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Cyclotomic matrices and a limit formula for h−p
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Kurt Girstmair (Innsbruck)

1. Introduction. Let N ≥ 3 be a natural number (henceforth often
called the modulus) and j an integer with (j,N) = 1. One of the main
objects of this article is the infinite sum

bj(N) =
2π
N

∞∑

m=1
(m,N)=1

µ(m)
m

sin
2π(mj)∗

N
.(1)

Here µ denotes the Möbius function and ( )∗ an inverse mod N of the
respective number (i.e., k∗ is an integer such that kk∗ ≡ 1 mod N). The
series (1) is conditionally convergent and has to be understood in the usual
sense of the limit

lim
n→∞

∑

m≤n
,(2)

an interpretation which applies to several sums below. We fix N for the time
being and, therefore, simply write bj instead of bj(N). Obviously, bj depends
on the residue class of j mod N only. Let ζN = e2πi/N , so Q(ζN ) is the Nth
cyclotomic field. The numbers bj are in Q and have to do with the relative
class number h−N of Q(ζN ). This connection is particularly close in the case
of a prime number N = p. We note

Theorem 1. Let N = p ≥ 3 be a prime and κ = max{m : 2m | (p− 1)}.
Suppose, moreover , that h−p is square-free and prime to p − 1. Then the
rational numbers 2κbj , (j,N) = 1, have the exact denominator h−p , i.e.,

2κbj = nj/h
−
p

for an integer nj with (nj , h−p ) = 1 (in particular , bj 6= 0 if h−p > 1).

There are 54 primes p, 3 ≤ p < 300, with h−p > 1. For 30 of these,
h−p is square-free and prime to p − 1. Hence Theorem 1 is, at least, not
empty. For primes p not falling under the theorem one has to expect that
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the denominator of 2κbj equals h−p up to powers of small primes (cf. Sections
3–5; in particular, Table 2).

In principle, the relative class number h−p (or a very large divisor of it)
may be computed by means of formula (1). Indeed, suppose we know, in
the setting of Theorem 1, that 2κh−p has at most d decimal digits (such a d
can be read from estimates like h−p ≤ 2p(p/24)(p−1)/4, cf. [16], p. 441). Let
aj = bj − bbjc denote the fractional part of the number bj . On summing up
sufficiently many terms of the series (1) we find the number αj , 0 < αj < 1,
that consists of the first 2d+1 digits (after the decimal point) of aj . But then
the continued fraction expansion of αj quickly reveals the exact value aj : it
is the uniquely determined convergent of αj with the largest denominator
< 10d (cf. [2]). However, the said series converges rather slowly, so this
method cannot be recommended in practice. We give an example: In the
case p = 43, κ equals 1 and 2h−p = 422, thus d = 3 is a suitable choice.
Taking the sum (1) over all suitable m ≤ 84 ·106, one obtains 0.0616080 as a
candidate for α1. The convergents of this number are 0, 1/16, 4/65, 13/211,
82/1331, . . . ; accordingly, 13/211 should be the correct value of a1 (which
coincides with b1 here). This is true, although not all of the seven relevant
digits of a1 = 0.0616113 . . . are identical with those of our candidate; hence
it is not astonishing that the same amount of work does not give the correct
value of a4 (= b4), say.

Nevertheless, we think that (1) is an interesting series. A large part of
this paper is devoted to the investigation of the arithmetical properties of
its value bj = bj(N). The key to these properties is an alternative (and even
simpler) definition of bj by means of certain numbers in the cyclotomic field
Q(ζN ). To this end we consider the “sine numbers”

sj = sj(N) = 2i sin(2πj/N)(3)

and the “cotangent numbers”

cj = cj(N) = i cot(πj/N),(4)

which are defined for all integers j prime to N . Because of

sj = ζjN − ζ
−j
N , cj = (1 + ζjN )/(1− ζjN ),

both kinds of numbers lie in the field Q(ζN ), more precisely, in its Q-subspace
Q(ζN )∩ iR. This subspace has dimension ϕ(N)/2 and (as is known but will
anew be shown below) the Q-basis (cj)j∈R, where

R = {j ∈ Z : 1 ≤ j < N/2, (j,N) = 1}.
Accordingly, there are uniquely determined rational numbers bj , j ∈ R, such
that

s1 =
∑

j∈R
bjcj .(5)
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Each number bj of (5) is, in fact, identical with the respective number bj(N)
of (1), j ∈ R. We extend the definition of the numbers bj of (5) to all indices
j ∈ Z, (j, n) = 1, by means of

bN−j = −bj , bj+mN = bj , m ∈ Z,(6)

an extension that is consistent with (1). The study of the arithmetical prop-
erties of bj (in particular, its connection with h−N ) requires some additional
notations.

Let X− be the set of odd Dirichlet characters mod N . By fχ we denote
the conductor of a χ ∈ X− and by χf the primitive character (mod fχ)
belonging to χ. Moreover,

Bχ =
fχ∑

k=1

kχf (k)/fχ

denotes the corresponding Bernoulli number of order 1. It turns out that the
number bj is a sort of weighted mean value of the reciprocals of the numbers
Bχ, χ ∈ X−. In view of this we call

wχ =
µ(N/fχ)χf (N/fχ)

(N/fχ)
∏
p|N (1− χf (p)/p)

(7)

the weight factor of χ ∈ X− (the bar denotes the complex conjugate).

Theorem 2. Let N ≥ 3, (j,N) = 1. Then

bj =
−2
ϕ(N)

∑

χ∈X−
wχ

χ(j)
Bχ

.(8)

Theorem 2 is important both for the arithmetic of the numbers bj and
for their actual computation. Together with the well known formula for h−N
(cf. [20], p. 42), this theorem suggests that the denominator of the ratio-
nal number bj is related to the relative class number. In general, however,
this denominator also involves divisors of ϕ(N) and numbers coming from
the weight factors wχ (cf. Table 1). Fortunately, these unwieldy factors are
rather harmless in a number of cases: If N is a prime, wχ = 1 for all χ ∈ X−;
if N is a powerful number, wχ takes the values 0, 1 only. It was shown in
[1] that, in the case of a prime modulus N = p, the rational coefficients
bj occurring in equation (5) take the shape (8)—with 1 instead of the fac-
tor wχ. From (7) it is obvious that the generalization to arbitrary moduli
N is not straightforward. The aforementioned paper, which was one of our
sources of inspiration, also indicates some connections between bj and h−p .
We shall study these connections more thoroughly in Sections 3–5. Among
other things, this study shows that, in the setting of Theorem 1, the numer-
ators nj of the numbers 2κbj are by no means random quantities:
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Theorem 3. Let the assumptions and notations of Theorem 1 hold :
i.e., h−p is square-free and prime to p− 1 and 2κbj = nj/h

−
p for each j with

(j,N) = 1. Further , let g ∈ Z be a primitive root mod p. Then there is a
number γ ∈ Z, (γ, h−p ) = 1, such that

ngm ≡ n1γ
m mod h−p

for all m ∈ Z.

It seems that the exponent κ of Theorem 1 is not best possible: In all
examples known to the author κ can be replaced by the number 1; accord-
ingly,

2bj = n′j/h
−
p with n′j ∈ Z, (n′j , h

−
p ) = 1.

This gives the congruence

n′gm ≡ n′1γm mod h−p ,(9)

m ∈ Z, which is slightly better than that of Theorem 3 from the computa-
tional point of view. In quite a number of cases one can compute all numbers
bj , j ∈ R, using nothing but this congruence, if only b1 and bg (i.e., n′1 and γ)
are known: Indeed, as p tends to infinity, |Bχ| � p1/2/log p for characters of
order > 2, whereas |Bχ| ≥ 1 for quadratic characters (cf. [15]). Accordingly,
|bj | � p−1/2 log p and |n′j | < h−p /2 for large values of p. If this is true, n′gm is
the solution of (9) whose absolute value is smallest possible. It seems that
this way of finding n′j applies to all primes p ≥ 47 that fall under Theorems
1, 3; we have checked this in a number of cases, among them all primes
< 200. In these cases the order of γ in the group (Z/h−p Z)× equals p − 1,
so the numbers n′j , 1 ≤ j ≤ p − 1, are all distinct mod h−p , which implies
that the corresponding bj ’s must be distinct. From these considerations one
gets an impression of the role that arithmetical properties of the bj ’s play in
their actual computation. We shall discuss this computation in Section 5.

The identities (1), (8) and others follow from the diagonalization of cer-
tain cyclotomic matrices, which is the main topic of Section 2. Section 3 deals
with possible denominators of the rational numbers bj , whereas Section 4
contains the congruences underlying Theorem 3. Theorem 1 is a synopsis
of the material collected in Sections 3 and 4. As we indicated above, this
material is needed for the computations of Section 5.

2. Some cyclotomic matrices. Not all of the following results are
new; but they have been included in order to present a reasonably smooth
and self-contained exposition of the relevant material. For the same reason
most of the necessary references have been placed at the end of this section.

Let N ≥ 3, R and X− be as above. We note the following orthogonality
relations, which hold for every j ∈ Z with (j,N) = 1:
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∑

χ∈X−
χ(j) =





0 if j 6≡ ±1 mod N,
ϕ(N)/2 if j ≡ 1 mod N,
−ϕ(N)/2 if j ≡ −1 mod N.

(10)

They can be proved in the usual manner (if j 6≡ ±1 mod N , separate an
even character ψ with ψ(j) 6= 1).

In what follows we assume that the characters in X− are ordered in
some (arbitrary but) fixed way: X− = {χ1, . . . , χϕ(N)/2}. This ordering also
applies to the columns of the character matrix

X =
√

2/ϕ(N) · (χ(j))j∈R, χ∈X−

(observe that |R| = |X−| = ϕ(N)/2). If A is an arbitrary matrix, Aj,k (or,
possibly, Aj,χ) denotes the element of A in the indicated row and column,
e.g., Xj,χ =

√
2/ϕ(N) · χ(j). On applying (10) to the entries of the matrix

XX
T

, one obtains

Proposition 1. The matrix X is unitary , i.e., X
T

= X−1.

For the time being, let {aj : j ∈ Z, (j,N) = 1} be a set of complex
numbers with the property (cf. (6))

a−j = −aj , aj+mN = aj , m ∈ Z.(11)

Then the matrix A = (ajk∗)j,k∈R is normal, i.e., unitarily congruent to a
diagonal matrix. More precisely, put ∆ = diag(dχ)χ∈X− with

dχ =
∑

j∈R
χ(j)aj .(12)

Now
A = X∆X

T
(13)

and the element Aj,k = ajk∗ has the shape

ajk∗ =
2

ϕ(N)

∑

χ∈X−
χ(jk∗)dχ.(14)

Indeed, (13), (14) immediately follow from (10).
In what follows we are mainly concerned with cyclotomic matrices A

that are formed in the following way: Consider the Galois group

Gal(Q(ζN)/Q) = {σk : k ∈ Z, (k,N) = 1},
where σk acts on ζN by σk(ζN ) = ζkN . Further, take a number a ∈ Q(ζN )∩iR
and put aj = σj(a), (j,N) = 1. Because of σ−1(a) = a = −a, these numbers
satisfy (11), so A = (ajk∗)j,k∈R is of the above type. It is not hard to see
that the matrix A is invertible if, and only if, the family (aj)j∈R is Q-linearly
independent.
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Our first number a of this kind is the sine number s1 = 2i sin(2π/N) of
(3), which leads to the sine matrix

S = (sjk∗)j,k∈R.

One immediately reads from (12) that the corresponding diagonal element
dχ is, essentially, the Gauss sum

τ(χ) =
N∑

k=1

χ(k)ζkN .

Indeed, on putting
Γ = diag(τ(χ))χ∈X−

we obtain the identity that corresponds to (13), namely,

Proposition 2. The sine matrix S is normal and satisfies

S = XΓX
T
.

The next number a to be considered is the cotangent number c1 =
i cot(π/N) of (4), which gives rise to the the cotangent matrix

C = (cjk∗)j,k∈R.

Its diagonalization leads to the matrix

Λ =
iN

π
· diag(L(1, χ))χ∈X− ,(15)

which involves the L-series

L(s, χ) =
∞∑

m=1

χ(m)/ms.

This series is absolutely convergent in the half-plane Re s > 1 and converges
in the sense of (2) for Re s > 0.

Proposition 3. The cotangent matrix C is normal ; in fact ,

C = XΛX
T
.

Proof. Compute (XΛX
T

)j,k using (14), (15) and the formula
∑

m∈Z
m≡jmodN

1
m

= (π/N) cot(πj/N).

This identity follows from the partial fraction decomposition of the cotan-
gent function; the infinite sum has to be understood in the sense of

lim
n→∞

∑

|m|≤n
.(16)

Recall that the L-series L(s, χ) does not vanish on the line Re s = 1 (e.g.,
[19], p. 254 ff.); in particular, L(1, χ) 6= 0. Accordingly, the matrices Λ and
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C are invertible. From Proposition 3 we obtain a formula for the elements
of the inverse cotangent matrix C−1. Indeed, put

ĉj = ĉj(N) =
−2iπ
Nϕ(N)

∑

χ∈X−

χ(j)
L(1, χ)

,(17)

where j ∈ Z is prime to N . The numbers ĉj will be called the inverse
cotangent numbers mod N . Using (14) we have

Proposition 4. The inverse cotangent matrix has the shape

C−1 = (ĉjk∗)j,k∈R.

Our next objective is an infinite series for the number ĉj . To this end we
represent the reciprocal of L(s, χ) by the Dirichlet series

L(s, χ)−1 =
∞∑

m=1

µ(m)χ(m)/ms.(18)

This identity is well known for Re s > 1 but maybe not so widely known in
the case Re s = 1. One may argue as follows: As we remarked above, L(s, χ)
does not vanish for Re s = 1, so the function L(s, χ)−1 has an analytic
continuation on this line. Then a theorem of D. J. Newman (cf. e.g., [17], p.
66) says that the series (18) converges to L(s, χ)−1 for Re s = 1 in the sense
of (2). On combining (17), (18) (with s = 1) and (10) we have

Proposition 5. Let j ∈ Z be prime to N . Then

ĉj =
−iπ
N

∑

m∈Z
m≡jmodN

µ(|m|)
m

,(19)

where the sum is meant in the sense of (16).

The numbers cj , (j,N) = 1, are in the Q-vector space Q(ζN )∩ iR, whose
dimension is ϕ(N)/2. The matrix C being invertible, these numbers are
Q-linearly independent (as we remarked above), so they form a Q-basis of
this space. Since s1 is also in Q(ζN ) ∩ iR, there are uniquely determined
rational numbers bj , j ∈ R, such that (5) holds, i.e.,

s1 =
∑

j∈R
bjcj .

We extend this definition, in accordance with (6) and (11), to all indices
j ∈ Z prime to N and form the matrix

B = (bjk∗)j,k∈R,

whose entries are rational numbers. Because of (3), this matrix connects the
sine matrix with the cotangent matrix:

S = CBT .(20)
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Indeed, if one applies automorphisms σk ∈ Gal(Q(ζN )/Q) to the equation
(5), one gets more equations of the same type, which are, as a whole, equiva-
lent to the matrix equation (20). Now (20) says BT = C−1S; by Proposition
4 this is the same as

bj =
∑

k∈R
ĉks(kj)∗ , (j,N) = 1.(21)

On inserting the series (19) for the numbers ĉk into this formula we obtain

Proposition 6. Let j ∈ Z be prime to N . Then

bj =
2π
N

∞∑

m=1
(m,N)=1

µ(m)
m

sin
2π(mj)∗

N
.

In other words, we have shown the limit formula (1) for the numbers bj
defined by (5) but, of course, none of their arithmetical properties. These
properties are based on Theorem 2, which we shall prove now:

Proof of Theorem 2. From (20) and Propositions 2 and 3 we see that B
is a normal matrix, namely,

BT = XΛ−1ΓX
T
.

The entries τ(χ) of the diagonal matrix Γ can be expressed in terms of the
corresponding primitive Gauss sums: Put

τ(χf ) =
fχ∑

k=1

χf (k)e2πik/fχ.

By [10], p. 427,
τ(χ) = µ(N/fχ)χf (N/fχ)τ(χf ).

This identity has the following analogue for L-series:

L(1, χ) =
∏

p|N
(1− χf (p)/p) · L(1, χf ),(22)

which is an immediate consequence of the Euler product representations of
L(s, χ) and L(s, χf ). We use these identities (for χ instead of χ) and the
well known evaluation

L(1, χf ) = iπτ(χf )Bχ/fχ(23)

of L(1, χf ) in terms of the generalized Bernoulli number of order 1 (cf. [20],
p. 37). Altogether, we obtain

Λ−1Γ = diag(−wχ/Bχ)χ∈X− ,

where wχ means the weight factor (7). Then (14) yields the identity (8), i.e.,
Theorem 2.
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Remarks. 1. Of course, formulas (12)–(14) are only variants of known
formulas for group determinants (belonging to the group of prime residues
mod N , cf. [20], p. 71 ff.). Some cyclotomic matrices, together with certain
(rather general) character matrices were diagonalized in [4].

2. We could not find Proposition 3 in the literature, although it is implic-
itly known in the terminology of Leopoldt’s character coordinates: Indeed,
the diagonal element dχ of (12) is essentially the same as the χ-coordinate
y(χ|a) of the corresponding number a (cf. [7]). In the said paper this co-
ordinate was computed for a = c1, the cotangent number. The results of
[7] immediately give the diagonalization of other cyclotomic matrices, for
instance, the tangent matrix

(i tan(πjk∗/N))j,k∈R;

in this case the elements on the diagonal of Λ must be multiplied by cer-
tain non-vanishing Euler factors (e.g., by 1 − 2χ(2) if N is odd; ibid.,
Th. 3).

3. The determinant of the cotangent matrix C can be expressed in terms
of the product

∏
χ∈X− Bχ, which is essentially the same as h−N . This is

an immediate consequence of Proposition 3, (22) and (23). In the case
N = p ≥ 3 this connection of h−N with the cotangent determinant was
given in [5]. As to the general case, [8] contains an index formula which
is equivalent to this determinant formula; the determinant formula itself
can be found in [18]. The papers [14], [13] and a number of papers of the
author (e.g., [6], [9]) deal with various aspects of cotangent (and related)
numbers.

4. The inverse cotangent numbers ĉj(N) (in a shape slightly different
from the infinite sums (19) and without the normalizing factor −iπ/N)
play a role in the work of Hecke on Eisenstein series of higher levels (cf.
[12]). We do not go into details of this application here. The arithmetic
of the numbers ĉj seems to be even more complicated than that of the
bj ’s.

3. Primes in the denominator of bj(N). Let N ≥ 3 be as above. We
also adopt the other notations. In what follows a prime number dividing N
is, in general, denoted by p, whereas arbitrary primes go by the name of l.

For a prime l let vl : Q → Z ∪ {∞} denote the corresponding valuation
of Q; this means that vl(lm) = m for all m ∈ Z. For c, d ∈ Q and m ∈ Z we
say c divides d outside of m (c equals d outside of m, resp.) if vl(c) ≤ vl(d)
(vl(c) = vl(d), resp.) for all primes l not dividing m. An algebraic number a
will be called l-integral if there is an integer c with vl(c) = 0 such that ac is
an algebraic integer. The denominator of a rational number c is the natural
number defined by
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∏

l prime
vl(c)<0

l−vl(c);

hence the denominator of an integer is 1.
This section is devoted to the study of primes l that may occur in the

denominator of a number bj = bj(N). A survey of these primes is both inter-
esting for its own and useful for the computation of bj . A look at Theorem
2 shows that it is probably much easier to describe the denominator of bj
(in terms of primes occurring in h−N ) than to predict any primes occurring
in the numerator. Some insight into the arithmetic of the numerator will be
obtained in the next section (cf. Theorems 3, 5).

For a character χ ∈ X− let Q(χ) denote its field of values, Q(χ) =
Q(χ(j) : j ∈ Z), and

Nχ : Q(χ)→ Q

the corresponding norm (relative to Q). Two characters χ, χ′ are mutually
conjugate if, and only if, they generate the same group 〈χ〉 = 〈χ′〉. By [χ]
we denote the conjugacy class of χ ∈ X−. The Bernoulli number Bχ lies in
Q(χ). Its norm hχ can be written as

hχ = Nχ(Bχ) =
∏

χ′∈[χ]

Bχ′ .

By its definition, Bχ is p-integral for all p not dividing fχ, therefore hχ is
also p-integral for these primes. Let C denote a system of representatives of
the conjugacy classes in X−. The relative class number formula ([20], p. 42)
shows that the product

∏
χ∈C hχ equals h−N outside of 2N .

Next we pick out those characters χ ∈ X− for which the weight factor
wχ does not vanish. To this end we write

N1 =
∏

vp(N)=1

p, N2 =
∏

vp(N)>1

pvp(N).

Using (7), the reader may convince himself that wχ 6= 0 if, and only if,
N2 | fχ |N . This fact suggests the definitions

X ′ = {χ ∈ X− : N2 | fχ |N} and C ′ = C ∩ X ′.
The size of X ′ depends on the structure of N : the cases of a square-free
modulus N (where X ′ = X−) and of a powerful modulus N (where X ′ =
{χ ∈ X− : fχ = N}) mark the two possible extremes. Now (8) reads

bj =
−2
ϕ(N)

∑

χ∈X ′
wχ

χ(j)
Bχ

.(24)
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Further, we define

h′ =
∏

χ∈C′
hχ.

Of course, h′ divides h−N outside of 2N . If N is square-free, one even has
equality outside of 2N ; on the other hand, if N = pe is a prime power, h′

equals
ĥ = h−N/h

−
N/p(25)

outside of 2p. The quotient ĥ is a natural number (cf. [16], p. 474).
Besides the norm factors hχ we also need the norms of the weight factors

wχ, χ ∈ C. By virtue of (7), wχ can be written as

wχ = ε/
∏

p|N
p-fχ

(p− χf (p))(26)

with a certain root ε of unity; so we obtain

Nχ(wχ) = ±1/
∏

p|N
p-fχ

Nχ(p− χf (p)).

The norms in the denominator of this number are certain values of cyclo-
tomic polynomials. Indeed, let Φd denote the dth cyclotomic polynomial.
For a prime p dividing N , p - fχ, put

dχ,p = ord(χf (p)),

i.e., the order of the root of unity χf (p). Then

Nχ(p− χf (p)) = Φdχ,p(p).(27)

Henceforth the right side of (27) will simply be written Φχ,p.
Fix a prime number l for the time being. We investigate the exponent of

l in the denominator of bj , j ∈ Z, (j,N) = 1, namely

λj = −vl(bj)(28)

(which is ≤ 0 if l does not occur in the denominator). First suppose l -N .
Then hχ/Bχ is l-integral for any character χ ∈ X ′. In the same way,

wχ
∏

p|N
p-fχ

Φχ,p

is l-integral. In view of (24), these observations yield

Proposition 7. Let j ∈ Z be prime to N . For a prime number l, l -N ,
let λj be the exponent defined in (28). Then
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λj ≤ vl(ϕ(N)/2) + max
{
vl(hχ) +

∑

p|N
p-fχ

vl(Φχ,p) : χ ∈ C′
}
.(29)

Accordingly , l occurs in the denominator of bj only if it belongs to one of
the following three types:

(A) l is a divisor of ϕ(N)/2;
(B) l divides h′ (outside of N , to be precise);
(C) there is a character χ ∈ C ′ and a prime p, p |N , p - fχ, such that l

divides Φχ,p.

Remarks. 1. The actual computation of the number Φχ,p involves the
number dχ,p (cf. (27)), whose value is not always obvious. In the case fχ = qe,
q a prime ≥ 3, however, this value is easy to find: Here the character χ has an
order of the shape d = qe−1m, where m divides q−1 and v2(m) = v2(q−1).
Let ord(p, qe) denote the order of p mod qe. Then

dχ,p =
d

(d, ϕ(qe)/ord(p, qe))
,

which is sufficiently explicit.
2. Of course, the upper bound (29) looks much simpler in the cases

where the weight factors do not occur. E.g., if N = p is a prime or N = N2
is powerful, then

λj ≤ vl(ϕ(N)/2) + max{vl(hχ) : χ ∈ C′}.(30)

This formula shows that it is desirable to have a survey of the values hχ,
χ ∈ C′. Not every table of h−N gives this additional information (cf. [20], p.
352 ff.; cf., however, the tables quoted there). In this case one may work
with weaker bounds like

vl(h′) (≥ max{vl(hχ) : χ ∈ C′}).(31)

In the case of a prime power N = pe ≥ 3, l - 2p, (31) gives (cf. (25))

λj ≤ vl(ϕ(N)) + vl(ĥ).

3. The right side of (29) often takes the value 1 if the prime l is large
(say l > N). This is due to the following fact: On the one hand, l does not
belong to both types (B) and (C) in general; on the other hand, vl(h′) equals
1 in most cases if l is of type (B), whereas all values vl(Φχ,p) are 0 except
one, which is equal to 1, if l is of type (C). The next proposition, however,
shows that primes of type (B) or (C) play a role in the denominator of at
least one number bj , j ∈ R.

Proposition 8. Let l be a prime not dividing N . If l belongs to one of
the above types (B), (C), then there is an index j ∈ R such that λj ≥ 1.
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Proof. Using (8) and the orthogonality relation
∑

(j,N)=1

χχ′(j) =
{
ϕ(N) if χ = χ′,
0 otherwise,

one verifies ∑

j∈R
χ(j)bj = −wχ/Bχ(32)

for each χ ∈ X−. Fix χ ∈ C′ and suppose that vl(bj) ≥ 0 for all j ∈ R.
By (32), the number wχ/Bχ is l-integral, so vl(Nχ(wχ)/hχ) ≥ 0. But (26)
implies vl(Nχ(wχ)) ≤ 0; and since hχ is l-integral, vl(1/hχ) ≤ 0. Therefore,
l cannot be of type (B) or of type (C).

Examples. 1. Take l = 2, so l -N means N is odd. Let χ ∈ C ′ be a
character with fχ = N . Then hχ is even unless N = pe for a Fermat prime p
(cf. [11], pp. 82, 93). Accordingly, the prime 2 must occur in the denominator
of some number bj(N) whenever N does not have this particular shape (cf.
Tables 1, 2).

2. Let N = p = 41, h−p = 121 = 112, so l = 11 ( -N) is of type (B).
In fact, b2 = b3 = 1/22, i.e., l occurs in the denominator of these numbers;
however, b1 = b4 = 0.

3. The foregoing example is exceptional in some sense. According to our
experience, primes l occurring in the denominator of one number bj show
a tendency to occur in the denominators of all bj ’s (unless they are very
small). Consider N = 85 = 5 · 17. Here h−N = 85 · 73. The primes of type
(C) come from two characters χ, χ′ ∈ C′ with respective conductors 5, 17,
which produce the numbers Φχ,17 = Φ4(17) = 172 + 1 = 2 · 5 · 29 and
Φχ′,5 = Φ16(5) = 58 + 1 = 2 · 17 · 11489. Accordingly, 73, 2, 29 and 11489
must occur in the denominators of some bj ’s. Indeed, all bj ’s have the same
denominator 4 · 29 · 11489 · h−N . Other examples with the same common
denominator for all bj ’s are N = 51, 57, 69 (cf. Table 1).

Table 1 gives an impression of the primes of type (C). For this purpose,
the table contains only moduli N which are neither primes nor powerful
numbers (otherwise type (C) is impossible). We have also ruled out all mod-
uli N ≡ 2 mod 4, which are not so interesting (cf. Section 5, Proposition 14).
With these restrictions, the table covers the range 50 ≤ N ≤ 100. The main
information is given in the fourth column, namely, the smallest common
denominator D of all numbers bj , (j,N) = 1, decomposed into prime fac-
tors. The numbers ϕ(N) and h−N have been included in order to survey the
types (A) and (B). Finally, the last column contains the (factorized) value
of D · b1—just to give an impression what the numbers bj are looking like.
The table shows that primes of type (C) may be fairly large.
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Table 1. Non-powerful composite moduli N

N ϕ(N) h−N D D · b1
51 25 5 h−N · 2

2 · 3 · 193 547

52 23 · 3 3 h−N · 2
2 · 3 1

55 23 · 5 2 · 5 h−N · 2 · 71 −53

56 23 · 3 2 h−N · 2
4 1

57 22 · 32 32 h−N · 2
3 · 3 · 7 · 37 −113

60 24 1 26 1

63 22 · 32 7 h−N · 2 · 3 · 19 17

65 24 · 3 26 23 · 13 · 17 −33

68 25 23 h−N · 2
4 −3

69 22 · 11 3 · 23 h−N · 2
4 · 3851 96001

75 23 · 5 11 h−N · 2 · 5 · 1181 2339

76 23 · 32 19 h−N · 2
2 · 5 2 · 3

77 22 · 3 · 5 28 · 5 24 · 52 · 19 · 191 −7 · 29 · 229

80 25 5 h−N · 2
2 · 13 −2 · 3

84 23 · 3 1 26 · 7 −3 · 5
85 26 5 · 17 · 73 h−N · 2

2 · 29 · 11489 3 · 113 · 430543

87 23 · 7 29 · 3 24 · 3 · 5 · 16493 −22 · 7 · 2971

88 23 · 5 5 · 11 h−N · 2
2 · 5 3 · 19

91 23 · 32 24 · 7 · 13 · 37 h−N · 5
2 · 181 3 · 2480663

92 22 · 11 3 · 87 h−N · 2
3 −13

93 22 · 3 · 5 32 · 5 · 151 h−N · 2
3 · 5 · 7 · 61 · 271 241 · 953 · 1021

95 23 · 32 22 · 13 · 19 · 109 h−N · 2
3 · 5 · 31 · 829 3 · 62656691

96 25 32 22 · 3 · 41 7

99 22 · 3 · 5 3 · 312 2 · 3 · 31 · 37 29

In view of (24) one expects that primes l of type (A) also occur in
the denominators of the numbers bj . This, however, is not true in quite a
number of cases. For instance look at N = 69, l = 11, N = 87, l = 7, or
N = 99, l = 5, in Table 1. The next proposition gives a partial explanation
for this fact: If N is square-free, a prime l of type (A), l - 2N , cannot occur
in the denominator unless it is of type (B) or (C); in the general case the
proposition is slightly weaker than this statement.

Proposition 9. Let l be a prime, l - 2N , and let λj , (j,N) = 1, be as
in (28). Then

λj ≤ vl(h−N ) +
∑

χ∈C

∑

p|N
p-fχ

vl(Φχ,p).(33)
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In particular , l does not occur in the denominator of any number bj(N) if
l is of type (A) but prime to h−N and to all numbers Φχ,p occurring on the
right side of (33).

Proof. By (21), bj =
∑

k∈R ĉks(kj)∗ . The numbers s(kj)∗ occurring in this
identity are algebraic integers. Hence it suffices to show that each inverse
cotangent number ĉk, k ∈ R, can be written as

ĉk =
αk

(2N)r · h−N ·
∏
χ,p Φχ,p

for some algebraic integer αk (the product runs over all characters χ and
primes p occurring on the right side of (33)). Since ĉk is an entry of the
inverse of the cotangent matrix C = (cmn∗)m,n∈R, the number detC · ĉk
is a polynomial in the cm’s with integral coefficients. The identity cm =
(1 + ζmN )/(1− ζmN ) shows that N · cm is an algebraic integer. Finally, detC
equals h−N ·

∏
χ,p Φχ,p outside of 2N—this follows from Theorem 4.3 of [18]

but can also be deduced from Proposition 3 and formulas (22), (23) above.

Under certain conditions the bound (29) for the exponent λj can be
refined, as the next proposition shows. We shall use the notation bcc for the
integer part of a real number c. Further, it is clear that the maximum m
occurring in this proposition can be replaced by larger numbers that are
easier to obtain (cf. (31)).

Proposition 10. Let p ≥ 3 be a prime number , N = pe and κ =
v2(p− 1). Let l ≥ 3, l 6= p, be another prime and

m = max{vl(hχ) : χ ∈ C′}.
Then the numbers λj , (j,N) = 1, of (28) satisfy

λj ≤ vl(ϕ(N)) + bm/ord(l, 2κpe−1)c.(34)

Proof. Let χ ∈ X ′ be arbitrary, d = ord(χ), and consider a prime ideal l
of Q(χ) lying above l. By vl we denote the corresponding valuation of Q(χ)
and by fl the residue class degree of l in Q(χ). First note that

fl ≥ ord(l, 2κpe−1).

In order to see this, observe that v2(d) = κ and vp(d) = e− 1 (χ is odd and
fχ = N). Since Q(χ) is the dth cyclotomic field, fl is the order of l modulo
d/lvl(d), which is clearly ≥ ord(l, 2κpe−1). Now hχ = Nχ(Bχ), so

vl(hχ) ≥ vl(Bχ) · fl.
This gives vl(Bχ) ≤ n for n = bm/ord(l, 2κpe−1)c and shows that ln/Bχ is
l-integral.

Proposition 10 remains valid—with some minor changes—in the case
N = 2e and l ≥ 3. Without loss of generality one may assume N ≥ 8, the
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only relevant value for N = 4 being b1 = 2. Then C ′ consists of a unique
character χ of order N/4; so m boils down to m = vl(h′) = vl(ĥ), and 2κ

must be replaced by N/4. Finally, (34) reads

λj ≤ bm/ord(l, N/4)c.
We shall illustrate the meaning of last two propositions with the following

Examples. 1. As above, consider N = p = 41, h−p = 112, l = 11, so
vl(h′) = 2. Hence Proposition 9 gives λj ≤ 2, an estimate which is not sharp.
On the other hand, replace the number m of Proposition 10 by the (possibly
larger) value vl(h′) = 2 and observe that ord(11, 2κ) = 2; then (34) gives
λj ≤ 1, which is sharp since λ2 = λ3 = 1.

2. Put N = p = 71 and l = 7, so vl(h′) = 2 (cf. Table 2). Here κ = 1
and, accordingly, ord(l, 2κ) = 1, which means that Proposition 10 does not
really improve the estimate (30). However, there are two characters χ ∈ C ′
(of respective orders 2 and 14) such that v7(hχ) = 1, so m = 1. Therefore,
(30) gives the sharp bound λj ≤ 2. On the other hand, Proposition 9 yields
the same bound.

We turn to the case l | 2N . The treatment of primes l of this kind leads to
quite a number of subcases, even if N = pe; the whole reasoning resembles
that of [11], Chapter III. In view of this, we confine ourselves to the following
proposition, which is not best possible and whose proof is omitted:

Proposition 11. Let N = pe ≥ 3 be a prime power and ĥ = h−N/h
−
N/p

as in (25). For l ∈ {2, p} and any j, (j,N) = 1,

λj ≤ vl(ϕ(N)) + vl(ĥ).

Without going into details we note that Iwasawa theory (cf. [20], p. 127
ff.) yields, for a fixed prime l = p ≥ 3 and all sufficiently large moduli
N = pe, the bound λj ≤ e. We conclude this section with an immediate
(but more comprehensive) consequence of the foregoing propositions.

Theorem 4. Let N = pe ≥ 3 be a prime power and κ = v2(p − 1) (so
κ = 0 for p = 2). Suppose that h−N and ϕ(N) are relatively prime. Then the
denominator of 2κpe−1bj is a divisor of ĥ = h−N/h

−
N/p.

4. A congruence for the numbers bj(N). The main goal of this sec-
tion is a congruence for the numbers bj = bj(N) in the case of a prime power
N = pe. This congruence shows that certain (large) primes l of the above
type (B) actually occur in the denominators of all numbers bj , (j,N) = 1.
Moreover, it shows that the numerator of bj is subject to strong restrictions
such as Theorem 3, restrictions which are both of theoretical interest and
useful for the practical computation of the numbers bj . If N is a composite
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number, the congruence holds for the “weight-factor-free” part of bj(N),
which we introduce now. Let N ≥ 3 be arbitrary and put

X̃ = {χ ∈ X− : fχ = N}, C̃ = X̃ ∩ C, h̃ =
∏

χ∈C̃

hχ.

If one restricts the sum on the right side of (24) to characters χ ∈ X̃ , one
obtains

b̃j = b̃j(N) =
−2
ϕ(N)

∑

χ∈X̃

χ(j)
Bχ

;(35)

indeed, wχ = 1 whenever fχ = N (cf. (7)). Of course, b̃j = bj if N is a prime
or a powerful number (e.g., a prime power N = pe). In Section 5 we shall
see how b̃j can be used for computing the numbers bj in the non-powerful
composite case.

In most examples known to the author the square of a large prime divisor
l of h−N does not divide h−N ; so one expects vl(h

−
N ) = 1 for these primes.

Keeping this in mind we make the following assumption for the time being:
vl(h̃) = 1 and, in addition, l -N · ϕ(N) (thus, l ≥ 2 because of N ≥ 3).
Since vl(hχ) ≥ 0 for all χ ∈ C̃, there is exactly one character in C̃, say ψ,
with vl(hψ) = 1, whereas vl(hψ′) = 0 for all ψ′ ∈ C̃, ψ′ 6= ψ. If ψ′ is of this
kind, 1/Bχ is l-integral for each χ ∈ [ψ′]: In fact, we have seen above that
hψ′/Bχ is l-integral; however, since vl(hψ′) = 0 this means that 1/Bχ itself
is l-integral. Consequently,

b̃j =
−2
ϕ(N)

∑

χ∈[ψ]

χ(j)−1

Bχ
+ aj(36)

for an l-integral number aj . Let d denote the order of ψ. Recall that vl(hψ)
must be a multiple of the residue class degree fl of l in Q(ψ); therefore,
fl = 1, because we know vl(hψ) = 1. Moreover, our assumption l -ϕ(N)
implies that l is unramified in Q(ψ). Together with fl = 1 this observation
yields l ≡ 1 mod d.

Next we go over to the l-adic number field Ql (i.e., the l-adic completion
of Q). The valuation vl of Q extends to this field in the usual way. Consider
the algebraic closure Ql of Ql. Since Ql contains the algebraic closure Q of
Q, we may assume Ql contains Q(ψ). The values 6= 0 of ψ, however, are
(l − 1)th roots of unity (because of d | (l − 1)), which lie in the field Ql
already. So this field contains the values χ(j), (j,N) = 1, of all characters
χ ∈ [ψ] and the corresponding Bernoulli numbers Bχ. Hence the number
aj on the right side of (36) is an l-integral algebraic number lying in Ql; in
particular, aj lies in the ring Zl = {a ∈ Ql : vl(a) ≥ 0} of l-adic integers.
From hψ =

∏
χ∈[ψ] Bχ and vl(Bχ) ≥ 0, χ ∈ [ψ], we conclude that there
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must be exactly one character χ ∈ [ψ] with vl(Bχ) = 1, whereas vl(Bχ′) = 0
for all χ′ ∈ [ψ], χ′ 6= χ. Therefore, 1/Bχ′ is in Zl for these characters χ′.
Altogether, we obtain

Proposition 12. Let N ≥ 3 and l be a prime, l -N · ϕ(N). Suppose
that vl(h̃) = 1. Then there is exactly one ψ ∈ C̃ such that l |hψ. The order
d of this character divides l − 1, which means that the numbers χ(j)−1/Bχ,
χ ∈ [ψ], can be considered as numbers in Ql. There is a uniquely determined
χ ∈ [ψ] with vl(Bχ) = 1; and for this specific χ,

b̃j ≡
−2χ(j)−1

ϕ(N)Bχ
mod Zl(37)

for all j, (j,N) = 1. In particular , vl(̃bj) = −1.

In what follows the uniquely determined character χ of Proposition 12
will be called the l-character. The following corollary to this proposition
often implies that the numbers bj , 1 ≤ j ≤ N , (j,N) = 1, are all distinct:

Proposition 13. In the setting of Proposition 12, let d be the order of
ψ. The numbers b̃j , (j,N) = 1, belong to exactly d different residue classes
mod Zl.

Proof. Let χ ∈ [ψ] be the l-character. What we have to prove is equiva-
lent to the following statement: The character values χ(j)−1, (j,N) = 1,
belong to exactly d different residue classes mod lZl. Since ord(χ−1) =
ord(ψ) = d, the range of χ(j)−1 coincides with the set of dth roots of unity
in Zl, whose cardinality is d. However, any two distinct dth roots of unity
in Zl remain distinct mod lZl.

Proposition 12 can be extended to certain prime divisors l of N , but
we confine ourselves to the most important case N = p = l ≥ 3. Since Qp
contains all (p−1)th roots of unity in Q, all characters χ ∈ X− have values in
Zp. Let ω ∈ X− denote the Teichmüller character, which is defined by ω(j) ≡
j mod pZp. Then X̃ = X− = {ωk : 1 ≤ k ≤ p− 2, k odd}. By [20], p. 61,

±2(p−3)/2h−p = p
∏

1≤k≤p−1
k odd

Bωk .

We note that vp(Bωk) ≥ 0 for all relevant exponents k < p − 2, whereas
vp(p · Bωp−2) = 0 (ibid.). Therefore, if vp(h−p ) = 1, then there is a unique
(odd) exponent k, 1 ≤ k ≤ p − 4, with vp(Bωk) = 1. The arguments used
above now yield, for this specific k, the following analogue of (37):

bj ≡
−2 · ω−k(j)
(p− 1)Bωk

mod Zp.(38)

In particular, vp(bj) = −1.
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Remark. The congruence (38) can easily be extended to the case when
vp(Bωk) ≤ 1 for all odd exponents k, 1 ≤ k ≤ p− 4. According to [3], this is
true for all irregular primes p < 4 · 106. Here we have

bj ≡
−2
p− 1

∑

k

ω−k(j)/Bωk mod Zp,

the sum being taken over those (few) k with vp(Bωk) = 1. However, we
cannot (easily) deduce vp(bj) = −1 from this congruence as soon as the
index of irregularity of p is ≥ 2.

For practical purposes it is useful to transform the congruences (37), (38)
into congruences of integers, i.e., instead of working with Ql/Zl one works
with the ring Z/lZ. We discuss this transformation in the case N = pe, p ≥ 3,
where b̃j = bj for all j, (j,N) = 1 and h̃ = h′. Our discussion will also show
how to find the l-character χ in practice. In accordance with Proposition 12,
we assume l - p(p − 1) and vl(h̃) = vl(ĥ) = 1 (cf. (25)). We adopt the usual
conventions for congruences: for instance, if a, b, c and m are integers with
(c,m) = 1, we sometimes write

b ≡ a/c mod m;

so 1/c stands for the inverse of c mod m here. Our goal is a congruence of
the shape

lbj ≡ a/c mod l,

the integers a, c on the right side being both prime to l.
Suppose we have taken our prime l with vl(ĥ) = 1 from a table of relative

class numbers. It does not mean much extra work if we do not know the
order d of the l-character χ a priori. In fact, since the group (Z/NZ)× of
prime residues mod N is cyclic for our N , there is exactly one conjugacy
class [ψ] for every possible order d. These orders are given by d = pe−1s,
s | (p−1), v2(s) = v2(p−1), and they fulfil d | (l−1). We start with s = p−1.
Let g denote a primitive root mod N and w ∈ Z r lZ an integer with

ord(w, l) = d.

Then the congruence
ψ(g) ≡ w mod lZl(39)

determines an (l-adic) Dirichlet character ψ : Z→ Zl of order d. This ψ can
also be characterized by the infinite system

ψ(g) ≡ wlm−1
mod lmZl, m ≥ 1,(40)

of congruences. The characters χ ∈ [ψ] have the shape χ = ψk, 1 ≤ k ≤ d,
(k, d) = 1. For an integer m, let (m)N denote the uniquely determined
number in {0, 1, . . . , N − 1} which is ≡ m mod N . We use this notation to
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write Bχ in the form

Bχ =
1
N

ϕ(N)−1∑

m=0

(gm)Nχ(gm)

(observe that fχ = N for each χ ∈ [ψ]). Together with (39) and the notation
χ = ψk, this identity gives

Bχ ≡
1
N

ϕ(N)−1∑

m=0

(gm)Nwmk mod lZl.(41)

Accordingly, one has to check whether the sum on the right side of this
congruence is divisible by l for some k in the above range. If this is never
the case, we must try another possible order d. Otherwise, we have found the
l-character χ = ψk. Because of (40), we also have the stronger congruence

Bχ ≡
1
N

ϕ(N)−1∑

m=0

(gm)Nwlmk mod l2Zl.(42)

Since χ is the l-character, the sum on the right side of (42) is divisible by
l but not by l2. On dividing both sides of (42) by l we obtain an integer c,
l - c, such that

Bχ/l ≡ c mod lZl.

The knowledge of c is the main point. In fact, (37) now yields

lbgm ≡
−2w−mk

ϕ(N)c
mod l,(43)

for m = 0, 1, . . . , ϕ(N)− 1.

Example. Consider N = p = 53, for which h−p = 4889 is a prime. Put
l = h−p . Here d = 52 = p− 1 works. If one chooses g = 2 as a primitive root
mod p, the l-character χ is given by χ(g) ≡ 3637 mod lZl and the above
number c satisfies c ≡ 1674 mod l. This gives the following congruences for
the integers 2lbj when j runs through the powers of g mod p : 2lb1 ≡ 82,
2lb2 ≡ 5, 2lb4 ≡ −1371, 2lb8 ≡ 453, . . .mod l. These congruences suffice
for the actual computation of bj , as one may guess from their numerical
values b1 = 41/l, b2 = 5/(2l), b4 = −1371/(2l), . . . Because of d = p− 1, the
numbers bj , 1 ≤ j ≤ p − 1, run through p − 1 distinct residue classes mod
Zl, which requires that they are all distinct.

In the case of the congruence (38) one can proceed in a similar way: Let
N = p = l ≥ 3 and suppose vp(h−p ) = 1 (so the prime p is irregular with
index of irregularity = 1). There are two new features here: Because of p |N ,
the congruences (41) and (42) must be replaced by “higher” congruences,
namely, the respective congruences mod p2 and p3. On the other hand, w
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can be chosen equal to g. Accordingly,

pBωk ≡
p−2∑

m=0

(gm)pgp
2mk mod p3Zp,

which gives the desired congruence of Bωk/p mod pZp, 1 ≤ k ≤ p − 4, k
odd. Further, one may profit from the fact that irregular primes have been
investigated extensively. For example, the crucial exponent k (in the sense
of (38)) is contained in tables like [20], p. 350. In this way one finds k = 31,
43, 57 in the respective cases p = 37, 59, 67.

We are now in a position to prove Theorems 1 and 3 of the introduction.
They are contained in

Theorem 5. Let N = pe ≥ 3 be a prime power (so ĥ = h−N/h
−
N/p as

usual). Put κ = v2(p − 1). Suppose that h−N is square-free and prime to
ϕ(N). Then for all j, (j,N) = 1,

2κpe−1bj = nj/ĥ

with nj ∈ Z, (nj , ĥ) = 1. Let g denote a primitive root mod N if p ≥ 3 and
take g = 5 for p = 2. Then there is a number γ ∈ Z, (γ, ĥ) = 1, such that

ngm ≡ n1γ
m mod ĥ

for all m ∈ Z.

Proof. By Theorem 4, 2κpe−1bj = nj/ĥ for some integer nj . Let l be a
prime, l | ĥ, so vl(ĥ) = 1. First suppose l = p. Since ĥ is an odd number
if p = 2 (cf. [11], p. 101), l = p must be ≥ 3. Now (ĥ, ϕ(N)) = 1 implies
e = 1, i.e., N = p = 1. By the above, we have vp(bj) = −1, so p -nj . If
l 6= p, the same condition (ĥ, ϕ(N)) = 1 shows l -ϕ(N) and Proposition 12
yields l -nj . Altogether, we have (nj , ĥ) = 1. With the aid of the Chinese
Remainder Theorem, the congruences of type (43) for the various primes l
dividing ĥ can be rephrased as a unique congruence mod ĥ of the desired
shape.

5. Computation of the numbers bj(N). As above, let N ≥ 3 and
R = {j : 1 ≤ j ≤ N/2, (j,N) = 1}. In this section we discuss the actual
computation of the numbers bj = bj(N), j ∈ R, in the range N ≤ 250.
The author has computed these numbers for all N ≤ 100 and for some
other moduli (among them all primes p ≤ 200, and some prime powers like
N = 125 = 53, N = 243 = 35). A look at Table 2 shows that the numerators
and denominators of the bj ’s may be rather large even for these small values
of N . All of our computations were performed on a personal computer with
the assistance of the Ubasic package.
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Fix N for the time being. Because of the results of Section 3, we may
assume that we know a common multiple d of the denominators of the bj ’s
that is not much larger than the denominators themselves. For instance,
if N = p is a prime, Theorem 4 says that d = 2κh−p is possible, so we
only need a table for h−N such as ([20], p. 352 ff.). Now the computation
of bj can be considered as a problem in numerical linear algebra. Indeed,
by (20), the matrix BT = (bjk∗)k,j∈R fulfils BT = C−1S. Therefore, the
numerical inversion of the cotangent matrix C yields approximate values for
the elements in the first row of BT , i.e., for the numbers bj , j ∈ R. But then
we also know approximations of the numerators

nj = d · bj ,
which are integers and can be found in this way, provided that the approx-
imation is good enough.

We consider the case N = p = 199. Here C is a 99 × 99-matrix, d =
2h−p has 38 decimal digits and the numerators nj are of the same order
of magnitude. These mere facts show that the memory capacity required
is quite big; consequently, this method comes up against limiting factors
quickly. In what follows we present better strategies, as we think.

Let us look at the prime number case N = p first. As a rule, we have
computed the corresponding numbers nj = d · bj in two different ways,
namely, by

• numerical approximations that are based on (8),
• the congruences (37), (38).

In the case N = p, formula (8) takes the simplified shape (35). According
to our experience this formula is fairly harmless from the numerical point of
view and does not require complicated operations with complex numbers.
For instance, the real parts of the Bernoulli numbers Bχ can be written,
with the notations used in (41), as

1
p

p−2∑

m=0

(gm)p cos
2πkm
p− 1

(k odd, 1 ≤ k < p/2); replacing the cosine by sine yields the corresponding
imaginary parts. The storage space required is proportional to p (instead
of p2 in the case of the aforementioned numerical inversion of C). In most
cases we used floating point numbers with 48 digits after the decimal point
(Ubasic, however, uses more digits for internal computations). In the above
case p = 199 this yields the integers nj with an error < 10−7 within seconds.
For instance,

b1 = −141292545045385217518266818337227437/h−p .



Limit formula for h−p 151

This approximation also gives the number

h−p = 81 · 19 · 727 · 25645093 · 207293548177 · 3168190412839

with a sufficient degree of precision (so one can dispense with using a table
as long as p remains in the range under consideration).

We checked the correctness of our computations by means of equation
(20), which was multiplied by d for this purpose. In the case p = 199 the
use of 96 digits after the decimal point (in the above sense) shows that this
equation holds with an error < 10−55.

The congruences (37), (38), combined with a rather coarse approxima-
tion of the numbers bj (if any), form a second tool for the computation
of bj . In our situation this tool serves to show that the corresponding float-
ing point computations are correct. We think, however, that the proper
value of this instrument lies in its use with considerably larger moduli
p, where sufficiently precise numerical approximations are no longer avail-
able.

Let d′ be the product of all primes l, l - (p− 1), vl(h−p ) = 1, so d′ divides
our aforementioned d. Computing the right side of the congruence (43) for
each l, l | d′ (to be precise: of the analogous congruence in the case l = p),
is rather inexpensive in every respect; and the Chinese Remainder Theorem
quickly supplies the congruence class of nj mod d′. Suppose, in addition, we
know an approximate value βj of bj such that

|bj − βj| < d′/(2d).(44)

Then bj is also known: Determine an integer k, k ≡ nj mod d′, such that

|k − dβj| ≤ d′/2.
One easily checks that k must be equal to nj . The precision required by
(44) is quite low in general, since the quotient d/d′ is small. In the above
example of p = 199 we have d′/(2d) = 1/324. Since the numbers bj are all
< 1 here, such a low precision approximation is even possible on the basis
of some thousand terms of the slowly converging series (1)—if one wants to
use an approximation that is independent of (8). The corresponding entries
of Table 2 have also been found by this alternative method. It seems that
no approximation whatsoever is needed for primes p ≥ 47 that fall under
Theorem 1 (cf. our comment on Theorem 3).

With the necessary adaptations the above methods can be used for higher
powers of primes, more generally, for powerful numbers N , since in all of
these cases bj = b̃j . We have performed computations of this kind up to
N = 35 = 243, where ĥ = 6252002011 · 922099242709 = h−243/h

−
81. Table 2

covers the numbers N under consideration for N ≤ 100—only the (simple)
cases when h−N = 1 have been omitted for reasons of space; thus, it covers
all primes 23 ≤ p ≤ 97 and the moduli N = 49, 64, 72, 81 and 100. If N is a
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prime power, the table renders the values b1 and bg for a primitive root g mod
N , with the exception of N = 64, where g = 5 instead. This information,
eventually combined with a coarse approximation of the remaining numbers
bj , suffices for their actual computation in the spirit of Theorem 5. As in
Table 1, D is the least common multiple of the denominators of the numbers
bj , j ∈ R. Except the moduli N = 29, 41, 72, the number h−N divides the
denominator of each bj , j ∈ R.

Table 2. Primes and powerful moduli N

N h−N D g D · b1 D · bg
23 3 2 · h−N 5 1 −1

29 23 h−N/2 2 0 0

31 32 2 · h−N 3 1 −4

37 37 2 · h−N 2 5 12

41 112 2 · h−N/11 6 0 4

43 211 2 · h−N 3 26 1

47 5 · 139 2 · h−N 5 1 234

49 43 2 · 7 · h−N 3 5 −34

53 4889 2 · h−N 2 82 5

59 3 · 59 · 233 2 · h−N 2 −875 −7912

61 41 · 1861 2 · h−N 2 9119 14230

64 17 4 · h−N 5 3 8

67 67 · 12739 2 · h−N 2 29954 11270

71 72 · 79241 2 · h−N 7 114456 −267280

72 3 4 · h−N 0

73 89 · 134353 2 · h−N 5 998459 −1854465

79 5 · 53 · 377911 2 · h−N 3 555804 1105246

81 2593 2 · 3 · h−N 2 740 346

83 3 · 279405653 2 · h−N 2 33610568 −132703937

89 113 · 118401449 2 · h−N 3 31926605 −132578957

97 577 · 3457 · 206209 2 · h−N 5 1674823000 54039729138

100 5 · 11 4 · h−N 7

We now consider the case where bj differs from b̃j , which is the same as
saying that there are non-trivial weight factors. In principle, the numbers
bj can also be obtained by approximating the right side of (8). Instead, we
have used a sort of “step-by-step separation of prime divisors of N”. This
separation is interesting for its own (cf. Proposition 14 below) and allows us
to work with the numbers b̃j , whose structure is simpler than that of bj , and
the corresponding congruences (37). Since the modulus N is no more fixed
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in what follows, we write bj(N), b̃j(N) instead of bj , b̃j . This distinction will
also be necessary for the weight factors wχ = wχ(N).

Let l be a prime, l |N , l2 -N . We put N0 = N/l, hence l -N0, and write
bj(N) = x+ y, with

x =
−2
ϕ(N)

∑

χ∈X ′
fχ|N0

wχ(N)
χ(j)
Bχ

, y =
−2
ϕ(N)

∑

χ∈X ′
l|fχ

wχ(N)
χ(j)
Bχ

(cf. (24)). Next we express the summand x in terms of the numbers bk(N0).
To this end we write the weight factor wχ(N) as follows:

wχ(N) =
−χf (l)

l − χf (l)
wχ(N0).(45)

If η is an rth root of unity, one has the polynomial identity

(Zr − 1)/(Z − η) =
r∑

k=1

ηk−1Zr−k.

In our situation η equals χf (l) and r = ord(l, N0), so

χf (l)

l − χf (l)
=

1
lr − 1

r∑

k=1

χf (lk)lr−k.

This identity, together with (45), gives

x =
−1

(l − 1)(lr − 1)

r∑

k=1

lr−kbjlk(N0).

The other summand y can be treated more or less in the same way; but
we confine ourselves to the following special cases (a), (b), (c), which are
the only ones needed for computations with N ≤ 100 and suffice as an
illustration of this technique.

(a) Let N0 be odd, so N ≡ 2 mod 4. Since there is no character χ with
2 | fχ but 4 - fχ, the number y vanishes and we obtain

Proposition 14. Let N ≥ 3, N ≡ 2 mod 4. Put r = ord(2, N/2). Then

bj(N) =
−1

2r − 1

r∑

k=1

2r−kbj2k(N/2)

for all j with (j,N) = 1.

The proposition shows that bj(N) is an explicit rational linear combi-
nation of the numbers bk(N/2) if N ≡ 2 mod 4. Hence the computation of
bj(N) does not require much extra work if the numbers bk(N/2) are known.
In this way the problem of computing the numbers bj(N) is reduced to
moduli N 6≡ 2 mod 4.

(b) Let N0 be powerful, for instance, N0 = pe with p 6= l and e ≥ 2.
Because N0 | fχ for all χ ∈ X ′, the condition l | fχ is equivalent to fχ = N .
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Accordingly, the summand y equals b̃j(N) and

bj(N) = b̃j(N)− 1
(l − 1)(lr − 1)

r∑

k=1

lr−kbjlk(N/l)(46)

with r = ord(l, N0).
(c) Let N0 = p be a prime number, p 6= l. Here l | fχ either means fχ = l

or fχ = N . These cases lead to two new expressions whose sum is equal to
y: The first expression is identical with b̃j(N), whereas the other one can
be treated like the above sum x, the roles of l and p being interchanged.
Altogether, we obtain, with r = ord(l, p) and s = ord(p, l),

bj(N) = b̃j(N)− 1
(l − 1)(lr − 1)

r∑

k=1

lr−kbjlk(p)(47)

− 1
(p− 1)(ps − 1)

s∑

k=1

ps−kbjpk(l).

It is rather obvious how to find the number bj(N) in the cases (b), (c):
Suppose we have already computed all numbers bk(N/l) (and, in case (c),
also all bk(l)’s). Then we compute b̃j(N) by means of approximation, even-
tually combined with congruences of type (37)—note that it is not difficult,
in general, to find a suitable multiple of the denominator of b̃j(N). Now the
right sides of (46), (47) are known, which means that we know the exact
value of bj(N).

Example. Consider N = 93 = 3 · 31. Here h−N = 6795 = 32 · 5 · 151
and d̃ = 2h−N/3 = 4530 is a possible common denominator of the numbers
b̃j(N). By means of the said numerical approximation or by the suitable
congruence mod 151, we find

b̃1(N) = −32/d̃, b̃2(N) = −46/d̃, . . . , b̃7(N) = −23/d̃, . . .

Together with (47), these numbers yield the values bj(N) = nj/D with D
as in Table 1. This table shows that the numerators and the denominators
of bj(N) are much larger than the corresponding items for b̃j(N).

We conclude this paper with a conjecture: There are only finitely many
moduli N ≥ 3 such that bj(N) = 0 for at least one j, (j,N) = 1. Without
going into details we give a (possibly exhaustive) list of numbers N of this
kind: N = 9, 11, 13, 14, 17, 19, 20, 24, 27, 29, 32, 41, 72; for N = 29, e.g.,
the indices j ∈ R such that bj(29) = 0 are j = 1, 2, 3, 5, 7, 12.
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