 22903
and we observe that pi+1−pi ≥ 85, since none of the terms in k(x) is prime.
This is not possible since pi+1 − pi ≤ 52 for pi < 31397 by Lemma 2.6.
Similarly, if 48 < k ≤ 97, then x < 972 ≤ 9409, and if 34 < k ≤ 48, then
x < 489/4 < 6065. But pi+1 − pi ≤ 34 for pi < 9551 by Lemma 2.6.

Let 25 < k ≤ 34. Then 132 < 26
√

26 ≤ x < (34)5/2 < 6741. By (3.2) we
have P (k(x)) ≤ 5k/2 ≤ 85. Now we apply Lemma 2.5(a).

Let 21 ≤ k ≤ 25. Then 96 < 21
√

21 ≤ x ≤ 90 by Lemma 2.5(b).

For proceeding further, we need Lemma 3 of [25] which equals Corol-
lary 4.2.4 of [18].

Lemma 3.6. Let 2k ≤ x < k3/2 and assume (3.5). Then(
x

k

)
≤ (2.83)k+

√
xxk−µ.

We observe that inequality (3) of [25] is not used in the proof of Lemma 3
of [25].

We apply the above result in the proof of the following lemma.
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Lemma 3.7. Let x<k3/2 and ρ=2. Assume (3.2) and l+s < 1.05k/log k.
Then there exists an effectively computable absolute constant k0 such that
for k > k0 we have x < 25k.

Proof. Put γ = 25 and assume x ≥ γk. Then, by Lemma 3.6,

(3.8)
(
γk

k

)
≤
(
x

k

)
≤ (2.83)k+

√
xxk−µ.

Now, by Lemma 2.11,

(3.9)
(
γk

k

)
=

(γk)!
k!((γ − 1)k)!

>
1√
2πk

(
γγ

(γ − 1)γ−1

)k
e
− γ
γ−1

1
12k .

Let k ≥ k1 where k1 is a sufficiently large effectively computable number
depending only on γ. Then

e
− γ
γ−1

1
12k >

999
1000

and

(3.10)
γγ

(γ − 1)γ−1
= (γ − 1)

(
1 +

1
γ − 1

)γ
≥ e(γ − 1).

Thus (
γk

k

)
>

999
1000

1√
2πk

(e(γ − 1))k.

On the other hand, by m = 2k, (3.8), (3.4) and Lemma 2.10,(
γk

k

)
≤ (2.83)k+k

3/4
k

3
2
(π(2k)−π(k)+l+s−1)

≤ (2.83)k+k
3/4
k

3k
log(2k)

(1+ 1.2762
log(2k)

)− 3k
2 log k−1

+ 3
2
(l+s−1)

< e4.116k.

By combining upper and lower estimates for
(
γk
k

)
, we have

(e(γ − 1))k <
1000
999

√
2πk e4.116k < e4.12k.

Thus 24 = γ − 1 < e3.12 < 24, a contradiction.

Lemma 3.8. Let l = 1, s = 0, ρ = 5/2, m = kρ and x < k3/2. Then
(3.2) implies that x < 12k.

Proof. Let k ≥ 1000 and x ≥ 16k. Put γ = 16. Then (3.8) and (3.9) are
valid. Further we observe that

e
− γ
γ−1

1
12k > .999.

Thus, by (3.9) and (3.10),

(3.11)
(
γk

k

)
≥ .999

1√
2πk

(e(γ − 1))k.
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On the other hand, as in the proof of Lemma 3.7, we have(
γk

k

)
≤ (2.83)k+k

0.75
k

3.75k
log(2.5k)

(1+ 1.2762
log(2.5k)

)− 3k
2 log k .

This combined with (3.11) implies k < 1000.
Let 12k ≤ x < 16k. Put γ = 12. Then (3.8), (3.9) and (3.11) are valid.

On the other hand, as in the proof of Lemma 3.7, we have(
γk

k

)
≤ (2.83)k+4

√
k(16k)

2.5k
log(2.5k)

(1+ 1.2762
log(2.5k)

)− k
log k .

This combined with (3.11) implies k < 1000. The lemma is trivial for k ≤
144, since k3/2 ≤ 12k for such k. We use exact values of

(
γk
k

)
and the

π function in (
γk

k

)
≤ (2.83)k+k

0.75
k1.5(π(2.5k)−π(k))

to show that this inequality is wrong for 144 < k < 1000.

4. The basic results. First we prove Theorem 1.1 for a ≤ k, which
extends Schur’s results for a = 0, 1. In fact his result for a = 0 is used in the
proof. We tacitly assume in Sections 4–7 that a ≥ 0.

Lemma 4.1. Let a and k be integers such that

2 ≤ k ≤ n/2, 0 ≤ a ≤ k.

Let f(x) be given by (1.2) where a0, a1, . . . , an are integers satisfying (1.1).
Assume that f(x) has a factor of degree k. Then

(n, k, a) ∈ {(7, 2, 2), (7, 3, 3), (8, 2, 1), (8, 3, 2)}.

In this section we assume that the conditions of Theorem 1.1 hold. The
proof of Lemma 4.1 depends on the following criterion for irreducibility.

Lemma 4.2. Assume that f(x) has a factor of degree k. Suppose that
there exists a prime p > k + a such that p divides k(n+ a). Then p divides
a0an.

Corollary 4.3. Let |a0| = |an| = 1. Assume that f(x) has a factor of
degree k. Then P (k(n+ a)) ≤ k + a.

Proof of Lemma 4.2. Suppose that k(n+a) is divisible by a prime p with
p > k + a and p - a0an. Consider the Newton function Gp(x) with respect
to p of

G(x) :=
n∑
j=0

bjx
j := (n+ a)!

n∑
j=0

xj

(j + a)!
with bj =

(n+ a)!
(j + a)!

.
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On the one hand p | k(n + a), hence p | bj = (n+a)!
(j+a)! for j ≤ n − k. So, by

Corollary 2.14, it remains to show that the slope φ of the rightmost edge of
the Newton function of Gp is < 1/k. Denoting νp by ν we have

φ = max
1≤j≤n

ν(b0)− ν(bj)
j

≤ max
1≤j≤n

ν((j + a)!)
j

.

We may assume p ≤ j + a, otherwise ν((j + a)!) = 0. Thus j ≥ p− a and

φ < max
j≥p−a

j + a

j(p− 1)
=

p

p− 1
1

p− a
≤ k + 1

k

1
k + 1

=
1
k
.

By Corollary 2.14 the polynomial G(x) cannot have a factor of degree k.

Proof of Lemma 4.1. Let 2 ≤ k ≤ n/2 and (n, k, a) 6= (8, 2, 1). We assume
that f(x) has a factor of degree k. Then a ≥ 1 by the result of Schur [26].
If (n, k) = (8, 2), then a = 2, which is not possible by Corollary 2.14 with
p = 5. From now on (n, k) 6= (8, 2).

First, we suppose that a ≤ .5k. By Corollary 4.3, we see that

P (k(n+ a)) ≤ k + a ≤ 1.5k,

which by Lemma 2.2 implies that (n + a, k) = (4, 2), (9, 2), (10, 5). Further
we observe that a = 1 if k = 2 and a ∈ {1, 2} if k = 5. Then (n, k) ∈
{(3, 2), (8, 5), (9, 5)}, which is ruled out since n ≥ 2k. Thus a > .5k, implying
a ≥ 2.

Let .5k < a ≤ .8k. Then k ≥ 3. Further we see from Corollary 4.3 that
P (k(n+ a)) ≤ k+ a ≤ 1.8k. Now we apply again Lemma 2.2 with x = n+ a
to conclude that

(4.1) (n+ a, k) ∈ {(10, 3), (10, 4), (28, 13)}
since x = n + a ≥ 2k + 2. In all cases but (10, 3) we have k ≥ 4 and
n+ a ≤ 2k + 2 and therefore

k ≤ n/2 ≤ k + 1− a/2 < 3k/4 + 1,

a contradiction. If (n+ a, k) = (10, 3), then a = 2, hence (n, k, a) = (8, 3, 2).
Thus we conclude that a > .8k.

Assume that .8k ≥ 12. Then

n+ a ≥ max
(

2k + 13,
541
262

k

)
.

Now we derive from Lemma 2.4 that P (k(n+a)) > 2k ≥ k+a contradicting
Corollary 4.3. Thus .8k < 12, i.e. k < 15.

Let .8k < a ≤ .95k. By Corollary 4.3, we see that

P (k(n+ a)) ≤ k + a ≤ 1.95k.

Now we apply Lemma 2.3 to conclude that

n+ a ∈ {2k, . . . , 2k + h− 1}
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with k ∈ Eh and 1 ≤ h ≤ 5. Let h ∈ {4, 5}. Then k ≥ 12 and n+ a = 2k+ j
with 0 ≤ j ≤ 4. On the other hand, 2k ≤ n = 2k+ j−a < 2k+ 4− .8k < 2k
since k ≥ 12. Let h ∈ {2, 3}. Then n + a = 2k + j with 0 ≤ j ≤ 2 and
2k ≤ n ≤ 2k + 2 − .8k < 2k since k ≥ 4. Let h = 1. Then n + a = 2k + j
with j = 0 and 2k ≤ n ≤ 2k − .8k < 2k. Hence .95k < a ≤ k. Since k < 15,
we have a = k. Now we see from Corollary 4.3 that

(4.2) P (k(n+ k)) ≤ 2k.

Let 7 ≤ k ≤ 14. Then there are three consecutive terms in k(n+k) divisible
by primes ≤ 13 and we derive from Lemma 2.1(d) a contradiction with (4.2).
Let 4 ≤ k ≤ 6. Then, for n+ k > 16, we refer to Lemma 2.1(e) and use the
fact that P (4(n+k)) ≤ 12. Hence we may assume 12 ≤ n+k ≤ 16 implying
k ∈ {4, 5} and we check that P (k(n + k)) > 2k. Let k = 3. Then n = 7 by
n ≥ 6 and Lemma 2.1(d). Thus (n, k, a) = (7, 3, 3). Let k = 2. Since a = k,
we see from (4.2) that P ((n+ 1)(n+ 2)) ≤ k + a = 4 implying n = 7. Thus
(n, k, a) = (7, 2, 2).

The following examples show that the exceptions in Lemma 4.1 are nec-
essary. In fact, it is possible to derive congruence conditions on the ai’s to
guarantee that there is a factor of the indicated degree. In this way one can
give infinitely many examples for each triple.

x7

9!
+ 23

x6

8!
− 73

x5

7!
+ 16

x2

4!
+ 8

x

3!
+

1
2!

=
1
9!

(x2 − 3x− 6)(x5 + 210x4 − 4620x3 − 12600x2 − 65520x− 30240),

x7

10!
+ 2

x6

9!
+ 4

x5

8!
+ 15

x4

7!
+ 4

x3

6!
− 10

x2

5!
+

1
3!

=
1

10!
(x3 + 20x2 − 60x− 120)(x4 + 420x2 + 2520x− 5040),

x8

9!
+ 3

x7

8!
− x6

7!
− 2

x5

6!
+
x3

4!
+
x2

3!
+
x

2!
+

1
1!

=
1
9!

(x2 + 6x+ 12)(x6 + 21x5 − 210x4 + 2520x2 + 30240),

x8

10!
− 104

x7

9!
− 121

x6

8!
− 56

x5

7!
− 15

x4

6!
+ 6

x3

5!
+ 6

x2

4!
+ 4

x

3!
+

1
2!

=
1

10!
(x3+10x2+30x+60)(x5−1050x4−420x3−2520x2+25200x+30240).

We use Lemma 4.1 to derive an explicit result in case 0 ≤ a ≤ 30.
As already stated in Section 1, the cases a = 0 and a = 1 are due to
Schur [26], [27].
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Theorem 4.4. Let f(x) be given by (1.2) with (1.1) and 3 ≤ k ≤ n/2.

(a) If 0 ≤ a ≤ 30 and k ≥ 5, then f(x) has no factor of degree k unless

(n, k, a) ∈ {(17, 5, 11), (19, 5, 9), (40, 5, 12)}.
(b) If 0 ≤ a ≤ 10 and 3 ≤ k ≤ 4, then f(x) has no factor of degree k

unless

(n, k, a) ∈ {(7, 3, 3), (8, 3, 2), (12, 3, 4),
(18, 4, 9), (18, 4, 10), (46, 3, 4), (56, 4, 10)}.

Proof. Assume that f(x) has a factor of degree k. By Lemma 4.1 and
Corollary 4.3 we may assume k < a and P (k(n+ a)) ≤ a+ k.

(a) Let 5 ≤ k ≤ 6. Then n ≥ 10, n + a > 15 and P (k(n + a)) ≤ 31.
By Lemma 2.1(a) this is only possible if n + a ≤ 36 or k = 5, n + a ∈
{52, 58, 66, 156}.

Let 23 ≤ n + a < 27. Then 23 | k(n + a), hence a + k ≥ 23 and a ≥ 17,
contradicting that n ≥ 10, n+a < 27. Similarly contradictions are obtained
for 19 ≤ n+ a < 23, 17 ≤ n+ a < 19, n+ a = 16.

For 34 ≤ n+ a ≤ 36 we find 17 | k(n+ a), hence a+ k ≥ 17, 10 ≤ n ≤ 25
and eliminations by Corollary 2.14 with p = 17 for a ≥ 17, with p = 31
if k = 6, a = 16 and with p = 11 for the other values of (n, k, a). For
29 ≤ n + a < 34 we find a = 23, n = 10 and elimination by Corollary 2.14
with p = 29. For n+ a = 28 we find a+ k ≥ 13, n ≤ 21 and eliminations by
Corollary 2.14 with p = 23 for k = 6, and for k = 5 by Corollary 2.14 with
p = 13 for 10 ≤ n ≤ 15 and with p = 7 for n = 20, 21 and by Lemma 2.13
with p = 3, r = 2 for n = 16 and n = 18. For n+ a = 27 we find a+ k ≥ 23,
n = 10, a = 17, k = 6. This is eliminated by Corollary 2.14 with p = 13.

Let n + a = 156. Because 31 divides 155, we see that a + k ≥
P (k(n + a)) ≥ 31, and thus we need only consider a’s with a ≥ 26. The
resulting cases (n, a) = (126, 30), (127, 29), (128, 28), (129, 27), (130, 26) can
each be eliminated by Corollary 2.14 with p = 13. For n+ a = 66 a similar
reasoning gives a+ k ≥ 31, 36 ≤ n ≤ 40 and eliminations by Corollary 2.14
with p = 13. For n + a = 58 we obtain a + k ≥ 29, 28 ≤ n ≤ 34 and elimi-
nations by Corollary 2.14 with p = 19. For n + a = 52 we find a + k ≥ 17,
22 ≤ n ≤ 40. These cases are eliminated by Corollary 2.14 with p = 17 for
24 ≤ n ≤ 35, and with p = 13 for the remaining values of n except for n = 40.

Let 7 ≤ k ≤ 10. Then n ≥ 14, n + a > 21 and P (k(n + a)) ≤ 37. By
Lemma 2.1(a) this is only possible if n+ a ≤ 40. Let 37 ≤ n+ a < 41. Then
a + k ≥ 37, hence a ≥ 27, contradicting n ≥ 14. Similarly contradictions
are obtained for 29 ≤ n + a < 33, 23 ≤ n + a < 27, n + a = 22. Let
33 ≤ n+a < 37. Then a+k ≥ 31, hence a ≥ 21. This implies n+a ∈ {35, 36},
a ∈ {21, 22}, k ≥ 9. These cases are eliminated by Corollary 2.14 with
p = 17. Let 27 ≤ n + a < 29. Then a + k ≥ 23, hence a ≥ 13. This implies
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a ∈ {13, 14}, k ≥ 9. These cases are eliminated by Corollary 2.14 with
p = 13.

Let k ∈ {11, 12}. Then n+a > 33 and P (k(n+a)) ≤ 41. By Lemma 2.1(a)
this implies n+ a ≤ 42. If 37 ≤ n+ a ≤ 42, then a+ k ≥ 37, hence a ≥ 25
in contradiction with n ≥ 22. A similar reasoning excludes 34 ≤ n+ a ≤ 36.

Let 13 ≤ k ≤ 16. Then n + a > 39 and P (k(n + a)) ≤ 43 and we see
that there are seven consecutive terms in k(n+ a) composed of primes ≤ 41
or two pairs of six separated by an integer x with P (x) = 43 in between.
By Lemma 2.1(a) the latter possibility is excluded and the former implies
n + a ≤ 46. The remaining possibilities lead to contradictions by using
Corollary 2.14 with p = 37.

Let 17 ≤ k ≤ 22 and (n, k, a) 6= (34, 17, 18). Then n + a > 51 and
P (k(n+a)) ≤ 47 and there are six consecutive terms in k(n+a) with prime
factors ≤ 41 or three blocks of five prime factors ≤ 41 such that consecutive
blocks are separated by one integer. This is excluded by Lemma 2.1(a). The
case (n, k, a) = (34, 17, 18) is excluded by Corollary 2.14 with p = 47.

Let 23 ≤ k ≤ 28. Then n+a > 69 and P (k(n+a)) ≤ 53 and the previous
argument applies.

Let 29 ≤ k ≤ 30. Then n+a > 87 and P (k(n+a)) ≤ 59 and the previous
argument applies again.

(b) Let k ∈ {3, 4} and (n, k, a) 6= (7, 3, 3), (8, 3, 2). Then we see from
Lemma 4.1 that a ≥ 4, n ≥ 6 if k = 3 and a ≥ 5, n ≥ 8 if k = 4.

Let a ∈ {4, 5, 6, 7} if k = 3 and a ∈ {5, 6} if k = 4. Then, by Corollary
4.3, P (k(n+ a)) ≤ 7, which implies k = 3 by Lemma 2.1(e). Further we see
from Lemma 2.1(d) that

(n, a) ∈ {(6, 4), (9, 7), (10, 6), (11, 5), (12, 4), (43, 7), (44, 6), (45, 5), (46, 4)}.

We observe that (6, 4) is excluded by Lemma 2.13 with p = 3, r = 1,
(n, a) = (10, 6), (11, 5), (44, 6), (45, 5) by Corollary 2.14 with p = 5 and
(n, a) = (9, 7), (43, 7) with p = 7.

Let a ∈ {8, 9} if k = 3 and a ∈ {7, 8} if k = 4. Then P (k(n + a)) ≤ 11.
Then we derive from Lemma 2.1(d),(e) that (n, a) is in

{(7, 9), (8, 8), (13, 9), (14, 8), (41, 9), (42, 8), (47, 9), (48, 8), (91, 9), (92, 8)}

with k = 3. All these cases are excluded by Corollary 2.14 with p = 7.
Let k = 4 and a ∈ {9, 10}. Then P (k(n + a)) ≤ 13. We derive from

Lemma 2.1(e) that

(n, a) ∈ {(17, 10), (18, 9), (18, 10), (19, 9), (56, 10), (57, 9)}.

The cases (n, a) = (19, 9), (57, 9) are excluded by Corollary 2.14 with p = 7,
the case (n, a) = (17, 10) by Lemma 2.13 with p = 3, r = 2.
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Let k = 3 and a = 10. Then we derive from Lemma 2.1(d) that n ∈
{6, 12, 16, 17, 18, 40, 46, 55, 56, 90, 342}. The case n = 18 is excluded by
Corollary 2.14 with p = 7 and all others with p = 5.

Proof of Theorem 1.1. Let the assumptions of Theorem 1.1 be satisfied
and (n, k, a) not in the set given in (1.3). Then

k < a ≤ 3k/2

by Lemma 4.1.
Let k > 2. Then k ≥ 5 by Theorem 4.4(b). Now we see from The-

orem 4.4(a) that a > 30 implying k > 20. We put x = n + a. Thus
x > 2k + k = 3k > 60. Let l = 1, s = 0, ρ = 5/2, m = kρ. By Corol-
lary 4.3 we have

(4.3) P (k(x)) ≤ 5k/2.

Consequently, x < k3/2 by Lemma 3.5. We derive from Lemma 3.8 that
x < 12k. Now we derive from Lemma 2.7 that

P (k(x)) > x− 5k/6 ≥ 3k − 5k/6 = 13k/6.

Now, by Corollary 4.3, we see that a > 7
6k, implying that x > 19

6 k. Another
application of Lemma 2.7 gives P (k(x)) > 7

3k whence a > 4
3k, x > 10

3 k,
P (k(x)) > 2.5k, contradicting (4.3).

Let k = 2. Then a = 3, n+ a ≥ 7 and P (2(n+ a)) ≤ 5 by Corollary 4.3.
Now we apply Lemma 2.1(f) to obtain n ∈ {6, 7, 13, 22, 78}.

Remark. Examples of factorizations for (6, 2, 3), (7, 2, 3), (12, 3, 4),
(13, 2, 3), (22, 2, 3), (46, 3, 4), and (78, 2, 3) are as follows:

x6

9!
+ 4

x5

8!
− 6

x4

7!
+
x3

6!
− x2

5!
+ 2

x

4!
+

1
3!

is divisible by x2 − 6x+ 12,

x7

10!
+ 10

x6

9!
+ 24

x5

8!
+ 7

x4

7!
+ 5

x3

6!
+ 2

x2

5!
+ 2

x

4!
+

1
3!

is divisible by x2 + 30x+ 60,

x12

16!
− 107

x9

13!
− 45

x6

10!
+ 9

x3

7!
+

1
4!

is divisible by x3 + 840,

x13

16!
− x12

15!
+ 44

x11

14!
− 94

x10

13!
+ 2

x9

12!
+ 15

x8

11!
− 2

x7

10!

+
x6

9!
− 8

x5

8!
+ 5

x4

7!
− 12

x3

6!
+ 2

x2

5!
− x

4!
+

1
3!
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is divisible by x2 − 30x+ 60,

x22

25!
+ 76

x20

23!
+ 9

x18

21!
+
x6

9!
+ 2

x4

7!
+ 2

x2

5!
+

1
3!

is divisible by x2 + 60,

x46

50!
+ 1554183979460315542910267363

x43

47!

+ 1287
x12

16!
+ 25118061500

x4

8!
+ 184

x3

7!
+

1
4!

is divisible by x3 + 840. For the triple (n, k, a) = (78, 2, 3), one can use

x78

81!
− 699547017649181565404859682868563695329144745169587091

x76

79!

+
x62

65!
+ 3820

x58

61!
+ 15

x54

57!
+
x46

49!
+ 813385

x12

15!
+ 22

x4

7!
+ 2

x2

5!
+

1
3!
,

which has the factor x2 + 60.
Factorizations for (7, 2, 2), (7, 3, 3), (8, 2, 1), (8, 3, 2) have been given

after the proof of Lemma 4.1.

5. A better estimate for a when k is sufficiently large. We prove

Theorem 5.1. Let f(x) be given by (1.2). Let n ≥ 1, 1 ≤ k ≤ n/2 and
|a0| = |an| = 1. Assume that f(x) has a factor of degree k. Then there exist
effectively computable absolute constants k0 and C > 0 such that for k ≥ k0,
we have

a ≥ Ck log k
log log k

log log log k
.

Proof. Let k be sufficiently large. We show that there exists a prime
p > k + a dividing k(n+ a). Let n ≤ k3/2. Then the interval [n+ a− k + 1,
n + a] contains primes and each prime is at least n + a − k + 1 > k + a.
The existence of the primes follows from a well-known result on differences
between consecutive primes [17]. Thus we may suppose that n > k3/2. Then
we see from [30] that P (k(n+a)) is at least constant times k log k log log k

log log log k .
Hence there is a positive constant C such that P (k(n+a)) > k+a whenever
a < Ck log k log log k

log log log k . Then, by Corollary 4.3, f(x) has no factor of degree k,
a contradiction. Hence we conclude that

a ≥ Ck log k
log log k

log log log k
.

6. The leading coefficient is a prime power. In the next two sec-
tions we shall relax the condition that both a0 and an are ±1. In this section
we prove Theorem 1.2.
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Lemma 6.1. Let f(x) be given by (1.2). Let n ≥ 1, 2 ≤ k ≤ n/2, 0 ≤ a
≤ .5k and ω(ana0) = 1. Assume that f(x) has a factor of degree k. Then
k ≤ 5 unless (n, k, a) = (24, 9, 4), P (a0an) = 23. If 3 ≤ k ≤ 5, then n + a
≤ 28. If k = 2, then a = 1.

Proof. Let the assumptions of Lemma 6.1 be satisfied. We may suppose
ω(an) = 1, |a0| = 1 since the proof of the case ω(a0) = 1, |an| = 1 is similar
and the case an = pr, a0 = ps can be reduced to it by multiplying by prn−r

and replacing prx by x. Assume that f(x) has a factor of degree k. We omit
a term in k(n+ a) divisible by P (an) and denote the remaining product by
k(n+ a)(1). Then, by the proof of Lemma 4.2 applied to any prime different
from P (an),

(6.1) P (k(n+ a)(1)) ≤ k + a ≤ 1.5k.

Now we derive from Theorem 2.12 that k ≤ 9 or

(n+ a, k) ∈ {(26, 13), (27, 13), (28, 13), (28, 14)}.

Let (n+a, k) ∈ {(26, 13), (27, 13), (28, 13), (28, 14)}. Then a ≤ 2 because
n ≥ 2k. Hence we find that there is no factor of degree k by applying
Corollary 2.14 with the primes p = 19 and p = 23.

Let k = 9. Then a ≤ 4. We may suppose by (6.1) that there is at most
one term in k(n+ a) divisible by a prime greater than 13 and we omit this
term. There is at most one term divisible by each of 13 and 11 and there are
at most two terms divisible by 7 and we omit all of them. Thus we are left
with a term n∗ composed of primes ≤ 5, and for each of these primes, there
is another term in which it appears to a power which is at least the power
in n∗. Thus n+ a− 8 ≤ 8 · 3 · 5 = 120. Thus n+ a ≤ 128 if k = 9. Similarly
n+ a ≤ 67 if k = 8, n+ a ≤ 18 if k = 7 and n+ a ≤ 65 if k = 6. Further we
check that for each of the above cases, k(n+ a) has two terms each divisible
by a prime > k+ a, contradicting (6.1). This follows by direct computation
except for (n, k, a) = (24, 9, 4) in which case we apply Corollary 2.14 with
respect to the prime 23. Thus k ≤ 5.

Let 3 ≤ k ≤ 5 and n + a > 28. As above, we see that there are two
terms in k(n + a) composed of 2 and 3 in each of the cases 3 ≤ k ≤ 5.
On using the fact that all powers of 2 and 3 which differ by 1 are ≤ 9 (cf.
[22, Table 1A]) we derive that n+ a ≤ 36. By checking the possibilities we
find that (6.1) is not satisfied. Consequently, k = 2. If a = 0, then either n
or n − 1 is a power of 2, and 2 does not divide an. These cases have been
excluded in [9].

For integers N > 1 and k ≥ 1, we write ωk(N) for the number of distinct
prime divisors > k of N . Further we put ωk(1) = 0 and ωk(N) = ωk(|N |)
for any non-zero integer N .
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Proof of Theorem 1.2. By Lemma 6.1, we may suppose that a > .5k.
Also

(6.2) P (k(n+ a)(1)) ≤ k + a

by Lemma 4.2. Let k ≥ 19. We observe that n+a > 2.5k. Further we derive
from Lemma 2.9 when n+ a > k2 and Lemma 2.8(b) when n+ a ≤ k2 that

ωk(k(n+ a)(1)) ≥ π(2k)− π(k)

and
ωk(k(n+ a)(1)) ≥ π(2k)− π(k)− 1,

respectively. On the other hand, in view of (6.2) and a < .75k, we may
suppose that

ωk(k(n+ a)(1)) ≤ π(1.75k)− π(k).

Thus

(6.3) π(2k)− π(1.75k) ≤ 0 if n > k2

and

(6.4) π(2k)− π(1.75k) ≤ 1 if n ≤ k2

whence, by Lemma 2.10 for k ≥ 400 and direct calculation for 65 < k < 400,

k ≤ 65.

Hence Pk((n+ a)(1)) ≤ 1.75k ≤ 114.
Let 24 ≤ k ≤ 65. Then there are 12 consecutive integers composed of

primes at most 114. According to Lemma 2.15 this is only possible if n+ a
≤ 330. But such triples (n, k, a) do not satisfy (6.2) in view of Lemma 2.6.

Let 21 ≤ k ≤ 24. Then π(2k) − π(1.75k) > 1, contradicting (6.3) and
(6.4).

Let 13 ≤ k ≤ 20. Then n + a ≥ 33, k + a ≤ 35 and there are six
consecutive terms with prime factors ≤ 31, which possibility is excluded by
Lemma 2.1(a).

Let 10 ≤ k ≤ 12. Then n + a > 25, k + a ≤ 21 and there are six
consecutive terms composed of primes ≤ 19 or one block of four and one
block of five such terms separated by one integer. This is also excluded by
Lemma 2.1(a) unless n+ a = 57 in which case (6.2) is not satisfied.

Let k = 8 or 9. Then n + a > 20 and we see from (6.2) and a ≤ .75k
that there are four consecutive terms in k(n + a) divisible by primes at
most 11 or 13 according as k = 8 or 9, respectively. Now we derive from
Lemma 2.1(e) that k = 9 and that they are given by 4(27), 4(28) and 4(66),
and these are excluded by (6.2) unless (n + a, k) = (28, 9). This gives the
exceptions (n, k, a) = (22, 9, 6) and (23, 9, 5) where P (a0an) = 23 in view of
Corollary 2.14 with p = 23.
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Let k = 6 or 7. Then n + a > 15 and there are three consecutive terms
in k(n + a) composed of primes not exceeding 7 or 11 according as k = 6
or 7. Next we see from Lemma 2.1(d) that they are given by 3(16), 3(50) if
k ∈ {6, 7} and moreover 3(22), 3(56), 3(100) if k = 7. By (6.2), a ≤ .75k and
n+ a > 2.5k are all excluded.

Let k = 5 and n+ a > 32. Then a = 3, n ≥ 30. Further there is at most
one term divisible by a prime p0 > 7. Suppose that p0 - n + a − 2. Then
there are three consecutive terms divisible by primes ≤ 7 and we derive from
Lemma 2.1(d) that n ≤ 49. By (6.2) we find that there are no exceptions.
Assume that p0 |n+ a− 2. In that case, we see that

P ((n+ a)(n+ a− 1)) ≤ 7, P ((n+ a− 3)(n+ a− 4)) ≤ 7.

Now we apply Lemma 2.1(f) and we see that the above inequalities do not
hold.

Let k = 4 and n + a > 32. Then a = 3 and n ≥ 30. In this case,
there are two consecutive terms divisible by primes ≤ 7 and another such
number at distance at most 2. By Lemma 2.1(f),(g) this is possible only if
n ∈ {47, 48, 125}.

Let k = 3 and n+ a > 32. Then a = 2 and n ≥ 31. Now there are either
two consecutive terms or two terms differing by 2 divisible by primes ≤ 5.
We again apply Lemma 2.1(f), (g) to conclude that n ∈ {79, 80} in the first
possibility and n ∈ {48, 160} in the second. The cases n = 48, 79, 80 are
mentioned as exceptions in Theorem 1.2. The case n = 160 is excluded by
Corollary 2.14 for the primes 7 and 23.

Let k = 2. Then there is no integer in (k/2, 3k/4].

7. The leading coefficient is divisible by more than one prime

Theorem 7.1. Let ε > 0, 1 ≤ k ≤ n/2, 0 ≤ a ≤ (1 − ε)k and f(x) be
given by

(1.2) f(x) = an
xn

(n+ a)!
+ an−1

xn−1

(n− 1 + a)!
+ · · ·+ a1

x

(1 + a)!
+ a0

1
a!

where a0, a1, . . . , an are integers with an 6= 0 and |a0| = 1. Then there exist
effectively computable numbers c1 > 0 and k0 depending only on ε such that
for k ≥ k0, the polynomial f(x) has no factor of degree k whenever

ωk(an) < c1
k

log k
.

Proof. Let ε > 0 and ωk(an) < k/log k. We may suppose that k ≥ k0

with k0 sufficiently large. By Lemma 4.2 it suffices to find a prime p > k+a
satisfying

(7.1) p | k(n+ a), p - an.
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Let n ≤ 25k. We consider the interval (n+ a− εk, n+ a]. By the prime
number theorem, the above interval contains c2k/log k primes where c2 > 0
is an effectively computable number depending only on ε. Each of the primes
divides k(n + a) and is greater than n + a − εk ≥ (2 − ε)k ≥ k + a, since
a ≤ (1 − ε)k. If we choose c1 = c2/2, then there exists a prime p > k + a
satisfying (7.1).

Next we consider n > 25k. For each prime p > k dividing an we take
the unique term from k(n + a) divisible by p if it exists and we omit it.
The number of these omitted terms is less than 1.04k/log k. Now we apply
Lemma 3.7 and Corollary 3.4 with l = 1, m = 2k, s < 1.04k/log k, x = n+a
if n+ a < k3/2 and if n+ a ≥ k3/2, respectively, to conclude that (3.2) does
not hold. Therefore there exists a prime p > 2k ≥ k + a satisfying (7.1).

Thus we see from Theorem 7.1 that there exists an effectively computable
number c3 > 1 depending only on ε such that |an| > ck3 whenever f(x) has
a factor of degree k.

8. Generalized Laguerre polynomials with α non-negative. We
consider polynomials

(1.5) ga,b,c(x) =
n∑
j=0

(a)j
(b)j(c)j

xj

where
a = −n− s, b = α+ 1, c ≥ 1.

For s = 0, c = 1 this is the classical Laguerre polynomial. We prove Theo-
rem 1.3 stated in the introduction.

Proof of Theorem 1.3. We may assume that k ≥ k1 = k1(ε) with k1

sufficiently large. Put

h(x) = (n+ s+ c− 1)!
n∑
j=0

(n+ α) · · · (j + 1 + α)
(n+ s− j)!(c+ j − 1)!

xj

=
n∑
j=0

(
n+ s+ c− 1
c+ j − 1

)
n−j(n+ α)xj .

Since

g−n−s,α+1,c(x) =
(c− 1)!(n+ s)!

n(n+ α)

n∑
j=0

(n+ α) · · · (j + 1 + α)
(n+ s− j)!(c+ j − 1)!

(−x)j ,

we observe that h(x) has a factor of degree k if and only if g(x) has a factor
of degree k. Therefore it suffices to prove Theorem 1.3 with g(x) replaced
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by h(x). For 0 ≤ j ≤ n, we put

aj =
(
n+ s+ c− 1
c+ j − 1

)
.

Then

an =
(
n+ s+ c− 1
n+ c− 1

)
=

(n+ c) · · · (n+ c+ s− 1)
s!

,

a0 =
(
n+ s+ c− 1

c− 1

)
=

(n+ s+ 1) · · · (n+ s+ c− 1)
(c− 1)!

.

Because of Lemma 4.2 it suffices to show that there exists a prime p > k+α
with p | k(n+ α) such that

(8.1) p - (n+ c) · · · (n+ c+ s− 1), p - (n+ s+ 1) · · · (n+ s+ c− 1).

Let n < k3/2 and α < .5k. We consider the interval (n− (.6k−α−1), n].
It contains a prime p > n+ α− .6k + 1 ≥ 1.4k + α. Assume that p divides
(n+ c) · · · (n+ c+ s− 1). Then

n− j ≡ 0 (mod p), n+ i ≡ 0 (mod p)

for some i, j with 0 ≤ j ≤ .6k, c ≤ i < c + s. Thus i + j ≡ 0 (mod p),
implying 1.4k + α < i + j < .6k + c + s, contradicting (1.6). Consequently
p - (n+ c)s. Similarly p - (n+ s+ 1)c−1. Next we consider n < k3/2, α ≥ .5k.
Then we take the interval (n + c + s, n + α]. By (1.6) and [17] we see that
it contains a prime p > n + c + s ≥ 2k ≥ k + α. By a similar reasoning we
deduce that p satisfies (8.1).

Let n ≥ k3/2. We omit all the terms n+ c, . . . , n+ c+s−1 and n+s+1,
. . . , n+s+ c−1 from n+α−k+1, . . . , n+α. The number of omitted terms
is at most v ≤ s+ c. Now we apply (1.6) and Corollary 3.4 with x = n+ α,
s = v and l = 1 to conclude that (3.2) does not hold. Therefore we find a
prime p > 2k ≥ k+α dividing k(n+α)(v). Assume that (8.1) is not satisfied.
Then

n− j ≡ 0 (mod p), n+ i ≡ 0 (mod p)

with −α ≤ j ≤ k and 0 < i ≤ s + c. It follows from the construction that
i+ j 6= 0. This implies that

2k < p ≤ |i+ j| ≤ s+ c+ k < 4k/3,

a contradiction.

9. Generalized Laguerre polynomials with α negative

Proof of Theorem 1.4. In view of results of Schur [26], Hajir [15] and
Sell [29], already mentioned in the introduction, we may assume without
loss of generality that s > 2, hence k > 3.
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It suffices to show that the polynomial

g(x) :=
n∑
j=0

(n+ s− j)!n!
(n− j)!j!s!

xj = n!
n∑
j=0

(
n+ s− j
n− j

)
xj

j!

has no factor of degree k. For 0 ≤ j ≤ n, we put

aj =
(
n+ s− j
n− j

)
.

Then

an = 1, a0 =
(
n+ s

n

)
.

By Lemma 4.2 it suffices to show that there exists a prime p > k such that
p | k(n) and p - s(n + s). We derive from Lemma 2.3 that, unless k ≤ 270
and n ≤ 2k+ 10, there exists a prime p > 1.95k dividing k(n). Assume that
this prime divides s(n+ s). Then n− j ≡ 0 (mod p), n+ i ≡ 0 (mod p) with
0 ≤ j < k, 0 < i ≤ s, implying 1.95k < p ≤ i+ j < s+ k. For each k ≤ 270
we consider n ∈ [2k, 2k + 10] and q to be the greatest prime ≤ n.

We shall check that q > n−k, 2q > n+ 0.95k unless (n, k) = (10, 5). For
this, we may assume that k > 10, otherwise the assertion follows by direct
computation. Then 2k ≤ n ≤ 2k+10 < 2.95k implying n−k > (n+0.95k)/2.
Now the assertion follows from Lemma 2.6 and n ≥ 2k by observing that
the interval ((n + 0.95k)/2, n] contains a prime. Finally we check that the
polynomial ga,b,c is irreducible for (n, s) ∈ {(10, 3), (10, 4)}.

10. The rational case. Let u, α, β and a be as in the paragraphs
preceding Theorem 1.5 in Section 1. Let

G(x) = an
xn

(α)β,n+u
+ an−1

xn−1

(α)β,n−1+u
+ · · ·+ a1

x

(α)β,1+u
+ a0

1
(α)β,u

where a0, a1, . . . , an ∈ Z. Here F (x) = G(βx). We put

G1(x) = (α)β,n+uG(x).

Thus

G1(x) = anx
n + an−1(α+ (n+ u− 1)β)xn−1 + · · ·

+ a1(α+ (n+ u− 1)β) · · · (α+ (u+ 1)β)x
+ a0(α+ (n+ u− 1)β) · · · (α+ uβ).

We begin with the following result.

Lemma 10.1. Let 1 ≤ k ≤ n/2 and

(10.1) β ≤ 2α+ 2 if (k, u) = (1, 0).
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Assume that the prime p satisfies

(10.2) p ≥
{

(k + u− 1)β + α+ 1 if u > 0,
(k + u− 1)β + α+ 2 if u = 0,

and
p | (α+ (n+ u− k)β) · · · (α+ (n+ u− 1)β), p - a0an.

Then G(x) has no factor of degree k.

Proof. If suffices to show that G1(x) has no factor of degree k. Denote
νp by ν. We consider the Newton function H(x) with respect to p of the
polynomial h(x) obtained from G1(x) by putting a0 = a1 = · · · = an = 1.
By Corollary 2.14 and p | (α + (n + u − k)β)β,k it suffices to show that the
slope φ of its rightmost edge is less than 1/k. We have

φ = max
1≤j≤n

ν((α+ uβ)β,n)− ν((α+ (j + u)β)β,n−j)
j

= max
1≤j≤n

ν((α+ uβ) · · · (α+ (j + u− 1)β))
j

≤ max
1≤j≤n

ν((α+ (j + u− 1)β)!)
j

.

Now

ν((α+ (j + u− 1)β)!) <
α+ (j + u− 1)β

p− 1
.

Thus

φ <
α+ (j + u− 1)β

(p− 1)j
=
α+ (u− 1)β

(p− 1)j
+

β

p− 1
.

We may assume that p ≤ α+(j+u−1)β, otherwise ν((α+(j+u−1)β)!) = 0.
Thus

j ≥ p− α− (u− 1)β
β

and

φ <
αβ + (u− 1)β2

(p− 1)(p− α− (u− 1)β)
+

β

p− 1
=

βp

(p− 1)(p− α− (u− 1)β)
.

It suffices to show that
βp

(p− 1)(p− α− (u− 1)β)
≤ 1
k
,

i.e.,
p2 − ((k + u− 1)β + α+ 1)p+ α+ (u− 1)β ≥ 0,

which is satisfied by (10.2) and (10.1).

It has been proved in [31], [32] that for χ = α+ (n+ u− 1)β and ε > 0,
there exists an effectively computable number C > 0 depending only on ε
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such that

(10.3) P := P ((α+ (n+ u− k)β)β,k) > Ck log logχ if χ > k(log k)ε.

Recall that the height H(a) of a non-zero rational number a, in its reduced
form, is defined as the maximum of the absolute values of its numerator
and denominator. We write N(a) for the absolute value of the numerator
of a and D(a) for the denominator of a. Now we combine Lemma 10.1 and
(10.3) with the prime number theorem for arithmetic progressions to prove
the following result which implies Theorem 1.5 immediately.

Theorem 10.2. Let |an| = 1, 2 ≤ k ≤ n/2 and assume that G(x) has a
factor of degree k. Then there exist effectively computable absolute constants
k0, C1 > 0 and C2 such that for k ≥ k0 and P (a0) < C2k/log log k, we have

H(a) ≥ C1 log log k.

Proof. In fact we shall prove the more precise assertion that there exist
effectively computable absolute constants C3 > 0 and C4 > 0 such that for
k ≥ k0,

N(a) ≥ C3k log log k whenever D(a) ≤ C4 log log k.

Assume that G(x) has a factor of degree k. Put χ = α + (n + u − 1)β and
suppose that

χ > k log k.

Then we see from (10.3) with ε = 1 that

P > C5k log log k

where C5 > 0 is an effectively computable absolute constant. Now we choose
C2 < C5 and apply Lemma 10.1 and (10.2) to conclude that

P ≤ (k + u− 1)β + α+ 2.

The assertion follows by combining the above lower and upper bound for P
and choosing C3 + C4 < C5/2.

Thus we may suppose that

(10.4) χ ≤ k log k.

We observe that

α+ (n+ u− k)β ≥ (k + u− 1)β + α+ β,

and that β ≥ 2. Therefore, in view of Lemma 10.1, it suffices to show that
there is a prime among

(10.5) α+ (n+ u− k)β, . . . , α+ (n+ u− 1)β

which does not divide a0. By the prime number theorem for arithmetic
progressions with error term and (10.4), we see from [4, pp. 132–133] that
the number of primes among (10.5) is at least 3C2k/(log k log log k) if C2 is
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sufficiently small and k exceeds an effectively computable absolute constant.
Therefore we can find a prime in (10.5) which does not divide a0 since
ω(a0) < 2C2k/(log k log log k). We observe from [4, p. 133] that we have
used the version of the prime number theorem for arithmetic progressions
where the constant implied in the error term is effective and uniform with
respect to β since β ≤ C4 log log k.

Corollary 10.3. Let |an| = 1, and suppose that P (a0) is bounded. Fix
u, α and β. Then there is an n0 = n0(u, α, β, P (a0)) such that if n ≥ n0,
then G(x) is irreducible or G(x) has a linear factor, and a linear factor can
only occur if k = 1, u = 0, and β > 2α+ 2.

Proof. By Theorem 10.2 and a = u + α/β, we see that k is bounded
in terms of u, α, β. By (10.3) we see that P becomes arbitrarily large by
choosing n sufficiently large. Choose n so large that (10.2) is satisfied for
p = P . Then the assertion follows from Lemma 10.1.
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