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continued fraction R(q) by modular equations
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1. Introduction. Let, for |¢| < 1, the Rogers-Ramanujan continued
fraction R(q) be defined by

1/5 2 3
R S
(1.1) RO = e T+1+..
Also define
(1.2) S(q) = —R(—q).

This famous continued fraction was introduced by L. J. Rogers in 1894 and
rediscovered by S. Ramanujan in approximately 1912. In his first letter to
G. H. Hardy [15, p. xxvii], [7, p. 29], Ramanujan gave the first non-elemen-
tary evaluations of R(q) and S(q), namely,

(1.3) Re ™) = /2 +2‘/5 _ ‘/5; !

and

(1.4) Stem) = /2 _2\/5 _ \/52_ L

In his second letter to Hardy [15, p. xxviii], [7, p. 57], Ramanujan further
asserted that

(1.5) R(e™?™V5) = V5 - ik
. 14 (53/4(\/5271)5/2 _ 1)1/5 2 .

These evaluations were first proved by G. N. Watson [17, 18], and K. G.
Ramanathan [9] also established (1.5).

Ramanujan recorded other values for R(gq) and S(g) in his first notebook
[14] and in his “lost notebook” [16]. Several of these results were proved
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by Ramanathan [10, 11, 12]. He first made the evaluations of R(e™2"vV")
and S(e~™V™) for several rational numbers n in a uniform way by using
Kronecker’s limit formula, and he also established further evaluations not
claimed by Ramanujan. However, Ramanathan’s method cannot be applied
to all the values of R(q) stated by Ramanujan because K = Q(y/—n) satisfies
the conditions usually imposed with regard to genera.

B. C. Berndt, H. H. Chan, and L.-C. Zhang [6] derived the first formulas
for the explicit evaluations of R(e=2"V™) and S(e~"V") for positive rational
numbers n in terms of Ramanujan—Weber class invariants. Also they have
proved [6] that, for any rational number n, R(e~™V") and S(e~™V") are
units.

In this paper, we establish two theorems for evaluating R(e~2"V™) and
S (e‘”\/ﬁ) for any positive rational numbers n by using modular equations
relating to degree 5 or 25. By using these theorems we will find simple proofs
for some known values for R(q), e.g., R(e75™). Also we will find new values
for R(e=2™V") and S(e~"V™) for certain positive rational numbers n. For
example,

R(e™™) = 17/40 — 255 + 18V — 11V/53 — 1(7 = 535 + 3V/5 — V/59)
= 134 VB)(V5 - 1)(V10+ 2V5 — (3 + V5)(V5 — 1)).

In Section 2, we present some modular equations discovered by Ramanu-
jan and new modular equations which we found. We give proofs of the new
modular equations.

In Section 3, we establish a theorem for evaluating R(e~27V™) and
S (e*”\/’_l) for any positive rational numbers n by using modular equations of
degree 1, p, 25, and 25p where p is a positive integer, and establish old and
new values of R(q) and S(gq) by using that theorem. First, we define parame-
ters J, and D,, and then we find relations between .J,, and .Ji, and between
D,, and Dy, for k=p?, where p is an integer, and for rational n, by using
modular equations. By using these values and Theorem 3.1, we determine
values of R(e=2™V") and S(e~™V™) for certain positive rational numbers n.

In the final section, we establish a theorem for evaluating R(e~2"v™) and
S (e*”\/’_l) for any positive rational numbers n by using modular equations
of degree 1, p, 5, and 5p where p is a positive integer, and compute old and
new values of R(q) and S(q) by using that Theorem 4.1. We use a method
similar to that of Section 3, but with different parameters s,, and t,,. We use
modular equations for finding relations between s,, and sx, and between ¢,
and ty, for k = p?, where p is an integer and n is rational.

In summary, we give new proofs of values found by Ramanujan in The-
orem 3.9(ii), Corollaries 3.3, 3.6(i), 3.8(i), 3.16(i), 3.18(i), 3.20(i), 4.3(ii),
4.6(i), 4.12(i), (iii), and 4.21(iii). The values in Theorems 3.21, 4.7(ii), (iv),
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Corollaries 3.6(ii), 3.8(ii), 3.10, 3.14, 3.16(ii), 3.18(ii), 3.20(ii), 3.22, 4.3(i),
4.6(ii), (iii), (iv), 4.10, 4.12(ii), (iv), 4.15, 4.17, 4.21(i), (ii), and (iv) are
new. Further values of R(e~27V™) and S(e~™V") can be calculated by using
the theorems in this paper. We do not record these values here, because
evidently they are not particularly elegant. For example, we can find D325
and D; /75 by using Theorem 3.24 with n = 3/25 and n = 1/75, and us-
ing D3 and D;/3 in Theorem 3.17, respectively, and so we can determine
S(e‘”\/g/—%) and S(e~™/V™) by using Theorem 3.1(ii). Since Dy = Dy,
(see Remark 1), we can also determine Dy5/3 and D75 and thereby explicitly
calculate S(e_”\/m) and S(e~5"V3) by using Theorem 3.1(ii). Further-
more, we can find Jy /55 and Jos with n = 1 in Theorem 3.23, and so by
using Theorem 3.1(i), we can determine R(e~27/%) and R(e~1°7).

S.-Y. Kang [8] has recorded a table of all known values of the Rogers—
Ramanujan continued fraction up until the time her paper was written
in 1999.

Recall the reciprocity theorems for the Rogers—Ramanujan continued

fraction stated by Ramanujan [16] in his second letter to Hardy and his
second notebook [14], [1, p. 83], that is, if a,, 5 > 0 and a3 = 1, then

(1.6) {\/5+ Ly R(e—m)}{@ 4 R(e—%ﬁ)} _ 545

2 2 2
Second, if a,, 3 > 0 and a3 = 1/5, then [16, p. 364]

(1.7) { (*/5; 1>5 + R5(e_2m)}{ (*/5; 1>5 + R5(e_2“ﬁ)}

:5\/5<\/52+1>5.

There are similar formulas for S(q). First, if a, 3 > 0 and o = 1, then

(1.8) {\/52_ Ly S(e_m)}{ \/52_ Ly S(e—"ﬂ)} _2 _2\/5,

which can be found in Ramanujan’s second notebook [14], [1, p. 83] and
which was first proved by Ramanathan [9]. Second, if o, f > 0 and a3 = 1/5,
then

(1.9) {(*/52_ 1>5 + 55(6—”*)}{ <*/52_ 1>5 + 55(6—7#*)}

(5.

2
which was first established by Ramanathan [9].
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We complete this section by defining, after Ramanujan,

(1.10) f(=0) = (6:0)00 = ¢ (), q=e*™ Imz >0,
where
(@:q)00 = [[(Q —ag™), gl <1,
n=0

and where 7(z) denotes the Dedekind eta-function.

2. Modular equations. This section is devoted to stating and proving
certain modular equations which we will use in what follows. Most of them
were first recorded by Ramanujan in his notebooks [14].

THEOREM 2.1 (see [2, p. 206, Entry 53]). Let

f(=a) f(=¢*)
P T gy

5 P\* /Q\°
P+ pg = <@> N (5) |
THEOREM 2.2 (see [2, p. 223, Entry 63]). Let
f(=q) f(=4%
¢/ f(—q°) a2 f(—q*®)

Then

P = and Q=

Then

o0 () (& @) () &)

THEOREM 2.3. Let

f(=9) f(=¢°)
IO B o)

() oo ) -(9)

Proof. From (11.7) and (11.8) [1, p. 268], we can deduce that
f2(=q)
(-

Then

fo(=e® f(—q) 3(—q)

PR~ EE ) ) e R
2 (—q) f(=q)

21 (=) TP =y

Multiplying both sides by ¢ f2(—¢%°)/f3(—q), we complete the proof. m

+ 25
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THEOREM 2.4. Let
f(=4")

f(=9)
o)

g0 f(—q°)
Then

, 5\ 3 /0 4 P4 0\ p
v (7g) - (%) ~(3) (7)< (3
Q\"_(P\ Q
E{OROECE
A proof of Theorem 2.4 was given by Berndt [4].
THEOREM 2.5 (see [2, pp. 212-213, Entry 58]). Let

P= Q

)}

g

~ f(=¢?) _ (=)
P= q1/5f(—q5) and Q= q2/5f(—q10)'
Then 3 2 2 3
rovzg=(5) () ~4(3) +(3)
and

(PQ)*> +5PQ = P> —2P%Q — 2PQ* + Q3.
THEOREM 2.6. Let
_ f(=4?)
- 5

~—

f(=¢*®

Then

25 (P\’ (Q\® (P Q 5 5
ra+ig=(g) () ~o(g+7)-3(erg)-2(r+5)-»

Proof. Multiplying both sides of (2.1) by PSQ° (in the notation of The-
orem 2.2), solving for Q2 — P12 and then squaring both sides, we find
that

(2.2) X2 4 y? =15625X°V° 4 2250(X 12y 6 + XOy1?)
4+ 81(X1BYC 4 XOY18) 4 414 x12y12
+ 18(X18Y12 +X12Y18) + XlSylS’

where 0 )
f(—q f(=q
X=———"F% and Y =—r—""—.
¢"/5f(=q°) ¢'/2f(=q')
From (11.7) and (11.8) in Chapter 19 of [2, p. 268], we can deduce that
(2.3) X6 = P° 4+ 5P* +15P% + 25P% 4 25P

and
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(2.4) YO = Q5 +5Q% + 15Q% + 25Q2 + 25Q.
By using (2.3) and (2.4) in (2.2), we find that f(P,Q)g(P, Q) = 0, where
g(P,Q) = P* —25PQ — 15P?Q — 6P3Q — 15PQ* — 9P%Q?
_ 3P3Q2 _ 6PQ3 _ 3P2Q3 _ P3Q3 + Q4

and f(P,Q) is a polynomial in P and @ of total degree 24, and f(P,Q) > 0
for 0 < g < 1. So

(2.5) 4(P,Q) = 0.
By dividing (2.5) by P?Q?, we complete the proof. m

Another proof of Theorem 2.6 was given by Berndt [4] by using modular
forms.

THEOREM 2.7. Let

_1/5
7{/(5 a ; and
¢' P f(=4°)

0= f=a)

F= qf(—4¢*5)

Then

<F> —25(;) —125(;) —225—125(§> _25<§>
25 \° 25 25 5
:(PQ)Q"F(%) +25<PQ+m>+5<P2+ﬁ><Q+a>
25 5 25 25
+5<Q2 + _Q2> <P+ F) + 15<P2 + ﬁ) + 15<Q2 + @>

5 5

+75<P—|— F) +75<Q—|— @)
Proof. From Theorem 2.3, we find that
fo(=a)
) =g

25 5 fo(=4°)

2.7 24+ = +5 —~)+15= :
G et (Q +5) H15= artg e
By multiplying (2.6) and (2.7), we find that

25 5 25 5
<P2—|— ﬁ+5<P+F> +15> <Q2+@+5<Q+é> +15>
_ Peaftte) ey
a2 (=g ) (=) '

25 5
2 —
(26) P +P2+5<P+P>+15_q2/5f3(

P

So the proof is complete. m
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3. Formulas and values for R(q) and S(q) from modular equa-
tions of degree 25p. We shall use the following relation discovered by
Ramanujan [1, p. 267, (11.5)], and proved by Watson [17]:

1 f(=4¢'/%)
3.1 —  _1-R(g)=—2——1 2
3.1) R(q) @ q'/* f(—q°)
Replacing ¢ by —q, we have

1 f(g/?)
3.2 —+1-5(q) = ———.
(32) S(q) @ q'/5f(q°)

THEOREM 3.1. For g = e 2™V [et
f(=4¢'"%)

"= BRIy
Then
(1) R(e™2™Vn) = Ve +1—c, where 2c=5J,+1.
Similarly, for ¢ = e~ ™™, let
fq'?)

V5q' /5 f(q%)

n

Then
(ii) S(e™™Vn) = V&2 +1—d, where 2d=+5D, —1.
Proof. (i) From (3.1), we have
R%(q) + (W5, + 1)R(q) —1=0.

Solving for R(q) and noting that R(q) > 0, we complete the proof.
(ii) Similarly, from (3.2), we have

S%(q) + (V5 D, —1)S(q) — 1 = 0.
Solving for S(q) and noting that S(g) > 0, we complete the proof. m

THEOREM 3.2. We have

(i) J =1,
(i) Dy =1.

Proof. (i) From [1, p. 43, Entry 27(iii)], for o, 8 > 0 and a3 = 72,
(33) 6704/12a1/4f(_672a) _ 676/1261/4f(_672ﬂ).

Setting o = 7/5 and 8 = 57, we deduce that
627r/5f(_627r/5)

N e
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(ii) From [1, p. 43, Entry 27(iv)], for a, 8 > 0 and aff = 72,
(34) efa/24a1/4f<efo¢) _ 676/2451/4]0(676).
Setting o = 7/5 and 8 = 57, we deduce that

671'/5f(6—7r/5)
Di=————=1.nm
L VB fg)

COROLLARY 3.3. We have

() Rleiny = | 2EVE L
(if) S =1/° _2*/3 _ */32_ L

Proof. (i) We apply Theorem 3.1. From Theorem 3.2(i),
c=3i(V5J1+1) =1V +1).

Thus

VET1=1/16+2v5) + 1= /16+V5).

Applying Theorem 3.1(i), we complete the proof.
(ii) From Theorem 3.2(ii),

d=3(V5D; —1) = 3(vV5-1).
Thus

\/ﬁ:\/i((s—2\/5)+1:\/%(5—\/5)~

Applying Theorem 3.1(ii), we complete the proof. m

REMARK 1. We note that it is easily seen from the definition of J,, and
(3.3) that Jy, = 1/J,. Also we note that it is easily seen from the definition
of Dy, and (3.4) that Dy, = 1/D,,.

THEOREM 3.4. If J, is as defined in Theorem 3.1, then

. 1 J4n 3 Jn ? J4n 2 Jn 2
5( 0, Jun — (Zn ) gl (B )b
(1) < ! * JnJ4n> < Jn ) * <J4n) {( Jn + J4n

Proof. The theorem follows directly from Theorem 2.5 and the definition
of J,. m

REMARK 2. Theorem 3.4 implies that if we know J,,, then we can com-
pute Jy, or J,, /4, that is, if we know R(e=2™V™), then we can also determine

R(e=*™V") or R(e~™V™),
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THEOREM 3.5. We have
Jr = 3(a+b+ /a2 + b2 —2/3)
where a = (/5 + \/%/9)1/3 and b= (/5 — \/%/9)1/3.
Proof. Putting n = 1/2 in (ii) of Theorem 3.4, setting A = Jo + J; ',
and recalling that .Jy,,, = 1/J,, we find that
25 = A% — 34 — 24 = A% — 5A.
Since A is real-valued,
30\ /3 30\ /3
R OV Y (V- S'E 1) R
9 9
Hence
1/3 1/3
JQZ—{(\/EJF@) + <\f—@> }J2+1:0,
which gives the result. =

REMARK 3. If J,+1/J,, = A, then J,,,+1/Jy s, = Assince Jy/, = 1/J,.
So Jy, and Jy,, are the solutions of the equation %2 — Az +1 = 0. Since J,
is increasing in n, J, > Jy/, when n > 1. Thus we conclude that

Jo=3(A+VA2—4) and Jy;, =1(A—VA2-4).

ExaMpPLE 1. Using Theorem 3.5 and Remark 3, we find that

Jijp=3(a+b—+/a® +b> —2/3),
where a = (v/5 +v/30/9)'/% and b = (v/5 — v/30/9)'/3.

COROLLARY 3.6. We have

(i) R(e‘zwﬂ) =V +1—¢, where 2c=+5Jy+1,
and Jy is given in Theorem 3.5. Furthermore,
(i) R(e_”ﬁ) =V +1—c, where 2c= \/ng/2 + 1

Proof. For the proof of (i), use Theorems 3.1 and 3.5; for the proof of
(ii), use Theorem 3.1 and Example 1 above. m

THEOREM 3.7. We have

. 3 s e Vh+1
(i) J4_§(3+\/3+\/5+\/5_3)_\4/5_1,
(ii) J1/4:§(3—<‘/5+\/5—<‘/5_3)=%_1.

VE+1
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Proof. For the proof of (i), setting n = 1 in (i) of Theorem 3.4, using
Theorem 3.2(i), and putting A = J4 + J; ', we find that

5A = A3 — 34 —4(A% - 2).

Thus
(A+42)(A* — 64 +4) =0.

Since J,, is positive and increasing in n, we have J; > Jy > 2. Hence
A=3++5and

Ji=1B+V5+V10+6V5) = L3+ V5 + V5 + V5?)

(3+f+f+\/_)(f 1) V541
2(V/5 —1) IR

For the proof of (ii), use Remarks 1 and 3 in the result of J;. m

COROLLARY 3.8. We have

(i) Re ™™ =+/c2+1—¢, where 2c=+V5J,+1,
(i) R(e™™)=+c?4+1—c, where 2c= \/5J1/4 + 1L

Proof. Parts (i) and (ii) follow from Theorems 3.1 and 3.7. =

THEOREM 3.9. We have

(i) Ji6 = (2 + V20)(17 + 11V/5 + 7V5 + 5V/53),
(ii) R(e™® ) =+/c2+1—¢, where 2c=+5Ji5+ 1.

Proof. We know the value of Jy from Theorem 3.7, and so by using (ii)
of Theorem 3.4 with n = 4, we can find the value of Jig. It follows that
the value of R(e™®") can be found by Theorem 3.1(i). Now we shall show
how to find the value of Jig by applying Theorem 3.4(ii). Let n = 4 in
Theorem 3.4(ii) to deduce that

T3 — (V5 J2 +204)J% — (VB Jy 4+ 2J3) Jis + J; = 0.

Now putting Jy = %(3 + v/54 /5 + V/53) in the preceding equation, we find
that

(e — {272 — 2(17 + 11V/5 + 75 + 5V/53) Ji6
— (63 4 43V/5 +29v/5 + 19V/53)} = 0

Since Jig > 1,

1
Jio =5 (1T +11V5+7V5 + 5V534+1/1210 + 810/5 + 5421/5 + 362v/53 )

1 } 1 ’
= 5{1” 11V/5 4+ 75 + 5V53 + 3(25+17\/5+ 11\/5+7{‘/5_3)}




Evaluations of R(q) and S(q) by modular equations 113
1 4 V5

= —(17+11V5 + 7V5 4 5V 53)<1 + £>
2 V2
1 4

=@+ V20)(17 + 11V/5 + 7V5 + 5V/58).

So we complete the proof of (i). Part (ii) follows from Theorem 3.1(i) and
part (i). m
REMARK 4. In his first notebook [13], Ramanujan recorded the value
R(e7%) = /2 +1 — ¢, where
3 2 —vV5+ v20
2ce=1+V5 V2 f+\f—
3+v2-v5-720
The first proof was given by Berndt and Chan [3, 5].

COROLLARY 3.10. We have
(i) Jine = 1(2 = V20)(17 — 115 + 7V/5 — 5V/58),
(i) Re™™?) =\/c2+1—¢, where 2c= \/5J1/16 + 1.

Proof. For the proof of (i), use Theorem 3.9 and Remark 3. Then part
(ii) follows from Theorem 3.1 and part (i).

THEOREM 3.11. We have

1 Jgn 2 Jn 2 Jgn Jn
o Jndon + —— ) = | — — ) =6 —+ —
( 0 +JnJ9n) (Jn> +(J9n> <Jn +J9n

1 1

—3V5( Jon + — ) =3V5( Jo + — ) — 0.
Jgn ‘]ﬂ
Proof. The result follows directly from Theorem 2.6 and the definition
of J,. m

REMARK 5. By Theorem 3.11, we can compute Joy,, or J, /g if we know
Jp, i.e., if we know R(e~27V™), then the value of R(e~67V") or R(e=27V"/3)
can be computed.

THEOREM 3.12. We have
1 D9n 2 Dn 2 D9n Dn
5( D, Do, = —6
( ? +DnD9n> <Dn> * <D9n> (Dn +D9n

1 1
3v5( Do, 3v5( D, + — ) —o.
+\/_(9+D9n)+x/_( +Dn)

Proof. Replacing ¢ by —¢ in Theorem 2.6 and using the definition of D,,
yields the assertion. m
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REMARK 6. By Theorem 3.12, if we know D,,, then we can find Dy,
or D, 9, which implies that if we know S (e~™™), then we can compute
S(e=3™V) or S(e~"V/3),

THEOREM 3.13. We have

(i) Js = 1(1+ V10 + V5 + 210 + V10?),
(ii) Jijs = (=1 = V10 + V5 + 2910 + V102).

Proof. Letting n = 1/3 in Theorem 3.11 and putting A = J3 + J; 2, we

find that
10= (A2 —2) — 64— 6V5VA+2—09,
since Jy /,, = 1/J,. Hence
(A —3)(A3 —94% — 334 —-27) =0.
Since A > J2 > J22 > 3 and A is real,
— 34 2V10+ V102 = (1 + V10)* +

Now, since (J3—J3 =24+ J;2—2=(1+Y10)?and J3 — J; ' >0, it
follows that J3 — Jy ' = 1 + /10, from which we complete the proof of (i).
Since .J; /3 = 1/.J3, we can easily deduce (ii) from the foregoing equality. m

COROLLARY 3.14. We have
(1) R(e_2\/§”) =V +1—c, where 2c=5J5+1,
(i) R(e_%/\/g) =V +1—¢, where 2c= \/ng/g +1.
Proof. Parts (i) and (ii) follow from Theorems 3.1 and 3.13. =

THEOREM 3.15. We have
(i) Jo = H{11 +3v5 + 5v3 + 3v15 + V60(4 + 2v3 + V5 + V15)}
V60 +2—v3+5

V60 — 2+ 3 -5

(i)  Jijg= {11 +3V5+5V3+3V15— V60(4 +2v3+ 5+ V15)}
V60 —2+v3 -5
T V60+2-V3+5

Proof. Setting n = 1 and Jy + ng = A in Theorem 3.11 and using
Theorem 3.2(i), we have

54 =A% -2 —-6A—3V5A —6V5—09.

Hence

A= 3{(11+3V5) £ V30(7 + 3v5)} = 3{(11 + 3v5) £ VI5(3 + V5)}.
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Since A >0, Jg + Jg_l = %(11 +3\/3+5\/§+3\/E). Thus

Jo = L{11 + 35 + 5V3 + 3v/15 + 2V (90 + 50v/3 + 39/5 + 241/15)}
= {11+ 3vV5 +5V3 + 3V15 + V60(4 + 23 + V5 + V15)},

and using Remark 3, we find that

Jije = {114 3V5 +5vV3 + 3v15 — 2V (90 + 50v/3 + 39v/5 + 241/15)}
= {11+ 3V5 + 5V3 + 3V15 — V60(4 + 2v3 + V5 + V15)}.
Also
{11+ 3V5+5V3+3V15+ V60(4 +2V3+ V5 +V15) H{ V60 — 2+ V3 — 5}
= 8 — 4v/3 + 4V/5 + 4V/60.

Thus

C8-4V3+4V5+4V60  V60+2-v3+5

T2+ 3B Vo0-24 35

Using Remark 1, we complete the proof. m

COROLLARY 3.16. We have
(i) R(e™") = VeZ+1—c, where 2c=+5Jy+1,
(i) R(e™#7/3) = Ve +1—c¢, where 2c= \/ng/g + 1.
Proof. Parts (i) and (ii) follow from Theorems 3.1 and 3.15. =
Berndt and Chan [3, 5] gave another proof of (i).

THEOREM 3.17. We have

() p, - Yo rL
(ii) D3 = ‘/52_ L

Proof. Letting n =1/3 and B = D3 + D3_2 in Theorem 3.12, and using
the fact that Dy, = 1/D,, we have
10=(B?—-2)-6B+6V5vVB+2-9.
Hence
(B—3)(B*—9B? -33B —27) = 0.

Since D3 < Js and B is real-valued, B = 3 by the proof of Theorem 3.13.
Now the assertion follows from

D3+ D3'=VvVD3+D;?+2=15n



116 J. H. Yi

COROLLARY 3.18. We have

(i) S(e™V?) = H{V6(5 + V5) — 3+ VB)},
(i1) S(e™/V3) = 1{V6(5 - V5) - (3 - VH)}.

Proof. (i) From Theorem 3.17(i),

d:%(\/ng—l):%<5+2\/g—l> :%(3+\/5),

which implies that v/d? + 1 = %\/ 30 + 6/5. Now apply Theorem 3.1(ii).
(ii) From Theorem 3.17(ii),

d=3(V5Dy3 —1) = §(3 - V5)
which implies that Vd2 +1 = im Now apply Theorem 3.1(ii)
again. m
THEOREM 3.19. We have
(i) Dy = 1{11 - 5v/3 — 3v/5 + 3V/15 + V60(4 — 2v/3 — V5 + V15)}
V60+2+v3-V5
V60 —2— 3+ 5
(i)  Dyjo=1{11-5vV3-3V5+3V15 - V60(4 - 2v3 — V5 + V15)}
_ V60-2-V3+V5
V60 +2+ 3 -5

Proof. Set n = 1 and B = Dg + D;l in Theorem 3.12. Then, using
Theorem 3.2(ii), we find that

B% — (11 - 3V5)B — (11 — 6v/5) = 0.

Hence

B = {11 -3V5+V30(7-3V5)} = L(11 - 3v/5 — 5v/3 + 3V/15).

2
From this we deduce that

Dy = 1(11 - 3v/5 — 5V/3 + 3v/15 + 21/90 — 50v/3 — 39v/5 + 24V/15)
= {11 - 3v/5 - 5V3 + 3V15 + V60(4 — 2v/3 — V5 + V15)}.

Now apply the same argument as in Theorem 3.15 for computing Jg and
J1/9 to conclude that

Do _ V60+24 V35
PV -2-vB+ V5

and we can easily deduce (ii). m
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COROLLARY 3.20. We have

Q) e 3™ = \/d2——d where 2d = /5Dy — 1,
(i) 77r/3 \/dQ— —d, where 2d= \/5D1/9 -1

Proof. Parts (i) and (ii) follow from Theorems 3.1(ii) and 3.19. m

THEOREM 3.21. We have

(i) Dor =2+ V54 (1 + V5)(20 + 9v5) /%,
(ii) (e3V3) = \/d>+1—d, where 2d=+/5Dyr —1.

Proof. By multiplying D2 D2, on both sides of Theorem 3.12, we can
deduce the equation

D3, — (5D3 —3V5 D2 +6D,,)D§,, + 3(vV5 D3 — 3D2 + V5 D,,)D§,
—(6D3 - 3V5 D2 4+ 5D,,) Dy, + D;t = 0.
With n = 3 and D3 = (v/5 4 1)/2 in the above equation, we deduce that
Dy — 5(11+7V5) D3y + 3(3 + V5) Di; — (T +4v/5) D7 + 3(7 + 3V5)

— (D27—\/32 ){D27 3(2+V5)D3;+2(3+V5) Doy — 2 (11+5V5)}

= 0.

Since Doy > 1 and is real-valued, we find, upon solving the cubic equation
above, that

Dy7 = 2+ V5 + 1(260 + 116v/5 — 44/1230 + 5501/5)/3
+1(260 4 116V/5 + 44/1230 + 550/5) /2
=2+ V5 + 1(160 + 72v5)1/® + 1(360 + 160v/5)/?
=2+ V54 (20 4+ 9V5)Y2 + {V5(9V5 + 20)}1/3
=2+ V54 (204 9V5)3(1 + V5).
So we complete the proof of (i). Part (ii) follows from Theorem 3.1(ii) and
part (i). m
COROLLARY 3.22. We have
S(e ‘/_”/9 \/6127 —d, where 2d= \/5D1/27 -1,
and
Dyjor = =2+ V54 (=20 + 9v5)1/® — 1(3+ v/5)(—20 + 9v/5)*/%.

Proof. Apply Theorem 3.21(i) and D; /57 = 1/Da7, and then use Theo-
rem 3.1(ii). m
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THEOREM 3.23. We have
J25n 8 J25n 2 Jn 2 J25n Jn
— 25 — 125 — 225
< Jn > {( JTL ) * J25n Jn + J25n
= 25{(Jnj25n)2 + (JnJ25n)_2} + 125{Jnj25n + (JnJ25n)_1}
+25V5(J2 + J; 3 (Jasn + Josh) + 25V5( T + ;D) (I, + Jasn)
+75(J2 4 J2) + T5(J%,, + Jan) + T5V5( T, + I )

+ 75V5(Josn + Jogh).

Proof. The result follows directly from Theorem 2.7 and the definition
of J,. m

REMARK 7. Theorem 3.23 implies that if we know J,,, then we can com-
pute Jas, or J, 95, that is, if R(e=?™V™) is known, then so is R(e~'07V")
or R(e=2mVn/5),

THEOREM 3.24. We have
<DDLT>3 - 25{ <%i”>2 -+ (DIZ;)Q}— 125(%2” + 15;) — 225
= 25{(DyDasn)? + (DpDasy )2} + 125{D,, Das,, + (D, Dasy) '}
—25V5(D}, + D, *)(Dasn + Dys,.) = 25V5(Dyy + Dy, 1) (D35, + Dishy)
+75(D? + D, ?) + 75(D35,, + Do) — 75V5(D,, + DY)
— 75V5(Dasn + Do)

Proof. Replace ¢ by —¢ in Theorem 2.7, set ¢ = e ™V", and use the
definition of D,, to achieve the result. m

REMARK 8. By Theorem 3.24, if we know D,,, then we can find Dss,
or D,, /o5, which implies that if we know S (e~™ ™), then we can compute
S(e=5™V) or S(e~"V/5),

4. Formulas and values for R(q) and S(g) from modular equa-
tions of degree 5p. In this section, we shall need the following relations
stated by Ramanujan [1, p. 267, (11.6)], and proved by Watson [17]:

1 11 _ pb _ f6(_Q)
L) B (@)= af%(—q®)
Replacing ¢ by —q, we have
(4.2) L s = °(a)
' 5°(q) af%(a°)’
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THEOREM 4.1. (i) For ¢ = e~ 2™V"/5 et
_ [
5vV54f5(—¢?)
Then
Ro(e™2™Vn/%) = \/a2 +1—a, where 2a=5V5s, +11.
(ii) Also for q=e ™V let
)

" 5VBafS(gP)
Then
S5 (em™VNn/5) = Vb2 +1—b, where 2b=5V5t, —11.
Proof. (i) From (4.1), we have
RY(q) + (555, + 11)R%(¢) — 1 = 0.

Solving for R°(q) and using the fact that R°(q) > 0, we complete the proof.
(ii) From (4.2), we find that

S1>q) + (55 t, — 11)S%(q) — 1 = 0.
The result follows upon solving for S°(q) and noting that S%(g) > 0. =
THEOREM 4.2. We have
(i) s1=1, Sim=1/sn,
(i) =1, tip=1/t,.

Proof. The results (i) follow from (3.3), and the results (ii) follow from
(34). =

COROLLARY 4.3. We have

(i) R5(q~2/V5) = 1{V10(25 + 11v/5) — (5V/5 + 11)},
(ii) S5(q~™/VB) = L{V10(25 — 11v/5) — (5v/5 — 11)}.

Proof. Set n =1 in Theorem 4.1 and use the values s; =1 and t; =1,
respectively, from Theorem 4.2. m

THEOREM 4.4. We have
s \1/2 s 1/2
VB{(s0840)"/° + (sn84) /%) = <—> ! <_> '
S4n Sn
Proof. The result follows directly from Theorem 2.1 upon setting ¢ =
e~2™V"/5 and using the definition of s,,. m
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REMARK 9. Using Theorem 4.4, we can compute sS4, or s,/4 if s; is
given. That is, we can compute R®(e~4"V"/%) or R®(e~™V"/?) if we know
R5(6727r n/5)

THEOREM 4.5. We have

(i) s = V5 +2, 81/2:\/_—27
i) :<1+¢3+\/§\/1+\/5>3 o _<1+\f—\/§x/1+¢3>3
9 ) 1/4 — 9 .

Proof. (i) Letting n = 1/2 in Theorem 4.4 and using Theorem 4.2, we
find that 2v/5 = sy + 851. Since sy and s/, are the solutions of i

2v52 4+ 1 =0 and s, is increasing in n, we conclude that sy = V5 + 2 and
s12 =Vb—2.

(ii) Letting n = 1 in Theorem 4.4, using Theorem 4.2, and setting A =

1/3+541/3 we find that v5v/A +2 = (A —1)\/A+2. Hence A =1+ /5.
Since 51/3 and 51/2 are the solutions of 22 — (1 + v/5)z + 1 = 0 and s,, is
increasing in n, we conclude that

51 = 31+ VE+ V2(1+ V5)),
sis = 3(L+V5—V2(1+V5)). u
COROLLARY 4. 6 We have
i) RP(e7?™V2/5) =3V10(5 + 2V/5) — (18 + 5v/5),
i) R(e7*/VI0) = 3V10(5 — 2v/5) — (18 — 5V/5),
) \/71—a where  2a = 5V/5 54 + 11,
iv) RE’(e_“/‘/_) = \/ﬁ —a, where 2a=5V5 s1/4 + 11
Proof. The results follow from Theorems 4.1 and 4.5. =

R5( —47r/\/_

THEOREM 4.7. We have

(i) 38:{(3+\/g)(1+\/§)}3:63+45\/§+28\/5+20\/1_0,

2

(i)  R°(e~*"V2/%) = %{3\/10(22310 + 15775v/2 4 9977+/5 + 70551/10)
— (711 + 50072 + 315V/5 + 225v/10)},

3
(iil) 518 = { (8- ﬁ);ﬂ — 1)} = —63 +45V/2 + 28v/5 — 2010,

(iv)  R°(e ™/V10) = L{3v/10(22310 — 15775v/2 — 9977v/5 + T755\/10)
— (711 — 500v/2 — 315v/5 + 225V/10)}.
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Proof. Multiplying both sides of Theorem 4.4 by (s,,54,)'/2, we find that
V5(5n54n )2 + V5 (5p54n) Y3 = 540 + 5.

Now letting n = 2 in the above equation and using the value sy = V5 +2 =
((1++/5)/2)? from Theorem 4.5, we find that

3V5+5 93 f+5 s/

s +V5+2=0.

S8 —
That is,
sy® + 1 VB){22% — (6 +2VB)sy® — (7 +3VE)} =
Slncesg/ >sé/3 (1+V5)/2,
s¢® = 13+ VB + Va8 +12V5) = 13+ VB)(1 + v2).
Hence

ss = L3+ V5)3(1 + v2)® = 63 + 45V2 + 28v/5 + 20v/10,

which proves (i). And since s;/5 = 1/sg, we find that

{ 2_1)} = —63 + 45v/2 4 28v/5 — 20V/10,

which proves (iii). By using (i) and (iii) of Theorem 4.1, we deduce (ii) and
(iv), respectively. m

THEOREM 4.8. We have

(i) 5\/5{(5n59n)1/2 + (5n59n)71/2}

_ &ﬂ_s_”_g{<39_”>1/2+ <8_n>”2},
Sn, Son Sn Son

(i) 5V5{(tnton)? + (tuten) %}

1/2 1/2
t9n tn tgn tn
—On_Tn gl (2 LB .
tn t9’n * {< tn > * <t9n> }

Proof. (i) Setting ¢ = e~2"V™® in Theorem 2.2 and using the definition
of s,, in Theorem 4.1, we derive the desired result.

(ii) Replacing ¢ by —q in Theorem 2.2, letting ¢ = e~ "V"™/% and using
the definition of t,, in Theorem 4.1, we complete the proof. m

REMARK 10. By Theorem 4.8, if we know s,, and t,, then we can find
Son OF 8,9 and tg, or t, g, respectively, which implies that if we know
R5(e=2™V"/%) then we can find R5(e~"V"/%) or R®(e=27Vn/(3V5)) and if
we know S°(e~"V"/5), then we can find §5(e37V"/5) or §5(e=TVR/(3VE)),
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THEOREM 4.9. We have

(i) s3=2(11+5V5), 813 =21(5V5—11),
(ii) s9 = 104 + 60V/3 + 45V/5 + 26115,
(iii) s1/9 = 104 — 60v/3 + 45v/5 — 26V/15.

Proof. (i) Setting n = 1/3 in (i) of Theorem 4.8 and using the equality

81/n = 1/s, from Theorem 4.2, we have
10V = 52 — 532 — 9(s3 + s31).
Now letting A = s3 + sgl, we deduce that
10v/5 = A+ — 442 —

Thus

A* —85A4% — 180v5 A — 500 = (A + V5)(A — 5v5)(A + 2v/5)% =
Since A > 0,A = 5v/5. Thus

=1(65V5+ V125 —4) = (55 +11) and s,53 = 3(5V5 —11)

since s1/3 = 1/s3.
(ii) and (iii). Let n = 1 in (i) of Theorem 4.8 and use the value s; =1
to find that

5vV/5(s 1/2—1—3 1/2)—39—3 —9(s 1/2+3 1/2)
Since 35/2 + 59 12 0, by dividing both sides by s 24 Sg /2, we have
5V5 +9 = sp/? — 55 /2.

So

s9 = (9 +5v5 4+ V210 + 90v/5)2 = 1{9 + 55 + V15(3 + v/5)}?

= 1(9+5V3+5V5 +3V15)% = 104 + 60v3 + 45V/5 + 26V/15
and, since 519 = 1/5s9,
s179 = 104 — 60v/3 + 45v/5 — 26V/15. m
COROLLARY 4. 10 We have

i)  Ro(e2"V3/%) = 1{_147 — 55\/5 + v 1470(25 + 11V5)},
()  RO(e™/VI%) = L 147+55f+ V1470(25 — 11V5)},
(i )
(

iii) Va2 +1—a, where 2a=5V5s9+ 11,
iv) R5(e_27r/(3\/—)) =+Va2+1—a, where 2a=>5V5 5179 + 11,

where s1/9 and sg are given in Theorem 4.9.

R5( —67/v/5

Proof. These results follow from Theorems 4.1 and 4.9. =
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THEOREM 4.11. We have

(i =YLy YA

2 2
(ii) ty = 104 + 60v/3 — 45V/5 — 261/15,
(iii) t1/0 = 104 — 60v/3 — 45v/5 + 26V/15.

Proof. (i) Letting n = 1/3 in Theorem 4.8(ii) and using the relation
t1/3 = 1/t3, we find that

10V5 =13 — 132 + 9(t3 + t31).
If B=t3+t;", then 10v/5 = BV/B2 — 4 + 9B. Hence
B* — 8582 + 180v/5 B — 500 = (B — V/5)(B + 5V5)(B — 2v/5)? =

Since t,, is increasing and positive, and ¢t5 < 3 (we will see this later in
Theorem 4.16), B = v/5. Therefore t5 = (V5 +1)/2 and 1,3 = (V5 —1)/2
since tq,3 = 1/t3.

(ii) and (iii). Letting n = 1 in Theorem 4.8(ii) and recalling that ¢; =1,
we deduce that

5VE(te % + by 1/2) —to—tg ' +9(t)/ 2+ 151/,
By dividing both sides by t9 >y ty 12 , we find that
o/ —t51? =5v5 - 9.
Hence
1(5v5 — 9+ V210 — 90v5)% = 1(5v/5 — 9 + 3V/15 — 5/3)?
= 104 +60v/3 — 45V/5 — 2615
and, since t1/9 = 1/tg,

t170 = 104 — 60v/3 — 45V/5 + 26/15. m

COROLLARY 4.12. We have

(i) SP (e ™V3/5) = LI_5V5 -3+ V30(5+ V5)},

(ii) S5(e~™/VI5) = 1{5v/5 — 34+ V30(5 — V5)},

(i)  SP(e VB =2 +1—b, where 2b=5V5ty— 11,
(iv) S5 ™/OVD) = /1241 —b, where 2b=5V510 — 11,

where ty,9 and tg are given in Theorem 4.11.

Proof. These results follow from Theorems 4.1 and 4.11. =
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THEOREM 4.13. We have
(1) 5{(Sn325n)1/3 + (3n325n)71/3} + 5\/5{(37182571)1/6 + (3n325n)71/6}

1/2
_ (525n> _ 15,
Sn

(11) 5{(tnt25n)1/3 + (tnt25n)71/3} - 5\/3{(tnt25n)1/6 + (tnt25n)71/6}

= (tQﬂ> v 15.
ty
Proof. (i) This follows from Theorem 2.3 and the definition of s, in
Theorem 4.1.

(ii) By replacing ¢ by —¢q in Theorem 2.3 and using the definition of ¢,
in Theorem 4.1, we complete the proof. m

REMARK 11. By Theorem 4.13, if we know s, and t,, then we can
find sg5, or sy,/95 and l2sy, or t, /95, respectively, which implies that if we

know R°(e~2"V"/%) and S%(e""V™?), then we can find R®(e=2V>"™) or
R5(e=2mvn/(5V5)) and §5(e=V51™) or §%(e~™V/(5V5)  respectively.

THEOREM 4.14. We have
1
s5=25+10vV5 and sy5 = 55 (50— 2V5).

Proof. Letting n = 1/5 in Theorem 4.13(i) and using the equality s;,5 =
1/ss5, we find that 104105 = s5—15, and so s5 = 25+ 10v/5. Furthermore,
si5=1/s5 = 5=(5—2V5). m

COROLLARY 4.15. We have

B (e-27/%) [45+9vV5 V549
2 2

Proof. This follows from Theorem 4.1 with s1/5 = (5 — 2V/5). =

THEOREM 4.16. We have

t5 =25-10V5 and t/5=

1
—(5+2v)H).
550+ V’5)

Proof. Letting n = 1/5 in (ii) of Theorem 4.13 and using the equality
ti/5 = 1/t5, we find that 10 — 10v/5 = t5 — 15, and so t5 = 25 — 10v/5 and

t1/5 == 1/t5 == 2—15(54-2\/5) ]
COROLLARY 4.17. We have
SP(e™/%) = 3V2(5 — V5) — (-9 + V5).
Proof. By Theorem 4.1 with t; /5 = %(5 +2v5). =
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THEOREM 4.18. We have

(i) 5\/5{(5n549n)1/2 + (5n549n)71/2}
() () ) ()
Sn S49n, Sn 549n
1/3 1/3 1/6 1/6
) -G pe{ ) ()
Sn S49n, Sn S549n,
and
(ﬁ) 5\/5{ (tnt49n)1/2 + (tnt49n)71/2}
[ taon 2/3_ s 2/3—1_7 faon 1/2+ s 1/2
- tn t49n tn t49n
1/3 1/3 1/6 1/6
tagn tn ta9n tn
7 - — — 14 —_— .
{(5) () ) -G )

Proof. These equations follow from Theorem 2.4 and the definitions of
Sn and t,, in Theorem 4.1, respectively. m

REMARK 12. By Theorem 4.18, if we know s, and t,, then we can
find s49, OT 8y,/49 and tagn oOr t,,49, respectively, which implies that if we

know R®(e~2"V™/%) and S5(e~"V"/®), then we can find R®(e~'*"V"/5) or
R5(e=2mvn/(TV5)Y and §5(e~T"V"/%) or §5(e=V7/(TV5))  respectively.

THEOREM 4.19. We have

37=216(3\/_+a+b+\/57+6\/_(a+b)+a +b2)3,

216( 3V5 —a—b+ V57 +6V5(a+b) + a2 + b2)3,

where a = (54v/5 — 6v/21)Y/3 and b = (54v/5 + 64/21)1/3.
Proof. Letting n =1/7 in (i) of Theorem 4.18, we have

10\/5:3 — _/ — T(s7 +s71)
+7(s2 2/3 2/3)+14( 1/3—1—3 13y

LetAzs%/g—i— ~1/3 . Then

10V5 = (A% — 24)\/ A2 — 4 — T(A3 — 3A) + TAV/ A2 — 4 + 14A.

Hence

S1/7 =

TA3 —35A + 10V5 = (A3 + 5A)/ A2 — 4.
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Now by squaring both sides we have

A® — 43A5 4+ 475A4% — 1405 A3 — 132542 + 700v/5 — 500
= (A—V5)(A% = 5)(A+2V5)*(A% - 3V5 A% + TA— V5) = 0.
Since A > 0 and A > Sé/?’ > /5 by Theorem 4.14, A satisfies the equation
A3 —3v5A%2 +7A — /5 =0. Now since A is real-valued, we have
A=+V5+La+ 1,
where a = (54v/5 — 61/21)'/3 and b = (54v/5 + 6+/21)1/3. Since s, /7 = 1/s7,
it follows that s;/7 and 1/s7 are the solutions of the equation
2? — (V5+ 3a+ ib)z +1=0.

Hence we deduce the results by using s7 > s;/7. m

THEOREM 4.20. We have

t7:2—|—\/§ and t1/7:\/_—2
Proof. Letting n = 1/7 in (ii) of Theorem 4.18, we have
4 —4 _
105 = 623 — %% 4 7ty + 1571)
F (2 2y 1A .
Put B = t$/3 + t;l/?’. Then, by the same argument as in the proof of
Theorem 4.19,
(B +V5)(B? - 5)(B —2v5)%(B* + 3V5 B2+ 7B +/5) = 0.

Since B is positive and t,, is increasing in n, B = t%/?’ +t;1/3 < Zté/?’ <25
from Theorem 4.11. Thus we find that B = /5. Hence

t7:(\/52+1>3=2+\/5 and tw:(‘/g_l)g:f—z.

2
COROLLARY 4.21. We have

(i) Ro(e™2™T/%) = /a2 +1—a, where 2a=5V5s7+ 11
and s7 is given in Theorem 4.19,
(ii) R5(e*2”/‘/‘%) =Va2+1—a, where 2a=5V5 517 +11

and sy 7 is given in Theorem 4.19,

(iii) S°(e™™VT/5) = \/35(5 4+ 2v/5) — (T4 5v/5),
(iv) S% (e~ ™/ V) = V/35(5 — 2¢/5) — (7 — 5V/5).

Proof. The results follow from Theorem 4.1 with the values in Theorems
4.19 and 4.20. =
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