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1. Introduction. Let n be an integer greater than or equal to 2, Fq the
finite field with q elements, and K = Fq(t) the rational function field. The
main result of this paper is the explicit computation of an infinite sum of
L-functions associated to nth order Hecke characters of K. The infinite sums
we consider are examples of double Dirichlet series in two complex variables,
and can be written as power series in q−s and q−w. In fact it will turn out
that the series we construct will be rational functions in q−s and q−w.

These series are function field analogs of the series studied by Friedberg,
Hoffstein and Lieman in [FHL02]. In that paper, working over a number field
F containing the nth roots of unity, the authors study a double Dirichlet
series that is roughly of the form∑

m

L(s, χm)(Nm)−w,

where the sum is over integral ideals m of F , the character χm is the nth
order power residue symbol associated to m, and Nm denotes the absolute
norm. The authors show that this double Dirichlet series has a meromorphic
continuation to all (s, w) ∈ C2 and satisfies a group of functional equations
relating it to a second series constructed from Gauss sums. The main ingre-
dients in the proof are the functional equation of L(s, χm), properties of the
Fourier coefficients of the metaplectic Eisenstein series on the n-fold cover
of GL2, and Bochner’s tube theorem.

In the case n = 2, these ideas were applied by Fisher and Friedberg
[FF04] in the context of a general function field to show the rationality of
double Dirichlet series constructed from quadratic L-functions. The case
n = 2 is somewhat easier because the Gauss sum arising in the functional
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equation of a quadratic Hecke L-series is trivial, and the theory of meta-
plectic Eisenstein series is not needed.

In this paper, we follow a more elementary method originally introduced
in [CFH06] in the case n = 2. Letting

(
d
m

)
= χm(d) denote the nth power

residue symbol for m, d relatively prime, we exploit the fact that (roughly)∑
d∈Fq [t]
deg d=k

(
d

m

)

vanishes if k is greater than or equal to the degree of m, unless m is a
perfect nth power. Actually this is not quite true unless we carefully define
the residue symbol for d,m having a common factor; the exact statement
we use is given in (6.1) and depends on the weighting factors a(d,m) we
define below.

If m and d are monic and coprime, then we have the reciprocity law

(1.1)
(
m

d

)
=
(
d

m

)
when q is congruent to 1 mod 2n; see e.g. Rosen [Ros02, Theorem 3.5].

We now describe our results more precisely. We will define two double
Dirichlet series, explicitly compute them as rational functions in q−s, q−w

and show that they satisfy functional equations that relate them to each
other. We begin by defining two multiplicative weighting factors a(d,m)
and b(d,m) for pairs of monic polynomials, as in [FHL02]. For a monic
prime polynomial p, let

a(pj , pk) =

{
|p|(n−1)d/n if d = min(j, k) and d ≡ 0 (mod n),
0 otherwise,

(1.2)

b(pj , pk) =



1 if k = 0,
|p|k/2−1(|p| − 1) if j ≥ k, k ≡ 0 (mod n), k > 0,
−|p|k/2−1 if j = k − 1, k ≡ 0 (mod n), k > 0,
|p|(k−1)/2 if j = k − 1, k 6≡ 0 (mod n), k > 0,
0 otherwise.

(1.3)

Then define

a(d,m) =
∏
pj‖d
pk‖m

a(pj , pk), b(d,m) =
∏
pj‖d
pk‖m

b(pj , pk).

Here |d| denotes the norm qdeg d.
Let O denote Fq[t] and Omon the set of monic polynomials in Fq[t]. Let

ζO(s) be the zeta function of the ring O, that is,

ζO(s) = (1− q1−s)−1.
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The first double Dirichlet series we consider is

(1.4) Z1(s, w) =
∑

d,m∈Omon

χm0(d̂)a(d,m)
|m|w|d|s

,

where m0 is the nth power free part of m and d̂ is the part of d relatively
prime to m0. By nth power free part of m we mean∏

pnα+i‖m
0≤i<n

pi.

We show in Section 2 that Z1 can be rewritten in terms of L-functions:

(1.5) Z1(s, w) =
∑

m∈Omon

L(s, χm0)
|m|w

P (s;m),

where the P (s;m) are finite Euler products defined in Proposition 2.1.
The second multiple Dirichlet series is built from Gauss sums (see Sec-

tion 2 for the precise definition of the Gauss sum g(r, ε, χm)) as follows:

(1.6) Z2(s, w) = ζO

(
nw − n

2
+ 1
) ∑
d,m∈Omon

g(1, ε, χm0)√
|m[|

χ̄m0(d̂)b(d,m)
|m|w|d|s

,

where m[ is the product of primes in the factorization of the nth power free
part of m. Explicitly, if m =

∏r
i=1 peii , then

m[ =
r∏
i=1

ei 6≡0 (modn)

pi.

We can now state our main theorems. The first describes a set of func-
tional equations relating Z1 and Z2. Specifically, define

Z1(s, w; δi) =
∑

d,m∈Omon

degm≡i (modn)

χm0(d̂)a(d,m)
|m|w|d|s

,

Z2(s, w; δi) = ζO

(
nw − n

2
+ 1
) ∑

d,m∈Omon

degm≡i (modn)

g(1, ε, χm0)√
|m[|

χ̄m0(d̂)b(d,m)
|m|w|d|s

.

Theorem 1.1. We have the functional equation

Z1(s, w; δi) =


q2s−1 1− q−s

1− qs−1
Z2

(
1− s, w + s− 1

2
; δ0

)
for i = 0,

q2s−1q1/2−s
τ̄(εi)
√
q
Z2

(
1− s, w + s− 1

2
; δi

)
for 0 < i < n.

The finite field Gauss sum τ(εi) is defined in the following section.
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This is proved in Section 4.
The second main theorem is the following:

Theorem 1.2. The double Dirichlet series Z1 and Z2 are rational func-
tions of x = q−s and y = q−w. Explicitly,

(1.7) Z1(s, w) =
1− q2xy

(1− qx)(1− qy)(1− qn+1xnyn)

and

(1.8)

Z2(s, w) =
1− q3n/2xn−1yn +

∑n−1
i=1 (τ(εi)qi−1+i/2xi−1yi − τ(εi)q3i/2xiyi)

(1− qx)(1− qn/2+1yn)(1− q3n/2xnyn)
.

This theorem is proved in Section 6.
We conclude this introduction with some remarks to put our results in

the larger context of Weyl group multiple Dirichlet series.
The general theory of Weyl group multiple Dirichlet series was intro-

duced in [BBC+06] in order to unify and extend several constructions which
had previously been studied. In particular the series Z1 and Z2 of the present
paper are expected to be n − 2-fold residues of the n-variable Weyl group
multiple Dirichlet series associated to the root system An. Brubaker and
Bump [BB06] have verified this in the cubic case n = 3. This case is man-
ageable because, thanks to Patterson [Pat77a, Pat77b], we have a complete
understanding of the Fourier coefficients of the theta function on the 3-fold
metaplectic cover of SL2 which arise when we take the residues of the Dirich-
let series constructed from cubic Gauss sums.

For n > 3 the precise nature of the coefficients of the n-fold cover theta
functions remains mysterious. Nevertheless, there is much evidence in favor
of the expectation that the two series constructed by Friedberg, Hoffstein
and Lieman coincide with a multiresidue of a Weyl group multiple Dirichlet
series. Indeed, one of the motivations of this paper is to lay the ground-
work for investigating this question for n > 3 by explicitly computing and
comparing the relevant multiple Dirichlet series in the case of the rational
functional field. For example, in [Chi08] the first named author has explicitly
computed the cubic A3 multiple Dirichlet series and checked that residues of
this series give the two series in Theorem 1.2 of this paper when n = 3. See
also [CG] for further examples of explicit computations of double Dirichlet
series defined over the rational function field.

Finally we point out a curious connection between the series Z1, Z2 of
Theorem 1.2 and their p-parts. Define the following generating series H1, H2
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constructed from the respective p-parts of Z1 and Z2:

H1(X,Y ) =
∑
j,k≥0

a(pj , pk)XjY k,

H2(X,Y ) = (1− |p|n/2−1Y n)−1
∑
j,k≥0

b(pj , pk)
g(1, ε, χpk)√

|pk[ |
XjY k,

(1.9)

where X = |p|−s and Y = |p|−w. We will prove

H1(X,Y ) =
1−XY

(1−X)(1− Y )(1− |p|n−1XnY n)
,

H2(X,Y ) =

1− |p|n/2−1Xn−1Y n +
n−1∑
i=1

g(1, εi, χp)√
|p|

Xi−1Y i|p|i−1/2(1−X)

(1−X)(1− |p|n/2−1Y n)(1− |p|n/2XnY n)
.

(1.10)

Note that the substitutions
X → qx,

Y → qy,

|p| → 1/q,

g(1, εi, p)/
√
|p| → τ(εi)/

√
q for 1 ≤ i ≤ r

(1.11)

transform Hi into Zi for i = 1, 2. This similarity between a rational function
field multiple Dirichlet series and its p-part seems to hold in a much wider
context, see e.g. [CFH06, Chi08].

2. Gauss sums and L-functions. In this section we will define the
Gauss sums and L-functions that are the constituents of our double Dirichlet
series. We will mostly follow the notation of Patterson [Pat07] but with some
adjustments to facilitate comparison with [FHL02].

As in the introduction, K is the rational function field Fq(t) with poly-
nomial ring O = Fq[t]. We let Omon denote the subset of O consisting of
monic polynomials and let K∞ = Fq((t)) denote the field of Laurent series
in t−1. Let µn = {a ∈ Fq : an = 1} and let χ : F×q → µn be the character
a 7→ a(q−1)/n.

In order to define Gauss sums we first need an additive character on
K∞. Let e0 be a nontrivial additive character on the prime field F of Fq.
Use this to define a character e? of Fq by e?(a) = e0(TrFq/F a). Let ω be the
global differential dx/x2. Finally define the character e of K∞ by e(y) =
e?(Res∞(ωy)) for y ∈ K∞. Note that

{y ∈ K : e|yO = 1} = O.
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As in Section 1, for any c ∈ O, we will use c0 to indicate the nth power
free part of c and c[ for the product of primes in the factorization of c0. Fix
an embedding ε from the nth roots of unity of Fq to C×. For r, c ∈ O we
define the Gauss sum

g(r, ε, χc) =
∑

ymod c[

ε

((
y

c

))
e

(
ry

c[

)
.

We also need the Gauss sums associated to the finite field Fq. These are
defined by

τ(ε) =
∑
j∈Fq

ε(j(q−1)/n)e0(j).

For m monic, we define the L-function associated to χm by

(2.1) L(s, χm) =
∑

d∈Omon

χm(d)|d|−s.

When m is nth power free, the L-function satisfies a functional equation
that we will describe now. Denote the conductor of the character χm by
condχm. Thus

|condχm| =
{ |m[|, degm ≡ 0 (mod n),
q|m[|, degm 6≡ 0 (mod n).

Then the completed L-function

(2.2) L∗(s, χm) =

{ 1
1− q−s

L(s, χm), degm ≡ 0 (mod n),

L(s, χm), degm 6≡ 0 (mod n)

satisfies the functional equation

(2.3) L∗(s, χm) = q2s−1|condχm|1/2−s
g∗(1, ε, χm)
|condχm|1/2

L∗(1− s, χ̄m)

where

g∗(1, ε, χm) =
{
g(1, ε, χm), degm ≡ 0 (mod n),
τ̄(εi)g(1, ε, χm), degm ≡ i 6≡ 0 (mod n).

From the functional equation, we see that L(s, χm) is a polynomial in q−s

whose degree is one less than the degree of m[, if m is not a perfect nth
power. If m = 1 we recover the zeta function

(2.4) ζO(s) =
∑

d∈Omon

|d|−s =
1

1− q1−s

and the functional equation (2.3) holds in this case as well.



Sums of L-functions 59

Expanding the components at infinity, we have the following functional
equation when m is nth power free, degm ≡ i (mod n):

(2.5) L(s, χm)

=


q2s−1|m[|1/2−s

g(1, ε, χm)
|m[|1/2

1− q−s

1− q−(1−s) L(1− s, χ̄m), i = 0,

q2s−1(q|m[|)1/2−s
τ̄(εi)
√
q

g(1, ε, χm)
|m[|1/2

L(1− s, χ̄m), 0 < i < n.

This functional equation will be used in Section 4 to relate Z1 and Z2.
We now introduce a modified L-function related to (2.1) by inserting the

weighting factor a(d,m). Define

(2.6) L(s, χ̂m) =
∑

d∈Omon

χm0(d̂)a(d,m)
|d|s

,

where d̂ is the part of d relatively prime to m0. Since the weighting function
is multiplicative, L(s, χ̂m) is an Euler product,

L(s, χ̂m) =
∏

p∈Omon
irreducible

(
1 +

χm0(p̂)a(p,m)
|p|s

+
χm0(p̂2)a(p2,m)

|p|2s
+ · · ·

)
.

Further, since a(d,m) = 1 when d and m are coprime, this Euler product
agrees with the original L-function Euler product for all but finitely many
places.

We will relate this modified L-function L(s, χ̂m) to L(s, χm0) and derive
a bound on its degree as a polynomial in q−s, as long as m is not a perfect
nth power. These properties are given in the following proposition:

Proposition 2.1. We have

L(s, χ̂m) = L(s, χm0)P (s;m),

where P (s;m) =
∏

p Pp(s;m) and Pp(s;m) equals
(1− χm0(p)|p|−s)

nα−1∑
k=0

χm0(pk)a(pnα, pk)

|p|ks
+ |p|−nαs|p|(n−1)α if p - m0,

nα∑
k=0

a(pnα+i, pk)

|p|ks
if pi ‖ m0 and i 6= 0.

Here α and i are the unique integers with 0 ≤ i < n and pnα+i ‖ m.
In particular, for m not a perfect nth power, the degree of L(s, χ̂m) as a
polynomial in q−s is less than the degree of m.
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Proof. Begin with the Euler product

L(s, χ̂m) =
∏
p

∞∑
k=0

χm0(p̂k)a(m, pk)

|p|ks

=
∏

pnα‖m

∞∑
k=0

χm0(pk)a(pnα, pk)

|p|ks
×

∏
pnα+i‖m
0<i<n

∞∑
k=0

a(pnα+i, pk)

|p|ks
.

For primes p with i = 0—that is, p - m0 and pnα ‖ m, say—it follows from
(1.2) that the tails of the sum are a geometric series with common ratio
χm0(p)|p|−s. Thus for such p the p-part is
nα−1∑
k=0

χm0(pk)a(pnα, pk)

|p|ks
+
|p|−nαs|p|(n−1)α

1− χm0(p)|p|−s
= (1− χm0(p)|p|−s)−1Pp(s;m),

where

(2.7) Pp(s;m)

=
nα−1∑
k=0

χm0(pk)a(pnα, pk)

|p|ks
(1− χm0(p)|p|−s) + |p|−nαs|p|(n−1)α.

For primes such that pi‖m0 with 0 < i < n, it follows from (1.2) that
a(pnα+i, pk) = 0 for k > nα, so the p-part is a finite sum

Pp(s;m) =
nα∑
k=0

a(pnα+i, pk)

|p|ks
.

Thus
L(s, χ̂m) = L(s, χm0)P (s;m)

as claimed. The bound on the degree of L(s, χ̂m) follows from the bound on
the degree of L(s, χm0) for m0 6= 1 and the degrees of the Pp(s;m).

3. Functional equation H1 → H2. Recall that the generating series
H1(X,Y ) and H2(X,Y ) of (1.9) define the p-parts of Z1 and Z2, respectively.
We describe the functional equations relating H1(X,Y ) and H2(X,Y ).
These will be used to prove the global functional equation relating Z1 to Z2.

The functional equations are a direct consequence of the following propo-
sition:

Proposition 3.1. The generating series H1(X,Y ) and H2(X,Y ) are
rational functions of X and Y. Explicitly,

(3.1) H1(X,Y ) =
1−XY

(1−X)(1− Y )(1− |p|n−1XnY n)
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and

(3.2) H2(X,Y )

=

1− |p|n/2−1Xn−1Y n +
n−1∑
i=1

g(1, εi, χp)√
|p|

Xi−1Y i|p|(i−1)/2(1−X)

(1−X)(1− |p|n/2−1Y n)(1− |p|n/2XnY n)
.

Proof. Equation (3.1) is obvious from the definition (1.2) of the a(pk, pl).
The evaluation of H2(X,Y ) is simply a matter of recognizing geometric
series.

From the definitions of b(pj , pk) in (1.3) and H2 in (1.9), we have

(1− |p|n/2−1Y n)H2(X,Y )

=
∞∑
j=0

g(1, ε, χp0)√
|p0
[ |

XjY 0

+
∞∑
α=1

∞∑
j=nα

|p|nα/2−1(|p| − 1)
g(1, ε, χpnα)√
|pnα[ |

XjY nα

+
∞∑
α=1

−|p|nα/2−1 g(1, ε, χpnα)√
|pnα[ |

Xnα−1Y nα

+
∞∑
α=0

n−1∑
i=1

|p|(nα+i−1)/2 g(1, ε, χpnα+i)√
|pnα+i
[ |

Xnα+i−1Y nα+i.

Evaluating the geometric series yields

(3.3) (1− |p|n/2−1Y n)H2(X,Y )

=
1

1−X
+
|p|n/2−1(|p| − 1)XnY n

(1−X)(1− |p|n/2XnY n)

+
−|p|n/2−1Xn−1Y n

1− |p|n/2XnY n
+
n−1∑
i=1

g(1, εi, χp)√
|p|

|p|(i−1)/2Xi−1Y i

(1− |p|n/2XnY n)
.

Equation (3.2) follows by rewriting (3.3).
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For 0 ≤ i < n, define

(3.4)

H1(X,Y ; δi) =
∑
j,k≥0

k≡i (modn)

a(pj , pk)XjY k,

H2(X,Y ; δi) = (1− |p|n/2−1Y n)−1
∑
j,k≥0

k≡i (modn)

b(pj , pk)

×
g(1, ε, χpk)√

|pk[ |
χ̄pk(p̂j)XjY k.

We have shown in Proposition 3.1 thatH1 andH2 are both rational functions
in |p|−s and |p|−w and it is clear from this proposition that

H1(X,Y ; δi) =


1−XY n

(1−X)(1− Y n)(1− |p|n−1XnY n)
, i ≡ 0,

(1−X)Y i

(1−X)(1− Y n)(1− |p|n−1XnY n)
, i 6≡ 0,

(3.5)

H2(X,Y ; δi) =



1− |p|n/2−1Xn−1Y n

(1−X)(1− |p|n/2−1Y n)(1− |p|n/2XnY n)
, i ≡ 0,

g(1, εi, χp)√
|p|

Xi−1Y i|p|(i−1)/2(1−X)

(1−X)(1− |p|n/2−1Y n)(1− |p|n/2XnY n)
, i 6≡ 0.

(3.6)

The following theorem establishes a functional equation relating H1 to H2:

Theorem 3.2. We have the functional equation

H1(|p|−s, |p|−w; δi)

=


1− |p|−(1−s)

1− |p|−s
H2(|p|−(1−s), |p|−(w+s−1/2); δ0), i = 0,√

|p|
g(1, εi, χp)

|p|s−1/2H2(|p|−(1−s), |p|−(w+s−1/2); δi), 0 < i < n.

Proof. The proof is by a direct computation using equations (3.5) and
(3.6).

4. Functional equation Z1 → Z2. There is a set of functional equa-
tions relating Z1 and Z2. These will be described in this section. Define

(4.1) Q(s;m) =
P (1− s;m)
(m/m[)s−1/2

.
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With the expansion of P as an Euler product, we see that Q is also an Euler
product supported in the primes dividing m:

Q(s;m) =
∏

pnα+i‖m
i=0

1

|p|nα(s−1/2)
Pp(1− s;m)

×
∏

pnα+i‖m
0<i<n

1

|p|(nα+i−1)(s−1/2)
Pp(1− s;m).

Proposition 4.1. Define

Z ′2(s, w) =
∑
m

g(1, ε, χm0)√
|m[|

L(s, χ̄m0)Q(s;m)
|m|w

.

We have Z ′2 = Z2.

Proof. Define

(4.2) H ′2(|p|−s, |p|−w; δi) =


(1− |p|−s)−1

∞∑
k=0

Q(s; pnk)

|p|nkw
, i = 0,

g(1, εi, χp)√
|p|

∞∑
k=0

Q(s; pnk+i)

|p|nkw
, 0 < i < n.

Then H ′2(|p|−s, |p|−w) =
∑n−1

i=0 H
′
2(|p|−s, |p|−w; δi) is the p-part of Z ′2. We

will show that H ′2 and H2 both satisfy the functional equations with H1

shown in Theorem 3.2 and therefore H ′2 = H2. The result follows since, for
fixed m, the L-functions P and Q each have Euler products.

As a result of the definition in equation (4.1), the p-parts of Q and P
satisfy

P (s; pnα+i) =

{
|p|nα(1/2−s)Q(1− s; pnα), i = 0,
|p|(nα+i−1)(1/2−s)Q(1− s; pnα+i), 0 < i < n.

Therefore, we relate H1 to H ′2 by

H1(|p|−s, |p|−w; δ0) = (1− |p|−s)−1
∞∑
k=0

P (s; pnk)

|p|nkw

= (1− |p|−s)−1
∞∑
k=0

Q(1− s; pnk)|p|nk(1/2−s)

|p|nkw

= (1− |p|−s)−1
∞∑
k=0

Q(1− s; pnk)
|p|nk(w+s−1/2)

=
1− |p|−(1−s)

1− |p|−s
H ′2(|p|−(1−s), |p|−(w+s−1/2); δ0).
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This is exactly the functional equation satisfied by H2 in Theorem 3.2.
A similar computation shows that

H1(|p|−s, |p|−w; δi) =

√
|p|

g(1, εi, χp)
|p|s−1/2H2(|p|−(1−s), |p|−(w+s−1/2); δi)

for 0 < i < n. Thus H ′2(X,Y ; δi) = H2(X,Y ; δi) for all 0 ≤ i < n and this
completes the proof.

For 0 ≤ i < n, define

Z1(s, w; δi) =
∑

m∈Omon
degm≡i (modn)

L(s, χm0)P (s;m)
|m|w

,

Z2(s, w; δi) =
∑

m∈Omon
degm≡i (modn)

g(1, ε, χm0)√
|m[|

L(s, χ̄m0)Q(s;m)
|m|w

.

Theorem 4.2. We have the functional equation

Z1(s, w; δi) =


q2s−1 1− q−s

1− qs−1
Z2

(
1− s, w + s− 1

2
; δ0

)
for i = 0,

q2s−1q1/2−s
τ̄(εi)
√
q
Z2

(
1− s, w + s− 1

2
; δi

)
for 0 < i < n.

Proof. This is a direct computation utilizing the functional equation
(2.5) for L(s, χm0).

5. Convolutions. We define a convolution operation ? on rational func-
tions in x and y with power series expansions around the origin. For

A(x, y) =
∑
j,k≥0

a(j, k)xjyk and B(x, y) =
∑
j,k≥0

b(j, k)xjyk,

define
(A ? B)(x, y) =

∑
j,k≥0

a(j, k)b(j, k)xjyk.

We can compute convolutions as the double integral

(5.1) (A ? B)(x, y) =
(

1
2πi

)2 � �
A(u, v)B

(
x

u
,
y

v

)
du dv

uv
,

where each integral is a counterclockwise circuit of a small circle in the
complex plane. (The circle must be small enough that A(x, y) is holomorphic
for x, y inside the circle.) We will utilize the residue theorem to compute this
contour integral.
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6. Evaluation of Z1 and Z2. We will now prove Theorem 1.2. We
first establish the identity (1.7); then (1.8) will follow from the functional
equation (Theorem 1.1). It follows from Proposition 2.1 that

(6.1)
∑

d∈Omon
deg d=k

χm0(d̂)a(d,m) = 0

when degm ≤ k unless m is a perfect nth power. To prove (1.7) of Theorem
1.2, we begin by writing

(6.2) Z1(s, w) = Za(s, w) + Za(w, s)− Zb(s, w)

where

Za(s, w) =
∑
k≥j≥0

1
qjwqks

∑
d,m∈Omon
degm=j
deg d=k

χm0(d̂)a(d,m),

Zb(s, w) =
∑
k≥0

1
qkwqks

∑
m∈Omon
degm=j

∑
d∈Omon
deg d=k

χm0(d̂)a(d,m).

First, note that∑
m∈Omon
degm=j

∑
d∈Omon
deg d=k

χm0(d̂)a(d,m) =
∑

m∈Omon
degm=j

∑
d∈Omon
deg d=k

χd0(m̂)a(m, d).

When m and d are coprime, the reciprocity law (1.1) guarantees that χm0(d̂)
= χd0(m̂). Otherwise, when m and d are not coprime, χm0(d̂) 6= χd0(m̂)
only when there exists a prime p such that p | d0 and p |m0. In this case
a(d,m) = 0. The symmetry a(d,m) = a(m, d) is obvious. This establishes
the validity of the decomposition (6.2) of Z1.

Now the key observation is that because of equation (6.1), we have

Za(s, w) =
∑
k≥j≥0

1
qjwqks

∑
m∈Omon
degm=j
m0=1

∑
d∈Omon
deg d=k

a(d,m),

Zb(s, w) =
∑
k≥0

1
qkwqks

∑
m∈Omon
degm=k
m0=1

∑
d∈Omon
deg d=k

a(d,m),

that is, the inner sum vanishes unless m is a perfect nth power. This leads
us to consider the series

Ta(s, w) =
∑

m∈Omon
m0=1

∑
d∈Omon

a(d,m)
|m|w|d|s

,
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which has an Euler product

Ta(s, w) =
∏
p

∑
j,k≥0

a(pj , pnk)
|p|nk|p|j

(6.3)

=
∏
p

1− |p|−s−nw

(1− |p|−s)(1− |p|−nw)(1− |p|(n−1)−ns−nw)

=
ζ(s)ζ(nw)ζ(ns+ nw − (n− 1))

ζ(s+ nw)

=
1− q1−s−nw

(1− q1−s)(1− q1−nw)(1− qn−ns−nw)

=
1− qxyn

(1− qx)(1− qyn)(1− qnxnyn)
= T̃a(x, y),

with x = q−s, y = q−w.
It is clear that

(6.4) Za(s, w) = (T̃a ? K̃a)(x, y)

where

K̃a(x, y) =
1

(1− x)(1− xy)
=
∑
j≥k≥0

xjyk.

Compute the convolution in (6.4) by means of the integral in equation (5.1),
which we can evaluate using the residue theorem. We find

(6.5) Za(s, w) =
1

(1− qn+1xnyn)(1− qx)
.

We can compute Zb similarly: let K̃b(x, y) = 1/(1− xy). Then

(6.6) Zb(s, w) = (T̃a ? K̃b)(x, y) =
1

1− qn+1xnyn
.

Putting this all together,

Z1(s, w) =
1

(1− qn+1xnyn)(1− qx)
+

1
(1− qn+1xnyn)(1− qy)

(6.7)

− 1
1− qn+1xnyn

=
1− qy + 1− qx− (1− qy)(1− qx)

(1− qn+1xnyn)(1− qx)(1− qy)

=
1− q2xy

(1− qn+1xnyn)(1− qx)(1− qy)
.

This establishes (1.7).
With the rational function for Z1(s, w), we can use the functional equa-

tions relating Z1(s, w; δi) and Z2(s, w; δi) for 0 ≤ i < n to evaluate Z2(s, w).



Sums of L-functions 67

Expanding the geometric series 1/(1− qy) and collecting terms with the
exponent on y congruent to i mod n, we arrive at

Z1(s, w; δi) =


1− qn+1xyn

(1− qx)(1− qnyn)(1− qn+1xnyn)
, i = 0,

(qi − qi+1x)yi

(1− qx)(1− qnyn)(1− qn+1xnyn)
, 0 < i < n.

Using the functional equations relating Z1(s, w, δi) and Z2

(
1−s, w+s− 1

2 , δi
)

and remembering that |τ(εi)/
√
q| = 1, we see that

Z2(s, w; δi) =


q2s−1 1− q−s

1− qs−1
Z1

(
1− s, w + s− 1

2 ; δi
)
, i = 0,

q2s−1q1/2−s
τ(εi)
√
q
Z1

(
1− s, w + s− 1

2 ; δi
)
, 0 < i < n.

With this in hand, Z2 is

(6.8) q2s−1 1− q−s

1− qs−1
Z1

(
1− s, w + s− 1

2 ; δ0
)

+
n−1∑
i=1

q2s−1q1/2−s
τ(εi)
√
q
Z1

(
1− s, w + s− 1

2 ; δi
)
.

When simplified, equation (6.8) is the rational function for Z2 given in The-
orem 1.2.
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