Fractional moments of Dirichlet L-functions

by
D. R. Heath-Brown (Oxford)

1. Introduction. Mean-values of the type

$$
I_{k}(T):=\int_{0}^{T}|\zeta(1 / 2+i t)|^{2 k} d t
$$

with positive non-integral values of k, have been investigated by a number of authors, including Ramachandra [5], [6, Conrey and Ghosh [1] and HeathBrown [3]. In particular the above papers by Ramachandra show, under the Riemann Hypothesis, that

$$
I_{k}(T)>_{k} T(\log T)^{k^{2}} \quad(T \geq 2)
$$

for all real $k \geq 0$, and that

$$
I_{k}(T)<_{k} T(\log T)^{k^{2}} \quad(T \geq 2)
$$

for all real $k \in[0,2]$.
It is natural to ask about the corresponding problem for Dirichlet L functions in q-aspect, that is, to investigate

$$
M_{k}(q):=\sum_{\substack{\chi(\bmod q) \\ \chi \neq \chi_{0}}}|L(1 / 2, \chi)|^{2 k}
$$

for positive real k. However rather little is known about this in general. The method of Rudnick and Soundararajan [7] enables one to show unconditionally that

$$
M_{k}(q) \gg_{k} \phi(q)(\log q)^{k^{2}}
$$

for rational $k \geq 1$, at least when q is prime. The method does not immediately apply to the case $0<k<1$ and it would be interesting to establish lower bounds in this range.

[^0]In the reverse direction, Soundararajan [9, Section 4] shows under the Generalized Riemann Hypothesis that

$$
M_{k}(q)<_{k, \varepsilon} \phi(q)(\log q)^{k^{2}+\varepsilon}
$$

for any real $k \geq 0$ and any fixed $\varepsilon>0$. One would conjecture that the true order of magnitude for $M_{k}(q)$ should be $\phi(q)(\log q)^{k^{2}}$. The present paper will prove upper bound results of exactly this order, motivated by the author's work [3]. We establish the following theorems.

Theorem 1. Assuming the Generalized Riemann Hypothesis we have

$$
M_{k}(q)<_{k} \phi(q)(\log q)^{k^{2}}
$$

for all $k \in(0,2)$.
Theorem 2. Unconditionally we have

$$
M_{k}(q)<_{k} \phi(q)(\log q)^{k^{2}}
$$

for any k of the form $k=1 / v$ with $v \in \mathbb{N}$.
Thus taking $v=2$ we have

$$
\sum_{\chi(\bmod q)}|L(1 / 2, \chi)| \ll \phi(q)(\log q)^{1 / 4}
$$

in particular.
The approach in [3] is based on a convexity theorem for mean-value integrals, which appears to have no analogue for character sums. We therefore work with integrals, and extract the sum $M_{k}(q)$ at the end. While we can give lower bounds for the integrals that occur, as well as upper bounds, it is not clear how to give a lower bound for $M_{k}(q)$ in terms of an integral.

It seems plausible that our approach might apply to other families of L-functions. One interesting case would be the fractional moments of L functions with quadratic characters, in the form

$$
\sum_{q \leq Q} \mu(2 q)^{2}\left|L\left(\frac{1}{2},\left(\frac{*}{q}\right)\right)\right|^{k}<_{k} Q(\log Q)^{k(k+1) / 2},
$$

for example. However the estimation of the sum corresponding to $K(\sigma)$ will be more difficult than in the present paper, although the techniques used by Soundararajan [8, Section 5] seem likely to suffice. In addition, with the argument in its current form, a crude bound for the analogue of $J^{*}(\sigma)$ will need to be found.

This work arose from a number of conversations with Dr H. M. Bui, and would not have been undertaken without his prompting. It is a pleasure to acknowledge his contribution.
2. Mean-value integrals. Throughout our argument we will write $v=1$ for the proof of Theorem 1, and $v=k^{-1}$ in handling Theorem 2. In both cases the primary mean-value integral we will work with is

$$
J(\sigma, \chi):=\int_{-\infty}^{\infty}|L(\sigma+i t, \chi)|^{2 k}|W(\sigma+i t)|^{6} d t
$$

where the weight function $W(s)$ is defined by

$$
W(s):=\frac{q^{\delta(s-1 / 2)}-1}{(s-1 / 2) \log q}
$$

with $\delta>0$ to be specified later, see (6) and (7). We emphasize that, for the rest of this paper, all constants implied by the Vinogradov \ll symbol will be uniform in σ for the ranges specified. However they will be allowed to depend on the values of k and δ, so that the symbol \ll should be read as $\lll k, \delta$ throughout.

In addition to the integral $J(\sigma, \chi)$ we will use

$$
K(\sigma, \chi):=\int_{-\infty}^{\infty}|S(\sigma+i t, \chi)|^{2}|W(\sigma+i t)|^{6} d t
$$

where

$$
S(s):=\sum_{n \leq q} d_{k}(n) \chi(n) n^{-s}
$$

Notice here that a little care is needed in defining $d_{k}(n)$ when k is not an integer (see [3, §2]).

When χ is a non-principal character the function $L(s, \chi)$ is entire. Moreover, if we assume the Generalized Riemann Hypothesis then there are no zeros for $\sigma>1 / 2$, so that one can define a holomorphic extension of

$$
L(s, \chi)^{k}=\sum_{m=1}^{\infty} d_{k}(m) \chi(m) m^{-s} \quad(\sigma>1)
$$

in the half-plane $\sigma>1 / 2$. Having defined $L(s, \chi)^{k}$ in this way we now set

$$
G(\sigma, \chi):=\int_{-\infty}^{\infty}\left|L(\sigma+i t, \chi)^{k}-S(\sigma+i t, \chi)\right|^{2}|W(\sigma+i t)|^{6} d t \quad(\sigma>1 / 2)
$$

This integral will be used in the proof of Theorem 1, while for the unconditional Theorem 2 we will employ

$$
H(\sigma, \chi):=\int_{-\infty}^{\infty}\left|L(\sigma+i t, \chi)-S(\sigma+i t, \chi)^{v}\right|^{2 / v}|W(\sigma+i t)|^{6} d t
$$

In addition to $J(\sigma, \chi), K(\sigma, \chi), G(\sigma, \chi)$ and $H(\sigma, \chi)$ we will consider their averages over non-principal characters,

$$
\begin{aligned}
& J(\sigma):=\sum_{\substack{\chi(\bmod q) \\
\chi \neq \chi_{0}}} J(\sigma, \chi), \quad K(\sigma):=\sum_{\substack{\chi(\bmod q) \\
\chi \neq \chi_{0}}} K(\sigma, \chi), \\
& G(\sigma):=\sum_{\substack{\chi(\bmod q) \\
\chi \neq \chi_{0}}} G(\sigma, \chi), \quad H(\sigma):=\sum_{\substack{\chi(\bmod q) \\
\chi \neq \chi_{0}}} H(\sigma, \chi) .
\end{aligned}
$$

To derive estimates relating values of these integrals we begin with the following convexity estimate of Gabriel [2, Theorem 2].

Lemma 1. Let F be a complex-valued function which is regular in the strip $\alpha<\Re(z)<\beta$, and continuous for $\alpha \leq \Re(z) \leq \beta$. Suppose that $|F(z)|$ tends to zero as $|\Im(z)| \rightarrow \infty$, uniformly for $\alpha \leq \Re(z) \leq \beta$. Then for any $\gamma \in[\alpha, \beta]$ and any $a>0$ we have

$$
I(\gamma) \leq I(\alpha)^{(\beta-\gamma) /(\beta-\alpha)} I(\beta)^{(\gamma-\alpha) /(\beta-\alpha)}
$$

where

$$
I(\eta):=\int_{-\infty}^{\infty}|F(\eta+i t)|^{a} d t
$$

The inequality should be interpreted appropriately if any of the integrals diverge. From Lemma 1 we will deduce the following variant.

Lemma 2. Let f and g be complex-valued functions which are regular in the strip $\alpha<\Re(z)<\beta$, and continuous for $\alpha \leq \Re(z) \leq \beta$. Let b and c be positive real numbers. Suppose that $|f(z)|^{b}|g(z)|^{c}$ and $|g(z)|$ tend to zero as $|\Im(z)| \rightarrow \infty$, uniformly for $\alpha \leq \Re(z) \leq \beta$. Set

$$
I(\eta):=\int_{-\infty}^{\infty}|f(\eta+i t)|^{b}|g(\eta+i t)|^{c} d t
$$

Then for any $\gamma \in[\alpha, \beta]$ we have

$$
\begin{equation*}
I(\gamma) \leq I(\alpha)^{(\beta-\gamma) /(\beta-\alpha)} I(\beta)^{(\gamma-\alpha) /(\beta-\alpha)} \tag{1}
\end{equation*}
$$

To deduce Lemma 2 from Lemma 1 we choose a rational number $p / q>$ c / b, and apply Lemma 1 with $F=f^{q} g^{p}$ and $a=b / q$. Since

$$
|F|=\left(|f|^{b}|g|^{c}\right)^{q / b}|g|^{p-c q / b}
$$

with $p-c q / b>0$, we deduce that $|F|$ tends to zero as $|\Im(z)| \rightarrow \infty$, uniformly for $\alpha \leq \Re(z) \leq \beta$. We then obtain an inequality of the same shape as (1), but with the exponent c replaced by $b p / q$. Lemma 2 then follows on choosing a sequence of rationals p_{n} / q_{n} tending downwards to c / b.

We now apply Lemma 2 to $J(\sigma, \chi)$. When $\sigma=3 / 2$ we have

$$
W(s) \ll q^{\delta} /(1+|t|)
$$

whence we trivially obtain

$$
J(3 / 2, \chi) \ll q^{6 \delta} .
$$

An immediate application of Lemma 2 therefore yields

$$
J(\sigma, \chi) \ll J(1 / 2, \chi)^{3 / 2-\sigma} q^{6 \delta(\sigma-1 / 2)}
$$

for $1 / 2 \leq \sigma \leq 3 / 2$, whence we trivially deduce that

$$
J(\sigma) \ll J(1 / 2)^{3 / 2-\sigma} q^{6 \delta(\sigma-1 / 2)},
$$

by Hölder's inequality. Since

$$
\begin{equation*}
J^{f} \leq\left(\frac{\log q}{q}\right)^{1-f}\left(\frac{q}{\log q}+J\right) \ll q^{-(1-\delta)(1-f)}\left(\frac{q}{\log q}+J\right) \tag{2}
\end{equation*}
$$

for any $J \geq 0$ and any $f \in[0,1]$, we conclude as follows.
Lemma 3. We have

$$
J(\sigma) \ll q^{-(1-7 \delta)(\sigma-1 / 2)}\left(\frac{q}{\log q}+J\left(\frac{1}{2}\right)\right)
$$

for $1 / 2 \leq \sigma \leq 3 / 2$.
To obtain a second estimate involving $J(\sigma, \chi)$ we use Lemma 2 to show that if $1 / 2 \leq \sigma \leq 3 / 4$ and $1-\sigma \leq \gamma \leq \sigma$ then

$$
J(\gamma, \chi) \leq J(\sigma, \chi)^{(\gamma-1+\sigma) /(2 \sigma-1)} J(1-\sigma, \chi)^{(\sigma-\gamma) /(2 \sigma-1)} .
$$

An application of Hölder's inequality then shows that

$$
J(\gamma) \leq J(\sigma)^{(\gamma-1+\sigma) /(2 \sigma-1)} J(1-\sigma)^{(\sigma-\gamma) /(2 \sigma-1)} .
$$

To handle $J(1-\sigma, \chi)$ we will use the functional equation for $L(s, \chi)$. If ψ is primitive, with conductor q_{1}, this yields

$$
L(1-\sigma+i t, \psi) \ll(1+|t|)^{\sigma-1 / 2} q_{1}^{\sigma-1 / 2}|L(\sigma+i t, \psi)|
$$

for $1 / 2 \leq \sigma \leq 3 / 4$ say. Thus if ψ induces a character χ modulo q we will have

$$
L(1-\sigma+i t, \chi) \ll(1+|t|)^{\sigma-1 / 2} q_{1}^{\sigma-1 / 2} \rho|L(\sigma+i t, \chi)|
$$

with

$$
\rho=\prod_{p \mid q_{2}} \frac{\left|1-\psi(p) p^{-\sigma-i t}\right|}{\left|1-\psi(p) p^{\sigma-1-i t}\right|},
$$

where $q_{2}=q / q_{1}$. Thus

$$
\log \rho \leq(2 \sigma-1) \sum_{p \mid q_{2}} \frac{\log p}{p^{1-\sigma}-1} .
$$

However

$$
\sum_{p \mid m} \frac{\log p}{p^{1 / 4}-1} \leq \frac{1}{2} \log m
$$

for all sufficiently large m, whence $\rho \ll q_{2}^{\sigma-1 / 2}$. We therefore conclude that

$$
L(1-\sigma+i t, \chi) \ll(1+|t|)^{\sigma-1 / 2} q^{\sigma-1 / 2}|L(\sigma+i t, \chi)|
$$

when $1 / 2 \leq \sigma \leq 3 / 4$, for any character χ modulo q, whether primitive or not.

We now deduce that
$J(1-\sigma, \chi) \ll q^{2 k(\sigma-1 / 2)} \int_{-\infty}^{\infty}|L(\sigma+i t, \chi)|^{2 k}(1+|t|)^{2 k(\sigma-1 / 2)}|W(1-\sigma+i t)|^{6} d t$.
The presence of the factor $(1+|t|)^{2 k(\sigma-1 / 2)}$ is inconvenient. However, since $0<k<2$ we have

$$
(1+|t|)^{2 k(\sigma-1 / 2)}|W(1-\sigma+i t)|^{6} \ll(\log q)^{-6}|t|^{-2}
$$

for $|t| \geq 1$ and $1 / 2 \leq \sigma \leq 1$. It follows that

$$
J(1-\sigma, \chi) \ll q^{2 k(\sigma-1 / 2)}\left(J(\sigma, \chi)+(\log q)^{-6} J^{*}(\sigma, \chi)\right),
$$

where

$$
J^{*}(\sigma, \chi):=\int_{-\infty}^{\infty}|L(\sigma+i t, \chi)|^{2 k} \frac{d t}{1+t^{2}}
$$

Thus

$$
J(1-\sigma) \ll q^{2 k(\sigma-1 / 2)}\left(J(\sigma)+(\log q)^{-6} J^{*}(\sigma)\right)
$$

with

$$
J^{*}(\sigma):=\sum_{\substack{\chi(\bmod q) \\ \chi \neq \chi_{0}}} \int_{-\infty}^{\infty}|L(\sigma+i t, \chi)|^{2 k} \frac{d t}{1+t^{2}}
$$

Finally we observe that

$$
\begin{aligned}
& J(\sigma)^{(\gamma-1+\sigma) /(2 \sigma-1)}\left\{J(\sigma)+(\log q)^{-6} J^{*}(\sigma)\right\}^{(\sigma-\gamma) /(2 \sigma-1)} \\
& \leq J(\sigma)+(\log q)^{-6} J^{*}(\sigma) .
\end{aligned}
$$

On comparing our results we therefore conclude that

$$
\begin{equation*}
J(\gamma) \ll q^{k(\sigma-\gamma)}\left(J(\sigma)+(\log q)^{-6} J^{*}(\sigma)\right) \tag{3}
\end{equation*}
$$

We now have to consider $J^{*}(\sigma)$. It was shown by Montgomery 4, Theorem 10.1] that

$$
\sum_{\chi(\bmod q)}^{*} \int_{-T}^{T}|L(1 / 2+i t, \chi)|^{4} d t \ll \phi(q) T(\log q T)^{4}
$$

for $T \geq 2$, where \sum^{*} indicates that only primitive characters are to be considered. (It should be noted that there is a misprint in the statement of [4. Theorem 10.1], in that $L(1 / 2+i t, \chi)$ should be replaced by $L(\sigma+i t, \chi)$. However we are only interested in the case $\sigma=1 / 2$. Moreover, in the proof
of [4, Theorem 10.1], at the top of page 83, the reference to Theorem 6.3 should be to Theorem 6.5.)

If χ is an imprimitive character modulo q, induced by a primitive character ψ with conductor q_{1}, then

$$
|L(1 / 2+i t, \chi)|^{4} \leq|L(1 / 2+i t, \psi)|^{4} \prod_{p \mid q, p \nmid q_{1}}\left(1+p^{-1 / 2}\right)^{4}
$$

Thus if $\sum^{(1)}$ indicates summation over all characters χ modulo q for which the conductor has a given value q_{1}, we will have

$$
\sum_{\chi}^{(1)} \int_{-T}^{T}|L(1 / 2+i t, \chi)|^{4} d t \ll \phi\left(q_{1}\right) T\left(\log q_{1} T\right)^{4} \prod_{p \mid q, p \nmid q_{1}}\left(1+p^{-1 / 2}\right)^{4}
$$

If we now sum for $q_{1} \mid q$ we obtain

$$
\sum_{\chi(\bmod q)} \int_{-T}^{T}|L(1 / 2+i t, \chi)|^{4} d t \ll T(\log q T)^{4} f(q)
$$

where

$$
f(q)=\sum_{q_{1} \mid q} \phi\left(q_{1}\right) \prod_{p \mid q, p \nmid q_{1}}\left(1+p^{-1 / 2}\right)^{4}
$$

The function f is multiplicative, with

$$
f\left(p^{e}\right)=\left(1+p^{-1 / 2}\right)^{4}+\phi(p)+\phi\left(p^{2}\right)+\cdots+\phi\left(p^{e}\right)=p^{e}\left(1+O\left(p^{-3 / 2}\right)\right)
$$

Thus $f(q) \ll q$ and we conclude that

$$
\sum_{\chi(\bmod q)} \int_{-T}^{T}|L(1 / 2+i t, \chi)|^{4} d t \ll q T(\log q T)^{4}
$$

We may now deduce that if $f(s)=L(s, \chi)^{2} s^{-1}$ then

$$
\sum_{\chi(\bmod q)} \int_{-\infty}^{\infty}|f(1 / 2+i t)|^{2} d t \ll q(\log q)^{4}
$$

Moreover the trivial bound $L(s, \chi) \ll 1$ for $\sigma=3 / 2$ shows that

$$
\sum_{\chi(\bmod q)} \int_{-\infty}^{\infty}|f(3 / 2+i t)|^{2} d t \ll q
$$

We can therefore apply Lemma 1, together with Hölder's inequality, to deduce that

$$
\sum_{\chi(\bmod q)} \int_{-\infty}^{\infty}|f(\sigma+i t)|^{2} d t \ll q(\log q)^{4}
$$

uniformly for $1 / 2 \leq \sigma \leq 3 / 2$. A final application of Hölder's inequality then implies that

$$
J^{*}(\sigma) \ll q(\log q)^{4} .
$$

We can now insert this into (3) and deduce
Lemma 4. We have

$$
J(\gamma) \ll q^{k(\sigma-\gamma)}\left(\frac{q}{\log q}+J(\sigma)\right)
$$

for $1 / 2 \leq \sigma \leq 1$ and $1-\sigma \leq \gamma \leq \sigma$.
We now turn our attention to $G(\sigma, \chi)$ and $H(\sigma, \chi)$. By Lemma 2 we have

$$
G(\sigma, \chi) \leq G(1 / 2, \chi)^{3 / 2-\sigma} G(3 / 2, \chi)^{\sigma-1 / 2} \quad(1 / 2 \leq \sigma \leq 3 / 2)
$$

for non-principal characters χ modulo q. We then find via Hölder's inequality that

$$
\begin{equation*}
G(\sigma) \leq G(1 / 2)^{3 / 2-\sigma} G(3 / 2)^{\sigma-1 / 2} \tag{4}
\end{equation*}
$$

Since

$$
W(3 / 2+i t) \ll q^{\delta}(1+|t|)^{-1}
$$

we see that

$$
G(3 / 2, \chi) \ll q^{6 \delta} \int_{-\infty}^{\infty}\left|L(3 / 2+i t, \chi)^{k}-S(3 / 2+i t, \chi)\right|^{2} \frac{d t}{1+|t|^{2}} .
$$

However

$$
L(3 / 2+i t, \chi)^{k}-S(3 / 2+i t, \chi)=\sum_{n>q} d_{k}(n) \chi(n) n^{-3 / 2-i t}
$$

whence

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|L(3 / 2+i t, \chi)^{k}-S(3 / 2+i t, \chi)\right|^{2} \frac{d t}{1+|t|^{2}} \\
& \quad=\pi \sum_{m, n>q} d_{k}(m) d_{k}(n) \chi(m) \overline{\chi(n)} \min \left(m^{-1 / 2} n^{-5 / 2}, n^{-1 / 2} m^{-5 / 2}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \sum_{\chi(\bmod q)} \int_{-\infty}^{\infty}\left|L(3 / 2+i t, \chi)^{k}-S(3 / 2+i t, \chi)\right|^{2} \frac{d t}{1+|t|^{2}} \\
& \quad=\pi \phi(q) \sum_{\substack{m, n>q \\
q \mid m-n,(m n, q)=1}} d_{k}(m) d_{k}(n) \min \left(m^{-1 / 2} n^{-5 / 2}, n^{-1 / 2} m^{-5 / 2}\right)
\end{aligned}
$$

To estimate this double sum we use the fact that $d_{k}(n) \ll_{\varepsilon} n^{\varepsilon}$ for any fixed $\varepsilon>0$. This leads to the bound

$$
\sum_{\substack{m, n>q \\ q \mid m-n}} d_{k}(m) d_{k}(n) \min \left(m^{-1 / 2} n^{-5 / 2}, n^{-1 / 2} m^{-5 / 2}\right) \ll \varepsilon q^{2 \varepsilon-2}
$$

It therefore follows that

$$
\sum_{\chi(\bmod q)} \int_{-\infty}^{\infty}\left|L(3 / 2+i t, \chi)^{k}-S(3 / 2+i t, \chi)\right|^{2} \frac{d t}{1+|t|^{2}} \ll \varepsilon q^{2 \varepsilon-1}
$$

Inserting this bound into (4) we obtain

$$
G(\sigma) \ll_{\varepsilon} G(1 / 2)^{3 / 2-\sigma} q^{(\sigma-1 / 2)(6 \delta+2 \varepsilon-1)}
$$

Using (2) again, we see that

$$
G(\sigma) \lll \varepsilon q^{1-2 \sigma+(7 \delta+2 \varepsilon)(\sigma-1 / 2)}\left(\frac{q}{\log q}+G(1 / 2)\right)
$$

for $\sigma \in[1 / 2,3 / 2]$. The positive number ε is at our disposal, and we choose it to be $\varepsilon=\delta / 2$, whence

$$
G(\sigma) \ll q^{-(1-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+G(1 / 2)\right) .
$$

The treatment of $H(\sigma, \chi)$ is similar. This time, since $k=1 / v$, we have

$$
\begin{aligned}
H(3 / 2, \chi) \leq & \left\{\int_{-\infty}^{\infty}|W(3 / 2+i t)|^{6} d t\right\}^{1-k} \\
& \times\left\{\int_{-\infty}^{\infty}\left|L(3 / 2+i t, \chi)-S(3 / 2+i t, \chi)^{v}\right|^{2}|W(3 / 2+i t)|^{6} d t\right\}^{k}
\end{aligned}
$$

by Hölder's inequality. The first integral on the right is trivially $O\left(q^{6 \delta}\right)$. Moreover

$$
L(3 / 2+i t, \chi)-S(3 / 2+i t, \chi)^{v}=\sum_{n>q} a_{k}(n) \chi(n) n^{-3 / 2-i t}
$$

with certain coefficients $a_{k}(n) \ll_{\varepsilon} n^{\varepsilon}$. The argument then proceeds as before, on noting that

$$
\sum_{\substack{m, n>q \\ q \mid m-n}} a_{k}(m) a_{k}(n) \min \left(m^{-1 / 2} n^{-5 / 2}, n^{-1 / 2} m^{-5 / 2}\right) \ll_{\varepsilon} q^{2 \varepsilon-2}
$$

It follows that
$\sum_{\chi(\bmod q)} \int_{-\infty}^{\infty}\left|L(3 / 2+i t, \chi)-S(3 / 2+i t, \chi)^{v}\right|^{2}|W(3 / 2+i t)|^{6} d t \ll q^{6 \delta+2 \varepsilon-1}$.

We then deduce, by the same line of argument as before, that

$$
H(\sigma) \ll q^{-(k-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+H(1 / 2)\right)
$$

for $\sigma \in[1 / 2,3 / 2]$.
We record these results formally in the following lemma.
Lemma 5. For $\sigma \in[1 / 2,3 / 2]$ we have

$$
\begin{aligned}
& G(\sigma) \ll q^{-(1-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+G(1 / 2)\right), \\
& H(\sigma) \ll q^{-(k-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+H(1 / 2)\right) .
\end{aligned}
$$

We end this section by considering $K(\sigma)$. We have

$$
K(\sigma) \leq \sum_{\chi(\bmod q)} K(\sigma, \chi)=\sum_{m, n \leq q} \frac{d_{k}(m) d_{k}(n)}{(m n)^{\sigma}} S(m, n) I(m, n),
$$

where

$$
S(m, n)=\sum_{\chi(\bmod q)} \chi(m) \overline{\chi(n)}, \quad I(m, n)=\int_{-\infty}^{\infty}\left(\frac{n}{m}\right)^{i t}|W(\sigma+i t)|^{6} d t .
$$

Evaluating the sum $S(m, n)$ we find that

$$
\begin{aligned}
\sum_{m, n \leq q} \frac{d_{k}(m) d_{k}(n)}{(m n)^{\sigma}} S(m, n) I(m, n) & =\phi(q) \sum_{\substack{m, n \leq q \\
q \mid m-n,(m n, q)=1}} \frac{d_{k}(m) d_{k}(n)}{(m n)^{\sigma}} I(m, n) \\
& =\phi(q) \sum_{\substack{n \leq q \\
(n, q)=1}} \frac{d_{k}(n)^{2}}{n^{2 \sigma}} \int_{-\infty}^{\infty}|W(\sigma+i t)|^{6} d t .
\end{aligned}
$$

We then observe that

$$
\sum_{\substack{n \leq q \\(n, q)=1}} \frac{d_{k}(n)^{2}}{n^{2 \sigma}} \leq \sum_{n \leq q} \frac{d_{k}(n)^{2}}{n} \ll(\log q)^{k^{2}}
$$

and that

$$
\int_{-\infty}^{\infty}|W(\sigma+i t)|^{6} d t \ll q^{3 \delta(2 \sigma-1)}(\log q)^{-1} .
$$

These bounds allow us to conclude as follows.
Lemma 6. For $1 / 2 \leq \sigma \leq 3 / 2$ we have

$$
K(\sigma) \ll \phi(q) q^{3 \delta(2 \sigma-1)}(\log q)^{k^{2}-1} .
$$

3. Proof of the theorems. By definition of $G(\sigma, \chi)$ and $H(\sigma, \chi)$ we have

$$
J(\sigma) \ll K(\sigma)+G(\sigma)
$$

under the Generalized Riemann Hypothesis, and

$$
J(\sigma) \ll K(\sigma)+H(\sigma)
$$

unconditionally. In view of Lemma 5 these produce

$$
J(\sigma) \ll K(\sigma)+q^{-(1-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+G(1 / 2)\right)
$$

and

$$
J(\sigma) \ll K(\sigma)+q^{-(k-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+H(1 / 2)\right)
$$

respectively. However we also have

$$
G(1 / 2) \ll K(1 / 2)+J(1 / 2) \quad \text { and } \quad H(1 / 2) \ll K(1 / 2)+J(1 / 2)
$$

from the definitions again, so that

$$
J(\sigma) \ll K(\sigma)+q^{-(1-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+K(1 / 2)+J(1 / 2)\right)
$$

and

$$
J(\sigma) \ll K(\sigma)+q^{-(k-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+K(1 / 2)+J(1 / 2)\right)
$$

in the two cases respectively.
If we now call on Lemma 6 then we find that

$$
\begin{aligned}
J(\sigma) & \ll \phi(q) q^{3 \delta(2 \sigma-1)}(\log q)^{k^{2}-1}+q^{-(1-4 \delta)(2 \sigma-1)}\left(\frac{q}{\log q}+J(1 / 2)\right) \\
& \ll q^{4 \delta(2 \sigma-1)}\left(\phi(q)(\log q)^{k^{2}-1}+q^{1-2 \sigma} J(1 / 2)\right)
\end{aligned}
$$

under the Generalized Riemann Hypothesis, since

$$
\begin{equation*}
\frac{q}{\log q} \ll \phi(q)(\log q)^{k^{2}-1} \tag{5}
\end{equation*}
$$

for $0<k<2$. Similarly we have

$$
J(\sigma) \ll q^{4 \delta(2 \sigma-1)}\left(\phi(q)(\log q)^{k^{2}-1}+q^{k(1-2 \sigma)} J(1 / 2)\right)
$$

unconditionally.
Finally we apply Lemma 4 with $\gamma=\frac{1}{2}$ and use (5) again to deduce that

$$
J(\sigma) \ll q^{4 \delta(2 \sigma-1)}\left(\phi(q)(\log q)^{k^{2}-1}+q^{-(2-k)(\sigma-1 / 2)} J(\sigma)\right)
$$

under the Generalized Riemann Hypothesis. Similarly we may derive the unconditional bound

$$
J(\sigma) \ll q^{4 \delta(2 \sigma-1)}\left(\phi(q)(\log q)^{k^{2}-1}+q^{-k(\sigma-1 / 2)} J(\sigma)\right)
$$

We are now ready to choose our value of δ. For Theorem 1 we take

$$
\begin{equation*}
\delta=(2-k) / 10, \tag{6}
\end{equation*}
$$

and for Theorem 2 we choose

$$
\begin{equation*}
\delta=k / 10 \tag{7}
\end{equation*}
$$

Then in either case we will have

$$
J(\sigma) \ll q^{4 \delta(2 \sigma-1)} \phi(q)(\log q)^{k^{2}-1}+q^{-\delta(2 \sigma-1)} J(\sigma) .
$$

We write c_{k} for the implied constant in this last estimate, and note that c_{k} depends only on k. We then take

$$
\sigma=\sigma_{0}:=\frac{1}{2}+\frac{\kappa}{\log q}
$$

with

$$
\kappa=(2 \delta)^{-1} \max \left(1, \log 2 c_{k}\right) .
$$

These choices ensure that

$$
c_{k} q^{-\delta\left(2 \sigma_{0}-1\right)} \leq 1 / 2,
$$

and hence imply that

$$
J\left(\sigma_{0}\right) \ll q^{4 \delta\left(2 \sigma_{0}-1\right)} \phi(q)(\log q)^{k^{2}-1} \ll \phi(q)(\log q)^{k^{2}-1} .
$$

Finally, we may apply Lemma 4 to deduce the following
Lemma 7. With σ_{0} as above we have

$$
J(\gamma) \ll \phi(q)(\log q)^{k^{2}-1}
$$

uniformly for $1-\sigma_{0} \leq \gamma \leq \sigma_{0}$.
All that remains is to bound $M_{k}(q)$ from above, using averages of $J(\gamma)$. Since $|L(s, \chi)|^{2 k}$ is subharmonic we have

$$
|L(1 / 2, \chi)|^{2 k} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|L\left(1 / 2+r e^{i \theta}, \chi\right)\right|^{2 k} d \theta .
$$

We now multiply by r and integrate for $0 \leq r \leq R$ to show that

$$
|L(1 / 2, \chi)|^{2 k} \leq \frac{1}{\operatorname{Meas}(D)} \int_{D}|L(1 / 2+z, \chi)|^{2 k} d A,
$$

where $D=D(0, R)$ is the disc of radius R about the origin, and $d A$ is the measure of area. We take

$$
R=\frac{\min \left(\kappa, \delta^{-1}\right)}{\log q}
$$

so that if $z \in D$ then $1-\sigma_{0} \leq \Re(1 / 2+z) \leq \sigma_{0}$ and $|W(1 / 2+z)| \gg 1$. It follows that

$$
\int_{D}|L(1 / 2+z, \chi)|^{2 k} d A \ll \int_{1-\sigma_{0}}^{\sigma_{0}} J(\gamma, \chi) d \gamma
$$

whence

$$
M_{k}(q) \ll \frac{1}{\operatorname{Meas}(D)} \int_{1-\sigma_{0}}^{\sigma_{0}} J(\gamma) d \gamma .
$$

Since $\operatorname{Meas}(D) \gg(\log q)^{-2}$ we now deduce from Lemma 7 that

$$
M_{k}(q) \ll \phi(q)(\log q)^{k^{2}}
$$

as required.

References

[1] J. B. Conrey and A. Ghosh, On mean values of the zeta-function, Mathematika 31 (1984), 159-161.
[2] R. M. Gabriel, Some results concerning the integrals of moduli of regular functions along certain curves, J. London Math. Soc. 2 (1927), 112-117.
[3] D. R. Heath-Brown, Fractional moments of the Riemann zeta-function, ibid. 24 (1981), 65-78.
[4] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971.
[5] K. Ramachandra, Some remarks on the mean value of the Riemann zeta function and other Dirichlet series, II, Hardy-Ramanujan J. 3 (1980), 1-24.
[6] -, Some remarks on the mean value of the Riemann zeta function and other Dirichlet series, III, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 145-158.
[7] Z. Rudnick and K. Soundararajan, Lower bounds for moments of L-functions, Proc. Nat. Acad. Sci. U.S.A. 102 (2005), 6837-6838.
[8] K. Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at $s=\frac{1}{2}$, Ann. of Math. (2) 152 (2000), 447-488.
[9] -, Moments of the Riemann zeta function, ibid. 170 (2009), 981-993.
D. R. Heath-Brown

Mathematical Institute
$24-29$, St. Giles'
Oxford OX1 3LB, UK
E-mail: rhb@maths.ox.ac.uk

[^0]: 2010 Mathematics Subject Classification: Primary 11M06.
 Key words and phrases: Dirichlet L-function, average over characters, critical point, fractional moment, upper bound.

