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1. Introduction. Let, for |q| < 1, the Rogers–Ramanujan continued
fraction R(q) be defined by

(1.1) R(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + . . .

Also define

(1.2) S(q) := −R(−q).
This famous continued fraction was introduced by L. J. Rogers in 1894 and
rediscovered by S. Ramanujan in approximately 1912. In his first letter to
G. H. Hardy [15, p. xxvii], [7, p. 29], Ramanujan gave the first non-elemen-
tary evaluations of R(q) and S(q), namely,

(1.3) R(e−2π) =

√
5 +
√

5
2

−
√

5 + 1
2

and

(1.4) S(e−π) =

√
5−
√

5
2

−
√

5− 1
2

.

In his second letter to Hardy [15, p. xxviii], [7, p. 57], Ramanujan further
asserted that

(1.5) R(e−2π
√

5) =

√
5

1 +
(
53/4

(√5−1
2

)5/2 − 1
)1/5 −

√
5 + 1
2

.

These evaluations were first proved by G. N. Watson [17, 18], and K. G.
Ramanathan [9] also established (1.5).

Ramanujan recorded other values for R(q) and S(q) in his first notebook
[14] and in his “lost notebook” [16]. Several of these results were proved
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by Ramanathan [10, 11, 12]. He first made the evaluations of R(e−2π
√
n)

and S(e−π
√
n) for several rational numbers n in a uniform way by using

Kronecker’s limit formula, and he also established further evaluations not
claimed by Ramanujan. However, Ramanathan’s method cannot be applied
to all the values of R(q) stated by Ramanujan becauseK = Q(

√−n) satisfies
the conditions usually imposed with regard to genera.

B. C. Berndt, H. H. Chan, and L.-C. Zhang [6] derived the first formulas
for the explicit evaluations of R(e−2π

√
n) and S(e−π

√
n) for positive rational

numbers n in terms of Ramanujan–Weber class invariants. Also they have
proved [6] that, for any rational number n, R(e−π

√
n) and S(e−π

√
n) are

units.
In this paper, we establish two theorems for evaluating R(e−2π

√
n) and

S(e−π
√
n) for any positive rational numbers n by using modular equations

relating to degree 5 or 25. By using these theorems we will find simple proofs
for some known values for R(q), e.g., R(e−6π). Also we will find new values
for R(e−2π

√
n) and S(e−π

√
n) for certain positive rational numbers n. For

example,

R(e−π) = 1
2

√
40− 25 4

√
5 + 18

√
5− 11 4

√
53 − 1

4 (7− 5 4
√

5 + 3
√

5− 4
√

53)

= 1
8 (3 +

√
5)( 4
√

5− 1)(
√

10 + 2
√

5− (3 + 4
√

5)( 4
√

5− 1)).

In Section 2, we present some modular equations discovered by Ramanu-
jan and new modular equations which we found. We give proofs of the new
modular equations.

In Section 3, we establish a theorem for evaluating R(e−2π
√
n) and

S(e−π
√
n) for any positive rational numbers n by using modular equations of

degree 1, p, 25, and 25p where p is a positive integer, and establish old and
new values of R(q) and S(q) by using that theorem. First, we define parame-
ters Jn and Dn and then we find relations between Jn and Jkn and between
Dn and Dkn for k= p2, where p is an integer, and for rational n, by using
modular equations. By using these values and Theorem 3.1, we determine
values of R(e−2π

√
n) and S(e−π

√
n) for certain positive rational numbers n.

In the final section, we establish a theorem for evaluating R(e−2π
√
n) and

S(e−π
√
n) for any positive rational numbers n by using modular equations

of degree 1, p, 5, and 5p where p is a positive integer, and compute old and
new values of R(q) and S(q) by using that Theorem 4.1. We use a method
similar to that of Section 3, but with different parameters sn and tn. We use
modular equations for finding relations between sn and skn and between tn
and tkn for k = p2, where p is an integer and n is rational.

In summary, we give new proofs of values found by Ramanujan in The-
orem 3.9(ii), Corollaries 3.3, 3.6(i), 3.8(i), 3.16(i), 3.18(i), 3.20(i), 4.3(ii),
4.6(i), 4.12(i), (iii), and 4.21(iii). The values in Theorems 3.21, 4.7(ii), (iv),
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Corollaries 3.6(ii), 3.8(ii), 3.10, 3.14, 3.16(ii), 3.18(ii), 3.20(ii), 3.22, 4.3(i),
4.6(ii), (iii), (iv), 4.10, 4.12(ii), (iv), 4.15, 4.17, 4.21(i), (ii), and (iv) are
new. Further values of R(e−2π

√
n) and S(e−π

√
n) can be calculated by using

the theorems in this paper. We do not record these values here, because
evidently they are not particularly elegant. For example, we can find D3/25

and D1/75 by using Theorem 3.24 with n = 3/25 and n = 1/75, and us-
ing D3 and D1/3 in Theorem 3.17, respectively, and so we can determine

S(e−π
√

3/25) and S(e−π/
√

75) by using Theorem 3.1(ii). Since D1/n = Dn

(see Remark 1), we can also determine D25/3 and D75 and thereby explicitly

calculate S(e−π
√

25/3) and S(e−5π
√

3) by using Theorem 3.1(ii). Further-
more, we can find J1/25 and J25 with n = 1 in Theorem 3.23, and so by
using Theorem 3.1(i), we can determine R(e−2π/5) and R(e−10π).

S.-Y. Kang [8] has recorded a table of all known values of the Rogers–
Ramanujan continued fraction up until the time her paper was written
in 1999.

Recall the reciprocity theorems for the Rogers–Ramanujan continued
fraction stated by Ramanujan [16] in his second letter to Hardy and his
second notebook [14], [1, p. 83], that is, if α, β > 0 and αβ = 1, then

(1.6)
{√

5 + 1
2

+R(e−2πα)
}{√

5 + 1
2

+R(e−2πβ)
}

=
5 +
√

5
2

.

Second, if α, β > 0 and αβ = 1/5, then [16, p. 364]

(1.7)
{(√

5 + 1
2

)5

+R5(e−2πα)
}{(√

5 + 1
2

)5

+R5(e−2πβ)
}

= 5
√

5
(√

5 + 1
2

)5

.

There are similar formulas for S(q). First, if α, β > 0 and αβ = 1, then

(1.8)
{√

5− 1
2

+ S(e−πα)
}{√

5− 1
2

+ S(e−πβ)
}

=
5−
√

5
2

,

which can be found in Ramanujan’s second notebook [14], [1, p. 83] and
which was first proved by Ramanathan [9]. Second, if α, β > 0 and αβ = 1/5,
then

(1.9)
{(√

5− 1
2

)5

+ S5(e−πα)
}{(√

5− 1
2

)5

+ S5(e−πβ)
}

= 5
√

5
(√

5− 1
2

)5

,

which was first established by Ramanathan [9].
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We complete this section by defining, after Ramanujan,

(1.10) f(−q) := (q; q)∞ =: q−1/24η(z), q = e2πiz , Im z > 0,

where

(a; q)∞ :=
∞∏

n=0

(1− aqn), |q| < 1,

and where η(z) denotes the Dedekind eta-function.

2. Modular equations. This section is devoted to stating and proving
certain modular equations which we will use in what follows. Most of them
were first recorded by Ramanujan in his notebooks [14].

Theorem 2.1 (see [2, p. 206, Entry 53]). Let

P =
f(−q)

q1/6f(−q5)
and Q =

f(−q2)
q1/3f(−q10)

.

Then

PQ+
5
PQ

=
(
P

Q

)3

+
(
Q

P

)3

.

Theorem 2.2 (see [2, p. 223, Entry 63]). Let

P =
f(−q)

q1/6f(−q5)
and Q =

f(−q3)
q1/2f(−q15)

.

Then

(2.1) (PQ)3 +
(

5
PQ

)3

=
(
Q

P

)6

− 9
(
Q

P

)3

− 9
(
P

Q

)3

−
(
P

Q

)6

.

Theorem 2.3. Let

P =
f(−q)

q1/6f(−q5)
and Q =

f(−q5)
q5/6f(−q25)

.

Then

(PQ)2 +
(

5
PQ

)2

+ 5
(
PQ+

5
PQ

)
=
(
Q

P

)3

− 15.

Proof. From (11.7) and (11.8) [1, p. 268], we can deduce that

f6(−q5)
q5f6(−q25)

=
f5(−q)

q5f5(−q25)
+ 5

f4(−q)
q4f4(−q25)

+ 15
f3(−q)

q3f3(−q25)

+ 25
f2(−q)

q2f2(−q25)
+ 25

f(−q)
qf(−q25)

.

Multiplying both sides by q3f3(−q25)/f3(−q), we complete the proof.
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Theorem 2.4. Let

P =
f(−q)

q1/6f(−q5)
and Q =

f(−q7)
q7/6f(−q35)

.

Then

(PQ)3 +
(

5
PQ

)3

=
(
Q

P

)4

−
(
P

Q

)4

− 7
{(

Q

P

)3

+
(
P

Q

)3}

+ 7
{(

Q

P

)2

−
(
P

Q

)2}
+ 14

(
Q

P
+
P

Q

)
.

A proof of Theorem 2.4 was given by Berndt [4].

Theorem 2.5 (see [2, pp. 212–213, Entry 58]). Let

P =
f(−q1/5)
q1/5f(−q5)

and Q =
f(−q2/5)

q2/5f(−q10)
.

Then

PQ+
25
PQ

=
(
Q

P

)3

− 4
(
Q

P

)2

− 4
(
P

Q

)2

+
(
P

Q

)3

and
(PQ)2 + 5PQ = P 3 − 2P 2Q− 2PQ2 +Q3.

Theorem 2.6. Let

P =
f(−q1/5)
q1/5f(−q5)

and Q =
f(−q3/5)

q3/5f(−q15)
.

Then

PQ+
25
PQ

=
(
P

Q

)2

+
(
Q

P

)2

− 6
(
P

Q
+
Q

P

)
− 3
(
Q+

5
Q

)
− 3
(
P +

5
P

)
− 9.

Proof. Multiplying both sides of (2.1) by P 6Q6 (in the notation of The-
orem 2.2), solving for Q12 − P 12, and then squaring both sides, we find
that

X24 + Y 24 = 15625X6Y 6 + 2250(X12Y 6 +X6Y 12)(2.2)

+ 81(X18Y 6 +X6Y 18) + 414X12Y 12

+ 18(X18Y 12 +X12Y 18) +X18Y 18,

where

X =
f(−q)

q1/6f(−q5)
and Y =

f(−q3)
q1/2f(−q15)

.

From (11.7) and (11.8) in Chapter 19 of [2, p. 268], we can deduce that

(2.3) X6 = P 5 + 5P 4 + 15P 3 + 25P 2 + 25P

and
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(2.4) Y 6 = Q5 + 5Q4 + 15Q3 + 25Q2 + 25Q.

By using (2.3) and (2.4) in (2.2), we find that f(P,Q)g(P,Q) = 0, where

g(P,Q) = P 4 − 25PQ− 15P 2Q− 6P 3Q− 15PQ2 − 9P 2Q2

− 3P 3Q2 − 6PQ3 − 3P 2Q3 − P 3Q3 +Q4

and f(P,Q) is a polynomial in P and Q of total degree 24, and f(P,Q) > 0
for 0 < q < 1. So

(2.5) g(P,Q) = 0.

By dividing (2.5) by P 2Q2, we complete the proof.

Another proof of Theorem 2.6 was given by Berndt [4] by using modular
forms.

Theorem 2.7. Let

P =
f(−q1/5)
q1/5f(−q5)

and Q =
f(−q)

qf(−q25)
.

Then(
Q

P

)3

− 25
(
Q

P

)2

− 125
(
Q

P

)
− 225− 125

(
P

Q

)
− 25

(
P

Q

)2

= (PQ)2 +
(

25
PQ

)2

+ 25
(
PQ+

25
PQ

)
+ 5
(
P 2 +

25
P 2

)(
Q+

5
Q

)

+ 5
(
Q2 +

25
Q2

)(
P +

5
P

)
+ 15

(
P 2 +

25
P 2

)
+ 15

(
Q2 +

25
Q2

)

+ 75
(
P +

5
P

)
+ 75

(
Q+

5
Q

)
.

Proof. From Theorem 2.3, we find that

P 2 +
25
P 2 + 5

(
P +

5
P

)
+ 15 =

f6(−q)
q2/5f3(−q1/5)f3(−q5)

,(2.6)

Q2 +
25
Q2 + 5

(
Q+

5
Q

)
+ 15 =

f6(−q5)
q2f3(−q)f3(−q25)

.(2.7)

By multiplying (2.6) and (2.7), we find that
(
P 2 +

25
P 2 + 5

(
P +

5
P

)
+ 15

)(
Q2 +

25
Q2 + 5

(
Q+

5
Q

)
+ 15

)

=
f3(−q)f3(−q5)

q12/5f3(−q1/5)f3(−q25)
=
(
Q

P

)3

.

So the proof is complete.
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3. Formulas and values for R(q) and S(q) from modular equa-
tions of degree 25p. We shall use the following relation discovered by
Ramanujan [1, p. 267, (11.5)], and proved by Watson [17]:

(3.1)
1

R(q)
− 1−R(q) =

f(−q1/5)
q1/5f(−q5)

.

Replacing q by −q, we have

(3.2)
1

S(q)
+ 1− S(q) =

f(q1/5)
q1/5f(q5)

.

Theorem 3.1. For q = e−2π
√
n, let

Jn =
f(−q1/5)√

5 q1/5f(−q5)
.

Then

(i) R(e−2π
√
n) =

√
c2 + 1− c, where 2c =

√
5Jn + 1.

Similarly , for q = e−π
√
n, let

Dn =
f(q1/5)√

5 q1/5f(q5)
.

Then

(ii) S(e−π
√
n) =

√
d2 + 1− d, where 2d =

√
5Dn − 1.

Proof. (i) From (3.1), we have

R2(q) + (
√

5Jn + 1)R(q)− 1 = 0.

Solving for R(q) and noting that R(q) > 0, we complete the proof.
(ii) Similarly, from (3.2), we have

S2(q) + (
√

5Dn − 1)S(q)− 1 = 0.

Solving for S(q) and noting that S(q) > 0, we complete the proof.

Theorem 3.2. We have

J1 = 1,(i)

D1 = 1.(ii)

Proof. (i) From [1, p. 43, Entry 27(iii)], for α, β > 0 and αβ = π2,

(3.3) e−α/12α1/4f(−e−2α) = e−β/12β1/4f(−e−2β).

Setting α = π/5 and β = 5π, we deduce that

J1 =
e2π/5f(−e2π/5)√

5 f(−e−10π)
= 1.
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(ii) From [1, p. 43, Entry 27(iv)], for α, β > 0 and αβ = π2,

(3.4) e−α/24α1/4f(e−α) = e−β/24β1/4f(e−β).

Setting α = π/5 and β = 5π, we deduce that

D1 =
eπ/5f(e−π/5)√

5 f(q−5π)
= 1.

Corollary 3.3. We have

R(e−2π) =

√
5 +
√

5
2

−
√

5 + 1
2

,(i)

S(e−π) =

√
5−
√

5
2

−
√

5− 1
2

.(ii)

Proof. (i) We apply Theorem 3.1. From Theorem 3.2(i),

c = 1
2 (
√

5J1 + 1) = 1
2 (
√

5 + 1).

Thus √
c2 + 1 =

√
1
4 (6 + 2

√
5) + 1 =

√
1
2 (5 +

√
5).

Applying Theorem 3.1(i), we complete the proof.
(ii) From Theorem 3.2(ii),

d = 1
2 (
√

5D1 − 1) = 1
2 (
√

5− 1).

Thus √
d2 + 1 =

√
1
4 (6− 2

√
5) + 1 =

√
1
2 (5−

√
5).

Applying Theorem 3.1(ii), we complete the proof.

Remark 1. We note that it is easily seen from the definition of Jn and
(3.3) that J1/n = 1/Jn. Also we note that it is easily seen from the definition
of Dn and (3.4) that D1/n = 1/Dn.

Theorem 3.4. If Jn is as defined in Theorem 3.1, then

5
(
JnJ4n +

1
JnJ4n

)
=
(
J4n

Jn

)3

+
(
Jn
J4n

)3

− 4
{(

J4n

Jn

)2

+
(
Jn
J4n

)2}
,(i)

√
5(JnJ4n)2 +

√
5JnJ4n = J3

n + J3
4n − 2JnJ4n(Jn + J4n).(ii)

Proof. The theorem follows directly from Theorem 2.5 and the definition
of Jn.

Remark 2. Theorem 3.4 implies that if we know Jn, then we can com-
pute J4n or Jn/4, that is, if we know R(e−2π

√
n), then we can also determine

R(e−4π
√
n) or R(e−π

√
n).
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Theorem 3.5. We have

J2 = 1
2 (a+ b+

√
a2 + b2 − 2/3)

where a = (
√

5 +
√

30/9)1/3 and b = (
√

5−
√

30/9)1/3.

Proof. Putting n = 1/2 in (ii) of Theorem 3.4, setting A = J2 + J−1
2 ,

and recalling that J1/n = 1/Jn, we find that

2
√

5 = A3 − 3A− 2A = A3 − 5A.

Since A is real-valued,

A =
(√

5 +

√
30
9

)1/3

+
(√

5−
√

30
9

)1/3

.

Hence

J2
2 −

{(√
5 +

√
30
9

)1/3

+
(√

5−
√

30
9

)1/3}
J2 + 1 = 0,

which gives the result.

Remark 3. If Jn+1/Jn = A, then J1/n+1/J1/n = A since J1/n = 1/Jn.
So Jn and J1/n are the solutions of the equation x2 −Ax+ 1 = 0. Since Jn
is increasing in n, Jn > J1/n when n ≥ 1. Thus we conclude that

Jn = 1
2 (A+

√
A2 − 4) and J1/n = 1

2 (A−
√
A2 − 4).

Example 1. Using Theorem 3.5 and Remark 3, we find that

J1/2 = 1
2 (a+ b−

√
a2 + b2 − 2/3),

where a = (
√

5 +
√

30/9)1/3 and b = (
√

5−
√

30/9)1/3.

Corollary 3.6. We have

(i) R(e−2π
√

2) =
√
c2 + 1− c, where 2c =

√
5J2 + 1,

and J2 is given in Theorem 3.5. Furthermore,

(ii) R(e−π
√

2) =
√
c2 + 1− c, where 2c =

√
5J1/2 + 1.

Proof. For the proof of (i), use Theorems 3.1 and 3.5; for the proof of
(ii), use Theorem 3.1 and Example 1 above.

Theorem 3.7. We have

J4 = 1
2 (3 + 4

√
5 +
√

5 +
4
√

53) =
4
√

5 + 1
4
√

5− 1
,(i)

J1/4 = 1
2 (3− 4

√
5 +
√

5− 4
√

53) =
4
√

5− 1
4
√

5 + 1
.(ii)
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Proof. For the proof of (i), setting n = 1 in (i) of Theorem 3.4, using
Theorem 3.2(i), and putting A = J4 + J−1

4 , we find that

5A = A3 − 3A− 4(A2 − 2).

Thus
(A+ 2)(A2 − 6A+ 4) = 0.

Since Jn is positive and increasing in n, we have J4 > J2 > 2. Hence
A = 3 +

√
5 and

J4 = 1
2 (3 +

√
5 +

√
10 + 6

√
5) = 1

2 (3 +
√

5 + 4
√

5 +
4
√

53)

=
(3 +

√
5 + 4
√

5 + 4
√

53)( 4
√

5− 1)

2( 4
√

5− 1)
=

4
√

5 + 1
4
√

5− 1
.

For the proof of (ii), use Remarks 1 and 3 in the result of J4.

Corollary 3.8. We have

R(e−4π) =
√
c2 + 1− c, where 2c =

√
5 J4 + 1,(i)

R(e−π) =
√
c2 + 1− c, where 2c =

√
5 J1/4 + 1.(ii)

Proof. Parts (i) and (ii) follow from Theorems 3.1 and 3.7.

Theorem 3.9. We have

J16 = 1
4 (2 + 4

√
20)(17 + 11 4

√
5 + 7

√
5 + 5

4
√

53),(i)

R(e−8π) =
√
c2 + 1− c, where 2c =

√
5J16 + 1.(ii)

Proof. We know the value of J4 from Theorem 3.7, and so by using (ii)
of Theorem 3.4 with n = 4, we can find the value of J16. It follows that
the value of R(e−8π) can be found by Theorem 3.1(i). Now we shall show
how to find the value of J16 by applying Theorem 3.4(ii). Let n = 4 in
Theorem 3.4(ii) to deduce that

J3
16 − (

√
5J2

4 + 2J4)J2
16 − (

√
5J4 + 2J2

4 )J16 + J3
4 = 0.

Now putting J4 = 1
2 (3 + 4

√
5 +
√

5 + 4
√

53) in the preceding equation, we find
that

1
2 (J16 − 1){2J2

16 − 2(17 + 11 4
√

5 + 7
√

5 + 5
4
√

53)J16

− (63 + 43 4
√

5 + 29
√

5 + 19
4
√

53)} = 0.

Since J16 > 1,

J16 =
1
2

(17 + 11 4
√

5 + 7
√

5 + 5
4
√

53+
√

1210 + 810 4
√

5 + 542
√

5 + 362 4
√

53 )

=
1
2

{
17 + 11 4

√
5 + 7

√
5 + 5

4
√

53 +
1√
2

(25 + 17 4
√

5 + 11
√

5 + 7
4
√

53)
}
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=
1
2

(17 + 11 4
√

5 + 7
√

5 + 5
4
√

53)
(

1 +
4
√

5√
2

)

=
1
4

(2 + 4
√

20)(17 + 11 4
√

5 + 7
√

5 + 5
4
√

53).

So we complete the proof of (i). Part (ii) follows from Theorem 3.1(i) and
part (i).

Remark 4. In his first notebook [13], Ramanujan recorded the value
R(e−8π) =

√
c2 + 1− c, where

2c = 1 +
√

5
3 +
√

2−
√

5 + 4
√

20

3 +
√

2−
√

5− 4
√

20
.

The first proof was given by Berndt and Chan [3, 5].

Corollary 3.10. We have

J1/16 = 1
4 (2− 4

√
20)(17− 11 4

√
5 + 7

√
5− 5

4
√

53),(i)

R(e−π/2) =
√
c2 + 1− c, where 2c =

√
5 J1/16 + 1.(ii)

Proof. For the proof of (i), use Theorem 3.9 and Remark 3. Then part
(ii) follows from Theorem 3.1 and part (i).

Theorem 3.11. We have

5
(
JnJ9n +

1
JnJ9n

)
=
(
J9n

Jn

)2

+
(
Jn
J9n

)2

− 6
(
J9n

Jn
+

Jn
J9n

)

− 3
√

5
(
J9n +

1
J9n

)
− 3
√

5
(
Jn +

1
Jn

)
− 9.

Proof. The result follows directly from Theorem 2.6 and the definition
of Jn.

Remark 5. By Theorem 3.11, we can compute J9n or Jn/9 if we know
Jn, i.e., if we know R(e−2π

√
n), then the value of R(e−6π

√
n) or R(e−2π

√
n/3)

can be computed.

Theorem 3.12. We have

5
(
DnD9n +

1
DnD9n

)
=
(
D9n

Dn

)2

+
(
Dn

D9n

)2

− 6
(
D9n

Dn
+

Dn

D9n

)

+ 3
√

5
(
D9n +

1
D9n

)
+ 3
√

5
(
Dn +

1
Dn

)
− 9.

Proof. Replacing q by −q in Theorem 2.6 and using the definition of Dn

yields the assertion.
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Remark 6. By Theorem 3.12, if we know Dn, then we can find D9n

or Dn/9, which implies that if we know S(e−π
√
n), then we can compute

S(e−3π
√
n) or S(e−π

√
n/3).

Theorem 3.13. We have

J3 = 1
2 (1 + 3

√
10 +

√
5 + 2 3

√
10 +

3
√

102),(i)

J1/3 = 1
2 (−1− 3

√
10 +

√
5 + 2 3

√
10 +

3
√

102).(ii)

Proof. Letting n = 1/3 in Theorem 3.11 and putting A = J2
3 + J−2

3 , we
find that

10 = (A2 − 2)− 6A− 6
√

5
√
A+ 2− 9,

since J1/n = 1/Jn. Hence

(A− 3)(A3 − 9A2 − 33A− 27) = 0.

Since A > J2
3 > J2

2 > 3 and A is real,

A = 3 + 2 3
√

10 +
3
√

102 = (1 + 3
√

10)2 + 2.

Now, since (J3 − J−1
3 )2 = J2

3 + J−2
3 − 2 = (1 + 3

√
10)2 and J3 − J−1

3 > 0, it
follows that J3 − J−1

3 = 1 + 3
√

10, from which we complete the proof of (i).
Since J1/3 = 1/J3, we can easily deduce (ii) from the foregoing equality.

Corollary 3.14. We have

R(e−2
√

3π) =
√
c2 + 1− c, where 2c =

√
5J3 + 1,(i)

R(e−2π/
√

3) =
√
c2 + 1− c, where 2c =

√
5J1/3 + 1.(ii)

Proof. Parts (i) and (ii) follow from Theorems 3.1 and 3.13.

Theorem 3.15. We have

J9 = 1
4{11 + 3

√
5 + 5

√
3 + 3

√
15 + 4

√
60(4 + 2

√
3 +
√

5 +
√

15)}(i)

=
4
√

60 + 2−
√

3 +
√

5
4
√

60− 2 +
√

3−
√

5
,

J1/9 = 1
4{11 + 3

√
5 + 5

√
3 + 3

√
15− 4

√
60(4 + 2

√
3 +
√

5 +
√

15)}(ii)

=
4
√

60− 2 +
√

3−
√

5
4
√

60 + 2−
√

3 +
√

5
.

Proof. Setting n = 1 and J9 + J−1
9 = A in Theorem 3.11 and using

Theorem 3.2(i), we have

5A = A2 − 2− 6A− 3
√

5A− 6
√

5− 9.

Hence

A = 1
2{(11 + 3

√
5)±

√
30(7 + 3

√
5)} = 1

2{(11 + 3
√

5)±
√

15(3 +
√

5)}.
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Since A > 0, J9 + J−1
9 = 1

2 (11 + 3
√

5 + 5
√

3 + 3
√

15). Thus

J9 = 1
4{11 + 3

√
5 + 5

√
3 + 3

√
15 + 2

√
(90 + 50

√
3 + 39

√
5 + 24

√
15)}

= 1
4{11 + 3

√
5 + 5

√
3 + 3

√
15 + 4

√
60(4 + 2

√
3 +
√

5 +
√

15)},
and using Remark 3, we find that

J1/9 = 1
4{11 + 3

√
5 + 5

√
3 + 3

√
15− 2

√
(90 + 50

√
3 + 39

√
5 + 24

√
15)}

= 1
4{11 + 3

√
5 + 5

√
3 + 3

√
15− 4

√
60(4 + 2

√
3 +
√

5 +
√

15)}.
Also

{11 + 3
√

5+ 5
√

3+ 3
√

15+ 4
√

60(4 + 2
√

3+
√

5+
√

15)}{ 4
√

60−2 +
√

3−
√

5}
= 8− 4

√
3 + 4

√
5 + 4 4

√
60.

Thus

J9 =
8− 4

√
3 + 4

√
5 + 4 4

√
60

4( 4
√

60− 2 +
√

3−
√

5)
=

4
√

60 + 2−
√

3 +
√

5
4
√

60− 2 +
√

3−
√

5
.

Using Remark 1, we complete the proof.

Corollary 3.16. We have

R(e−6π) =
√
c2 + 1− c, where 2c =

√
5J9 + 1,(i)

R(e−2π/3) =
√
c2 + 1− c, where 2c =

√
5J1/9 + 1.(ii)

Proof. Parts (i) and (ii) follow from Theorems 3.1 and 3.15.

Berndt and Chan [3, 5] gave another proof of (i).

Theorem 3.17. We have

D3 =

√
5 + 1
2

,(i)

D1/3 =

√
5− 1
2

.(ii)

Proof. Letting n = 1/3 and B = D2
3 +D−2

3 in Theorem 3.12, and using
the fact that D1/n = 1/Dn we have

10 = (B2 − 2)− 6B + 6
√

5
√
B + 2− 9.

Hence
(B − 3)(B3 − 9B2 − 33B − 27) = 0.

Since D3 < J3 and B is real-valued, B = 3 by the proof of Theorem 3.13.
Now the assertion follows from

D3 +D−1
3 =

√
D2

3 +D−2
3 + 2 =

√
5.
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Corollary 3.18. We have

S(e−
√

3π) = 1
4{
√

6(5 +
√

5)− (3 +
√

5)},(i)

S(e−π/
√

3) = 1
4{
√

6(5−
√

5)− (3−
√

5)}.(ii)

Proof. (i) From Theorem 3.17(i),

d =
1
2

(
√

5D3 − 1) =
1
2

(
5 +
√

5
2

− 1
)

=
1
4

(3 +
√

5),

which implies that
√
d2 + 1 = 1

4

√
30 + 6

√
5. Now apply Theorem 3.1(ii).

(ii) From Theorem 3.17(ii),

d = 1
2 (
√

5D1/3 − 1) = 1
4 (3−

√
5)

which implies that
√
d2 + 1 = 1

4

√
30− 6

√
5. Now apply Theorem 3.1(ii)

again.

Theorem 3.19. We have

D9 = 1
4{11− 5

√
3− 3

√
5 + 3

√
15 + 4

√
60(4− 2

√
3−
√

5 +
√

15)}(i)

=
4
√

60 + 2 +
√

3−
√

5
4
√

60− 2−
√

3 +
√

5
,

D1/9 = 1
4{11− 5

√
3− 3

√
5 + 3

√
15− 4

√
60(4− 2

√
3−
√

5 +
√

15)}(ii)

=
4
√

60− 2−
√

3 +
√

5
4
√

60 + 2 +
√

3−
√

5
.

Proof. Set n = 1 and B = D9 + D−1
9 in Theorem 3.12. Then, using

Theorem 3.2(ii), we find that

B2 − (11− 3
√

5)B − (11− 6
√

5) = 0.

Hence

B = 1
2{11− 3

√
5 +
√

30(7− 3
√

5)} = 1
2 (11− 3

√
5− 5

√
3 + 3

√
15).

From this we deduce that

D9 = 1
4 (11− 3

√
5− 5

√
3 + 3

√
15 + 2

√
90− 50

√
3− 39

√
5 + 24

√
15)

= 1
4{11− 3

√
5− 5

√
3 + 3

√
15 + 4

√
60(4− 2

√
3−
√

5 +
√

15)}.
Now apply the same argument as in Theorem 3.15 for computing J9 and
J1/9 to conclude that

D9 =
4
√

60 + 2 +
√

3−
√

5
4
√

60− 2−
√

3 +
√

5

and we can easily deduce (ii).
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Corollary 3.20. We have

S(e−3π) =
√
d2 + 1− d, where 2d =

√
5D9 − 1,(i)

S(e−π/3) =
√
d2 + 1− d, where 2d =

√
5D1/9 − 1.(ii)

Proof. Parts (i) and (ii) follow from Theorems 3.1(ii) and 3.19.

Theorem 3.21. We have

D27 = 2 +
√

5 + (1 + 6
√

5)(20 + 9
√

5)1/3,(i)

S(e−3
√

3π) =
√
d2 + 1− d, where 2d =

√
5D27 − 1.(ii)

Proof. By multiplying D2
nD

2
9n on both sides of Theorem 3.12, we can

deduce the equation

D4
9n − (5D3

n − 3
√

5D2
n + 6Dn)D3

9n + 3(
√

5D3
n − 3D2

n +
√

5Dn)D2
9n

− (6D3
n − 3

√
5D2

n + 5Dn)D9n +D4
n = 0.

With n = 3 and D3 = (
√

5 + 1)/2 in the above equation, we deduce that

D4
27 − 1

2 (11 + 7
√

5)D3
27 + 3(3 +

√
5)D2

27 − (7 + 4
√

5)D27 + 1
2 (7 + 3

√
5)

=
(
D27−

√
5− 1
2

){
D3

27−3(2+
√

5)D2
27+ 3

2 (3+
√

5)D27− 1
2 (11+5

√
5)
}

= 0.

Since D27 > 1 and is real-valued, we find, upon solving the cubic equation
above, that

D27 = 2 +
√

5 + 1
2 (260 + 116

√
5− 4

√
1230 + 550

√
5)1/3

+ 1
2 (260 + 116

√
5 + 4

√
1230 + 550

√
5)1/3

= 2 +
√

5 + 1
2 (160 + 72

√
5)1/3 + 1

2 (360 + 160
√

5)1/3

= 2 +
√

5 + (20 + 9
√

5)1/3 + {
√

5(9
√

5 + 20)}1/3

= 2 +
√

5 + (20 + 9
√

5)1/3(1 + 6
√

5).

So we complete the proof of (i). Part (ii) follows from Theorem 3.1(ii) and
part (i).

Corollary 3.22. We have

S(e−
√

3π/9) =
√
d2 + 1− d, where 2d =

√
5D1/27 − 1,

and

D1/27 = −2 +
√

5 + (−20 + 9
√

5)1/3 − 1
2 (3 +

√
5)(−20 + 9

√
5)2/3.

Proof. Apply Theorem 3.21(i) and D1/27 = 1/D27, and then use Theo-
rem 3.1(ii).



118 J. H. Yi

Theorem 3.23. We have
(
J25n

Jn

)3

− 25
{(

J25n

Jn

)2

+
(
Jn
J25n

)2}
− 125

(
J25n

Jn
+

Jn
J25n

)
− 225

= 25{(JnJ25n)2 + (JnJ25n)−2}+ 125{JnJ25n + (JnJ25n)−1}

+ 25
√

5(J2
n + J−2

n )(J25n + J−1
25n) + 25

√
5(Jn + J−1

n )(J2
25n + J−2

25n)

+ 75(J2
n + J−2

n ) + 75(J2
25n + J−2

25n) + 75
√

5(Jn + J−1
n )

+ 75
√

5(J25n + J−1
25n).

Proof. The result follows directly from Theorem 2.7 and the definition
of Jn.

Remark 7. Theorem 3.23 implies that if we know Jn, then we can com-
pute J25n or Jn/25, that is, if R(e−2π

√
n) is known, then so is R(e−10π

√
n)

or R(e−2π
√
n/5).

Theorem 3.24. We have
(
D25n

Dn

)3

− 25
{(

D25n

Dn

)2

+
(
Dn

D25n

)2}
− 125

(
D25n

Dn
+

Dn

D25n

)
− 225

= 25{(DnD25n)2 + (DnD25n)−2}+ 125{DnD25n + (DnD25n)−1}

− 25
√

5(D2
n +D−2

n )(D25n +D−1
25n)− 25

√
5(Dn +D−1

n )(D2
25n +D−2

25n)

+ 75(D2
n +D−2

n ) + 75(D2
25n +D−2

25n)− 75
√

5(Dn +D−1
n )

− 75
√

5(D25n +D−1
25n).

Proof. Replace q by −q in Theorem 2.7, set q = e−π
√
n, and use the

definition of Dn to achieve the result.

Remark 8. By Theorem 3.24, if we know Dn, then we can find D25n

or Dn/25, which implies that if we know S(e−π
√
n), then we can compute

S(e−5π
√
n) or S(e−π

√
n/5).

4. Formulas and values for R(q) and S(q) from modular equa-
tions of degree 5p. In this section, we shall need the following relations
stated by Ramanujan [1, p. 267, (11.6)], and proved by Watson [17]:

(4.1)
1

R5(q)
− 11−R5(q) =

f6(−q)
qf6(−q5)

.

Replacing q by −q, we have

(4.2)
1

S5(q)
+ 11− S5(q) =

f6(q)
qf6(q5)

.
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Theorem 4.1. (i) For q = e−2π
√
n/5, let

sn =
f6(−q)

5
√

5 qf6(−q5)
.

Then

R5(e−2π
√
n/5) =

√
a2 + 1− a, where 2a = 5

√
5 sn + 11.

(ii) Also for q = e−π
√
n/5, let

tn =
f6(q)

5
√

5 qf6(q5)
.

Then

S5(e−π
√
n/5) =

√
b2 + 1− b, where 2b = 5

√
5 tn − 11.

Proof. (i) From (4.1), we have

R10(q) + (5
√

5 sn + 11)R5(q)− 1 = 0.

Solving for R5(q) and using the fact that R5(q) > 0, we complete the proof.
(ii) From (4.2), we find that

S10(q) + (5
√

5 tn − 11)S5(q)− 1 = 0.

The result follows upon solving for S5(q) and noting that S5(q) > 0.

Theorem 4.2. We have

s1 = 1, s1/n = 1/sn,(i)

t1 = 1, t1/n = 1/tn.(ii)

Proof. The results (i) follow from (3.3), and the results (ii) follow from
(3.4).

Corollary 4.3. We have

R5(q−2π/
√

5) = 1
2{
√

10(25 + 11
√

5)− (5
√

5 + 11)},(i)

S5(q−π/
√

5) = 1
2{
√

10(25− 11
√

5)− (5
√

5− 11)}.(ii)

Proof. Set n = 1 in Theorem 4.1 and use the values s1 = 1 and t1 = 1,
respectively, from Theorem 4.2.

Theorem 4.4. We have

√
5{(sns4n)1/6 + (sns4n)−1/6} =

(
sn
s4n

)1/2

+
(
s4n

sn

)1/2

.

Proof. The result follows directly from Theorem 2.1 upon setting q =
e−2π
√
n/5 and using the definition of sn.
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Remark 9. Using Theorem 4.4, we can compute s4n or sn/4 if sn is

given. That is, we can compute R5(e−4π
√
n/5) or R5(e−π

√
n/5) if we know

R5(e−2π
√
n/5).

Theorem 4.5. We have

s2 =
√

5 + 2, s1/2 =
√

5− 2,(i)

s4 =
(

1 +
√

5 +
√

2
√

1 +
√

5
2

)3

, s1/4 =
(

1 +
√

5−
√

2
√

1 +
√

5
2

)3

.(ii)

Proof. (i) Letting n = 1/2 in Theorem 4.4 and using Theorem 4.2, we
find that 2

√
5 = s2 + s−1

2 . Since s2 and s1/2 are the solutions of x2 −
2
√

5x+ 1 = 0 and sn is increasing in n, we conclude that s2 =
√

5 + 2 and
s1/2 =

√
5− 2.

(ii) Letting n = 1 in Theorem 4.4, using Theorem 4.2, and setting A =
s

1/3
4 + s

−1/3
4 , we find that

√
5
√
A+ 2 = (A− 1)

√
A+ 2. Hence A = 1 +

√
5.

Since s1/3
4 and s

1/3
1/4 are the solutions of x2 − (1 +

√
5)x + 1 = 0 and sn is

increasing in n, we conclude that

s
1/3
4 = 1

2 (1 +
√

5 +
√

2(1 +
√

5)),

s
1/3
1/4 = 1

2 (1 +
√

5−
√

2(1 +
√

5)).

Corollary 4.6. We have

R5(e−2π
√

2/5) = 3
√

10(5 + 2
√

5)− (18 + 5
√

5),(i)

R5(e−2π/
√

10) = 3
√

10(5− 2
√

5)− (18− 5
√

5),(ii)

R5(e−4π/
√

5) =
√
a2 + 1− a, where 2a = 5

√
5 s4 + 11,(iii)

R5(e−π/
√

5) =
√
a2 + 1− a, where 2a = 5

√
5 s1/4 + 11.(iv)

Proof. The results follow from Theorems 4.1 and 4.5.

Theorem 4.7. We have

(i) s8 =
{

(3 +
√

5)(1 +
√

2)
2

}3

= 63 + 45
√

2 + 28
√

5 + 20
√

10,

R5(e−4π
√

2/5) = 1
2{3
√

10(22310 + 15775
√

2 + 9977
√

5 + 7055
√

10)(ii)

− (711 + 500
√

2 + 315
√

5 + 225
√

10)},

(iii) s1/8 =
{

(3−
√

5)(
√

2− 1)
2

}3

= −63 + 45
√

2 + 28
√

5− 20
√

10,

R5(e−π/
√

10) = 1
2{3
√

10(22310− 15775
√

2− 9977
√

5 + 7755
√

10)(iv)

− (711− 500
√

2− 315
√

5 + 225
√

10)}.
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Proof. Multiplying both sides of Theorem 4.4 by (sns4n)1/2, we find that
√

5(sns4n)2/3 +
√

5(sns4n)1/3 = s4n + sn.

Now letting n = 2 in the above equation and using the value s2 =
√

5 + 2 =
((1 +

√
5)/2)3 from Theorem 4.5, we find that

s8 −
3
√

5 + 5
2

s
2/3
8 −

√
5 + 5
2

s
1/3
8 +

√
5 + 2 = 0.

That is,
1
4 (2s1/3

8 + 1−
√

5){2s2/3
8 − (6 + 2

√
5)s1/3

8 − (7 + 3
√

5)} = 0.

Since s1/3
8 > s

1/3
2 = (1 +

√
5)/2,

s
1/3
8 = 1

2 (3 +
√

5 +
√

28 + 12
√

5) = 1
2 (3 +

√
5)(1 +

√
2).

Hence

s8 = 1
8 (3 +

√
5)3(1 +

√
2)3 = 63 + 45

√
2 + 28

√
5 + 20

√
10,

which proves (i). And since s1/8 = 1/s8, we find that

s1/8 =
{

(3−
√

5)(
√

2− 1)
2

}3

= −63 + 45
√

2 + 28
√

5− 20
√

10,

which proves (iii). By using (i) and (iii) of Theorem 4.1, we deduce (ii) and
(iv), respectively.

Theorem 4.8. We have

(i) 5
√

5{(sns9n)1/2 + (sns9n)−1/2}

=
s9n

sn
− sn
s9n
− 9
{(

s9n

sn

)1/2

+
(
sn
s9n

)1/2}
,

(ii) 5
√

5{(tnt9n)1/2 + (tnt9n)−1/2}

=
t9n
tn
− tn
t9n

+ 9
{(

t9n
tn

)1/2

+
(
tn
t9n

)1/2}
.

Proof. (i) Setting q = e−2π
√
n/5 in Theorem 2.2 and using the definition

of sn in Theorem 4.1, we derive the desired result.

(ii) Replacing q by −q in Theorem 2.2, letting q = e−π
√
n/5, and using

the definition of tn in Theorem 4.1, we complete the proof.

Remark 10. By Theorem 4.8, if we know sn and tn, then we can find
s9n or sn/9 and t9n or tn/9, respectively, which implies that if we know

R5(e−2π
√
n/5), then we can find R5(e−6π

√
n/5) or R5(e−2π

√
n/(3

√
5)), and if

we know S5(e−π
√
n/5), then we can find S5(e−3π

√
n/5) or S5(e−π

√
n/(3

√
5)).
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Theorem 4.9. We have

(i) s3 = 1
2 (11 + 5

√
5), s1/3 = 1

2 (5
√

5− 11),

s9 = 104 + 60
√

3 + 45
√

5 + 26
√

15,(ii)

s1/9 = 104− 60
√

3 + 45
√

5− 26
√

15.(iii)

Proof. (i) Setting n = 1/3 in (i) of Theorem 4.8 and using the equality
s1/n = 1/sn from Theorem 4.2, we have

10
√

5 = s2
3 − s−2

3 − 9(s3 + s−1
3 ).

Now letting A = s3 + s−1
3 , we deduce that

10
√

5 =
√
A4 − 4A2 − 9A.

Thus

A4 − 85A2 − 180
√

5A− 500 = (A+
√

5)(A− 5
√

5)(A+ 2
√

5)2 = 0.

Since A > 0, A = 5
√

5. Thus

s3 = 1
2 (5
√

5 +
√

125− 4) = 1
2 (5
√

5 + 11) and s1/3 = 1
2 (5
√

5− 11)

since s1/3 = 1/s3.
(ii) and (iii). Let n = 1 in (i) of Theorem 4.8 and use the value s1 = 1

to find that

5
√

5(s1/2
9 + s

−1/2
9 ) = s9 − s−1

9 − 9(s1/2
9 + s

−1/2
9 ).

Since s1/2
9 + s

−1/2
9 > 0, by dividing both sides by s1/2

9 + s
−1/2
9 , we have

5
√

5 + 9 = s
1/2
9 − s−1/2

9 .

So

s9 = 1
4 (9 + 5

√
5 +

√
210 + 90

√
5)2 = 1

4{9 + 5
√

5 +
√

15(3 +
√

5)}2

= 1
4 (9 + 5

√
3 + 5

√
5 + 3

√
15)2 = 104 + 60

√
3 + 45

√
5 + 26

√
15

and, since s1/9 = 1/s9,

s1/9 = 104− 60
√

3 + 45
√

5− 26
√

15.

Corollary 4.10. We have

R5(e−2π
√

3/5) = 1
4{−147− 55

√
5 +

√
1470(25 + 11

√
5)},(i)

R5(e−2π/
√

15) = 1
4{−147 + 55

√
5 +

√
1470(25− 11

√
5)},(ii)

R5(e−6π/
√

5) =
√
a2 + 1− a, where 2a = 5

√
5 s9 + 11,(iii)

R5(e−2π/(3
√

5)) =
√
a2 + 1− a, where 2a = 5

√
5 s1/9 + 11,(iv)

where s1/9 and s9 are given in Theorem 4.9.

Proof. These results follow from Theorems 4.1 and 4.9.



Evaluations of R(q) and S(q) by modular equations 123

Theorem 4.11. We have

t3 =

√
5 + 1
2

, t1/3 =

√
5− 1
2

,(i)

t9 = 104 + 60
√

3− 45
√

5− 26
√

15,(ii)

t1/9 = 104− 60
√

3− 45
√

5 + 26
√

15.(iii)

Proof. (i) Letting n = 1/3 in Theorem 4.8(ii) and using the relation
t1/3 = 1/t3, we find that

10
√

5 = t23 − t−2
3 + 9(t3 + t−1

3 ).

If B = t3 + t−1
3 , then 10

√
5 = B

√
B2 − 4 + 9B. Hence

B4 − 85B2 + 180
√

5B − 500 = (B −
√

5)(B + 5
√

5)(B − 2
√

5)2 = 0.

Since tn is increasing and positive, and t5 < 3 (we will see this later in
Theorem 4.16), B =

√
5. Therefore t3 = (

√
5 + 1)/2 and t1/3 = (

√
5− 1)/2

since t1/3 = 1/t3.
(ii) and (iii). Letting n = 1 in Theorem 4.8(ii) and recalling that t1 = 1,

we deduce that

5
√

5(t1/29 + t
−1/2
9 ) = t9 − t−1

9 + 9(t1/29 + t
−1/2
9 ).

By dividing both sides by t1/29 + t
−1/2
9 , we find that

t
1/2
9 − t−1/2

9 = 5
√

5− 9.

Hence

t9 = 1
4 (5
√

5− 9 +
√

210− 90
√

5)2 = 1
4 (5
√

5− 9 + 3
√

15− 5
√

3)2

= 104 + 60
√

3− 45
√

5− 26
√

15

and, since t1/9 = 1/t9,

t1/9 = 104− 60
√

3− 45
√

5 + 26
√

15.

Corollary 4.12. We have

S5(e−π
√

3/5) = 1
4{−5

√
5− 3 +

√
30(5 +

√
5)},(i)

S5(e−π/
√

15) = 1
4{5
√

5− 3 +
√

30(5−
√

5)},(ii)

S5(e−3π/
√

5) =
√
b2 + 1− b, where 2b = 5

√
5 t9 − 11,(iii)

S5(e−π/(3
√

5)) =
√
b2 + 1− b, where 2b = 5

√
5 t1/9 − 11,(iv)

where t1/9 and t9 are given in Theorem 4.11.

Proof. These results follow from Theorems 4.1 and 4.11.
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Theorem 4.13. We have

(i) 5{(sns25n)1/3 + (sns25n)−1/3}+ 5
√

5{(sns25n)1/6 + (sns25n)−1/6}

=
(
s25n

sn

)1/2

− 15,

(ii) 5{(tnt25n)1/3 + (tnt25n)−1/3} − 5
√

5{(tnt25n)1/6 + (tnt25n)−1/6}

=
(
t25n

tn

)1/2

− 15.

Proof. (i) This follows from Theorem 2.3 and the definition of sn in
Theorem 4.1.

(ii) By replacing q by −q in Theorem 2.3 and using the definition of tn
in Theorem 4.1, we complete the proof.

Remark 11. By Theorem 4.13, if we know sn and tn, then we can
find s25n or sn/25 and t25n or tn/25, respectively, which implies that if we

know R5(e−2π
√
n/5) and S5(e−π

√
n/5), then we can find R5(e−2

√
5nπ) or

R5(e−2π
√
n/(5

√
5)) and S5(e−

√
5nπ) or S5(e−π

√
n/(5

√
5)), respectively.

Theorem 4.14. We have

s5 = 25 + 10
√

5 and s1/5 =
1
25

(5− 2
√

5).

Proof. Letting n = 1/5 in Theorem 4.13(i) and using the equality s1/5 =
1/s5, we find that 10+10

√
5 = s5−15, and so s5 = 25+10

√
5. Furthermore,

s1/5 = 1/s5 = 1
25 (5− 2

√
5).

Corollary 4.15. We have

R5(e−2π/5) =

√
45 + 9

√
5

2
−
√

5 + 9
2

.

Proof. This follows from Theorem 4.1 with s1/5 = 1
25 (5− 2

√
5).

Theorem 4.16. We have

t5 = 25− 10
√

5 and t1/5 =
1
25

(5 + 2
√

5).

Proof. Letting n = 1/5 in (ii) of Theorem 4.13 and using the equality
t1/5 = 1/t5, we find that 10 − 10

√
5 = t5 − 15, and so t5 = 25 − 10

√
5 and

t1/5 = 1/t5 = 1
25 (5 + 2

√
5).

Corollary 4.17. We have

S5(e−π/5) = 3
2

√
2(5−

√
5)− 1

2 (−9 +
√

5).

Proof. By Theorem 4.1 with t1/5 = 1
25 (5 + 2

√
5).
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Theorem 4.18. We have

(i) 5
√

5{(sns49n)1/2 + (sns49n)−1/2}

=
(
s49n

sn

)2/3

−
(
sn
s49n

)2/3

− 7
{(

s49n

sn

)1/2

+
(
sn
s49n

)1/2}

+ 7
{(

s49n

sn

)1/3

−
(
sn
s49n

)1/3}
+ 14

{(
s49n

sn

)1/6

+
(
sn
s49n

)1/6}

and

(ii) 5
√

5{(tnt49n)1/2 + (tnt49n)−1/2}

=
(
t49n

tn

)2/3

−
(
tn
t49n

)2/3

+ 7
{(

t49n

tn

)1/2

+
(
tn
t49n

)1/2}

+ 7
{(

t49n

tn

)1/3

−
(
tn
t49n

)1/3}
− 14

{(
t49n

tn

)1/6

+
(
tn
t49n

)1/6}
.

Proof. These equations follow from Theorem 2.4 and the definitions of
sn and tn in Theorem 4.1, respectively.

Remark 12. By Theorem 4.18, if we know sn and tn, then we can
find s49n or sn/49 and t49n or tn/49, respectively, which implies that if we

know R5(e−2π
√
n/5) and S5(e−π

√
n/5), then we can find R5(e−14π

√
n/5) or

R5(e−2π
√
n/(7

√
5)) and S5(e−7π

√
n/5) or S5(e−π

√
n/(7

√
5)), respectively.

Theorem 4.19. We have

s7 =
1

216
(3
√

5 + a+ b+
√

57 + 6
√

5(a+ b) + a2 + b2)3,

s1/7 =
1

216
(−3
√

5− a− b+
√

57 + 6
√

5(a+ b) + a2 + b2)3,

where a = (54
√

5− 6
√

21)1/3 and b = (54
√

5 + 6
√

21)1/3.

Proof. Letting n = 1/7 in (i) of Theorem 4.18, we have

10
√

5 = s
4/3
7 − s−4/3

7 − 7(s7 + s−1
7 )

+ 7(s2/3
7 − s−2/3

7 ) + 14(s1/3
7 + s

−1/3
7 ).

Let A = s
1/3
7 + s

−1/3
7 . Then

10
√

5 = (A3 − 2A)
√
A2 − 4− 7(A3 − 3A) + 7A

√
A2 − 4 + 14A.

Hence
7A3 − 35A+ 10

√
5 = (A3 + 5A)

√
A2 − 4.
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Now by squaring both sides we have

A8 − 43A6 + 475A4 − 140
√

5A3 − 1325A2 + 700
√

5− 500

= (A−
√

5)(A2 − 5)(A+ 2
√

5)2(A3 − 3
√

5A2 + 7A−
√

5) = 0.

Since A > 0 and A > s
1/3
5 >

√
5 by Theorem 4.14, A satisfies the equation

A3 − 3
√

5A2 + 7A−
√

5 = 0. Now since A is real-valued, we have

A =
√

5 + 1
3a+ 1

3b,

where a = (54
√

5− 6
√

21)1/3 and b = (54
√

5 + 6
√

21)1/3. Since s1/7 = 1/s7,
it follows that s1/7 and 1/s7 are the solutions of the equation

x2 −
(√

5 + 1
3a+ 1

3b
)
x+ 1 = 0.

Hence we deduce the results by using s7 > s1/7.

Theorem 4.20. We have

t7 = 2 +
√

5 and t1/7 =
√

5− 2.

Proof. Letting n = 1/7 in (ii) of Theorem 4.18, we have

10
√

5 = t
4/3
7 − t−4/3

7 + 7(t7 + t−1
7 )

+ 7(t2/37 − t−2/3
7 )− 14(t1/37 + t

−1/3
7 ).

Put B = t
1/3
7 + t

−1/3
7 . Then, by the same argument as in the proof of

Theorem 4.19,

(B +
√

5)(B2 − 5)(B − 2
√

5)2(B3 + 3
√

5B2 + 7B +
√

5) = 0.

Since B is positive and tn is increasing in n, B = t
1/3
7 + t

−1/3
7 < 2t1/39 < 2

√
5

from Theorem 4.11. Thus we find that B =
√

5. Hence

t7 =
(√

5 + 1
2

)3

= 2 +
√

5 and t1/7 =
(√

5− 1
2

)3

=
√

5− 2.

Corollary 4.21. We have

(i) R5(e−2π
√

7/5) =
√
a2 + 1− a, where 2a = 5

√
5 s7 + 11

and s7 is given in Theorem 4.19,

(ii) R5(e−2π/
√

35) =
√
a2 + 1− a, where 2a = 5

√
5 s1/7 + 11

and s1/7 is given in Theorem 4.19,

S5(e−π
√

7/5) =
√

35(5 + 2
√

5)− (7 + 5
√

5),(iii)

S5(e−π/
√

35) =
√

35(5− 2
√

5)− (7− 5
√

5).(iv)

Proof. The results follow from Theorem 4.1 with the values in Theorems
4.19 and 4.20.
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