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1. Introduction. In [3] Dobrowolski and Williams proved, among other
things, the following interesting result:

EX: (ag‘” +b>' - \/pT;lmg;p— 1)
p 0og

(1.1) +3p—1,

=1

where p is an odd prime, g is a primitive root mod p, (%) is the Legendre

symbol, and a, b, X are integers satisfying ptaband 1 < X <p— 1.

The purpose of this paper is to extend (1.1) in two directions. We first
prove the following result, which may be compared with the classical in-
equality of Pélya—Vinogradov for character sums with linear polynomial (cf.
Davenport [2, §23]).

THEOREM 1. Let n > 2 and X be integers with (n,\) =1 and X\ belong-
ing to the exponent d modulo n. Let x be a primitive Dirichlet character
modulo n. Write

X
(1.2) Sn( A X) = x(aA” +b),
r=1
where a,b and X are integers satisfying (ab,n) =1 and 1 < X < d. Then
2 7
(1.3) |Sn(x, A, X)| <\/ﬁ(;10gn+g).

We note that for an imprimitive x no non-trivial bound for |.S,, (x, A, X)|
can be obtained. Consider, for instance, the case where n = p* (p odd prime
and k£ > 2) and x being induced by a (primitive) character modulo p. Let

=1 (modp), A 1 (mod p?), a+b =1 (mod p) and pfab. Then it is easily
seen that A belongs to exponent p*~! modulo n and that S,(x,\, X) = X
for X > 1.
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Furthermore, we show that in certain cases the inequality (1.3) is essen-
tially best possible.

THEOREM 2. Let n = p*, p an odd prime, k > 2. Let x be a primitive

character modulo n, g be a primitive root modulo n, and a,b be integers with
pfab. Let S, (x,g9,X) be as in (1.2). Then

1.4 n ’ 7X ’
(1.4) 13?235(11)‘5 (x,9,X)| > Vn

where the implicit constant is absolute.

Our second purpose is to generalize (1.1) to general finite fields. As usual,
let F, denote the finite field of ¢ = p* elements (p prime and k > 1), and let
F; be the multiplicative group of non-zero elements of Fy;. Let F7 be the set

*

of all multiplicative characters of F', and ¢ € 1/73‘ be the trivial character.

For any ¢ € 1/7\; it is convenient to extend the definition of ¢ by setting
$(0) = 0.

THEOREM 3. Let A € Fj belong to the exponent d. Let x € 1/7\; and
X # €. Write

(1.5) T,(x, A, X) = Zxaxwrb
where a,b € Fj, X is integer with 1 < X < d. Then

2 7
(16) 00X < Vi (Z1oga+ 1),
By Theorem 3 and an argument similar to that used in Burgess [1, §6],
we have the following result which may be of independent interest.

COROLLARY. Let g be a primitive root of Fy, and a,b € Fy. For inte-
gers X, Y with 1 <Y <Y 4+ X < q—1, we denote by H(X,Y) the number
of primitive roots in the set

{ag" +b| Y <2 <Y +X -1, (x,g—1)=1}.
Then

q—1 q—1
where w(qg—1) is the number of different prime divisors of ¢—1, and |6| < 4.

H(X,Y):“O(q_l)< Pa=) y | gt ”flogq)

Finally, we show that the inequality (1.6) is also close to best possible.

THEOREM 4. Let g be a primitive root of Fy,a,b € Fy, and Ty(x, A, X)
be as in (1.5). Then
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1.
(1.7) [ Jpax [To(x 9. X)[> V.

where the implicit constant is absolute.

2. Proof of Theorem 1. Our argument is a modification of that used
in the proof of the Pélya—Vinogradov inequality mentioned above.

Write e, (y) = e2™W/™ a5 usual. For any Dirichlet character v modulo n,
the Gaussian sum G(v) is defined by

(2.1) GW) =3 b(y)ealy)
y=1

where the accent indicates that we only consider those y coprime to n.
For reference purposes, we state the following well known result in the
form of a lemma (cf. Davenport [2, §9]).

LEMMA 1. (i) If (m,n) =1, then
(2.2) Z y)en(my).

(ii) If ¢ is a primitive character modulo n, then (2.2) holds for any m.
(iii) For any character 1 modulo n we have |G(v)| < v/n, and the equal-
ity holds if and only if ¥ is primitive.

We now prove Theorem 1. Since Y is a primitive character modulo n, we

have by Lemma 1(ii) and (1.2),

n

(2.3) S (. A, X) = % S X(w)en(by)

y=1 z=1

Mx

en(ayA’®)

1 I
= ) ; X(y)en(by) Sy (X),

say. Further, since (ay\”,n) = 1, it follows that e, (ayA®) can be expanded
into a finite Fourier series with respect to the Dirichlet characters vy modulo
n. We have (using (2.1)), forz =1,..., X,

T\ __ L 7 AuA®

and so
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Substituting this in (2.3) and using Lemma 1(i) (noting that (b,n) = 1), we
get

n X
/

24) S0 A X)= g 3 G Y X )en () 3 v()
[ y=1 r=1
1 B X
= S S GG B 3 )
GREDPD 2

=1

Recall that A belongs to the exponent d modulo n. Thus each dth root of
unity eq(j) (0 < j < d—1) occurs exactly p(n)/d times as a value of ¥(\).
Therefore, by (2.4) and Lemma 1(iii), we have (cf. the proof of Niederreiter
[6, Theorem 8.3])

Saeax < Ly 2 X el g

2 T=o] e
P(N)#1

NI S X -

o d =T T aY"

_vANs 1 X o
~ ;]sin(wj/d)] v

B

X

AR

2 2
< ~— | —dlogd + —-d
_d(ﬂ’ og +5>+

where we have used Lemma 2 of Niederreiter [5] in the last step. Theorem 1
then follows, since X < d < n.

3. Proof of Theorem 2. In this section we write r = ¢(n) and let
(3.1) S(z)= Y xlag’+Db)
0<y<z

for x > 0. The function S(rz) is of bounded variation, and hence has a
convergent Fourier series

(3.2) S(rx) = Z Cme?™ ™ for 0 < x < 1.

m=—oQ

Clearly
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For m # 0, we have

1
(3.3) Cm = SS(Tm)e_Qmmz dx =
0

_27rlzm<zxag +b)e,(—Im) Zxag +b)

By the hypothesis of Theorem 2 it is easily seen that

S(x)e,(—mx) dz

S =
O e 3

1 P PP prl
B4) D> xlag +b) = xy+b)=> x) - > x(b+py)
=0 y=1 y=1 y=1
ply ply
pk:—l
== x(b+py) =0
y=1

(a proof of the last equality can be found in Davenport [2, p. 66]). Moreover,
by the same argument used in Section 2 and using the same notation as
there, we arrive at the identity

(3.5) ij x(ag' +b)e,(—Im)
=0

r—1

1 _ —_
=™ % GG () (a)x (b)Y v(gh)er(—Im).

=0

The inner sum is equal to r if ¥(g) = e,(m) and equal to 0 otherwise.
Clearly, 1(g) = e,(m) if and only if ) = ,,, where 1), is the Dirichlet
character modulo n given by

(3.6) Y (z) = ep(sindgz), 0<s<rands=m (modr).
Thus by (3.3)-(3.5) we have, for m # 0,
(37) o = GGy OO G o (T ).

Since x is primitive, we may write x(x) = e,(tindgx) with 0 < t < r and
p1t. From (3.6) we see that if (and only if) m satisfies m # 0, ¢ (mod p), then
both 1,,, and X),,, are primitive characters modulo n. Thus, by Lemma 1(iii)
and (3.7), we have

Vn

. m|=—— | .
(3.8) |em] Sl or m #Z 0,t (mod p)

On applying Parseval’s formula to (3.2) and using (3.8), we have
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1
—Z]S S\Smc \de—Z\cm\2>>n
0
nd

Now, in view of (1. ) (3.1) and (3.4), Theorem 2 follows immediately.

4. Proof of Theorems 3 and 4. We first prove Theorem 3. Our ar-
gument is a version of that used in Section 2. We observe that y(a\” + b),
considered as a function of b, can be expanded into a finite Fourier series

with respect to the multiplicative characters of F'. Thus, for z =1,..., X,
(4.1) X(aX +b) =Y " cpth(-b),
¥
with the Fourier coefﬁcients
1
yEF*

where J(x, ) is a Jacobi sum

JOow) = ) x(1+w(—u)

uckFy,

(note that we have defined that ¢(0) = 0 for any ¢ € ﬁ’}) By (1.5), (4.1)
and (4.2) we have

1 X

X
=— Z TO6 X)W (a) X (=b) D (X
rx=1
It is well known that

(4.4) |J(x:XY)| < g  with equality if ¢ # €, x

(cf. Lidl and Niederreiter [4, Chapter 5]). Moreover, since A belongs to the
exponent d, it follows that each dth root of unity eq(j) (0 < j < d—1)
occurs exactly (¢ —1)/d times as a value of 1)(\). Hence, by (4.3), (4.4) and
the argument used in Section 2, we have

d—1
Vi oq-1 1 XG ¢-1
ITa( ) g—1 d ;]sm@r]/dﬂ g—1 d

2 7

This completes the proof of Theorem 3.
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Proof of Theorem 4. We proceed as in the proof of Theorem 2. Write
r=g¢q—1 and let

T(z)= Y x(ag’+0)

0<y<=z

for # > 0. The function T'(rz) has a convergent Fourier series

(4.5) T(rz) = Z c e¥™mT for 0 < x < 1.
m=—o0
Clearly
1 r—1
= =57 T0):
Co r ( )7

~

0

and, for m # 0, by an argument used in Section 3 we have
1

(4.6) o, = ST(T:ﬁ)e_%”‘m‘]C dx
0

r—1 r—1

- 2mm<zx ag' + b)e,( lm)—ZX(agl+b))
=0 =0

1 & x(b)
© 27mim — X(ag +b)er(=im) + 2mim

1 _ NS x(b)
i — %: J (O X¥)(a)xyp(—b) lz;@/}(g Jer(—lm) +
1 _ — x(b)
- MJ(Xaxwm)wm(a)me(_b) + M7

where ¥, € 1/72" being defined by ¥.,(g) = e,(s) with 0 < s <r and s =m
(modr).

Let x be defined by x(g) = e.(t) with 0 < ¢t < r. Then 9, # ¢, x if and
only if m # 0,¢ (modr). Thus, by (4.4) and (4.6) we get

1
ler, | > W(\/@— 1)  for m #0,t (modr).

Then, Theorem 4 follows from this, (4.5) and Parseval’s formula as in Sec-
tion 3.
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