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1. Introduction. In [3] Dobrowolski and Williams proved, among other
things, the following interesting result:

(1.1)
∣∣∣∣
X∑

x=1

(
agx + b

p

)∣∣∣∣ ≤
√
p− 1 log(p− 1)

2 log 2
+ 3
√
p− 1,

where p is an odd prime, g is a primitive root mod p,
(
x
p

)
is the Legendre

symbol, and a, b,X are integers satisfying p - ab and 1 ≤ X ≤ p− 1.
The purpose of this paper is to extend (1.1) in two directions. We first

prove the following result, which may be compared with the classical in-
equality of Pólya–Vinogradov for character sums with linear polynomial (cf.
Davenport [2, §23]).

Theorem 1. Let n ≥ 2 and λ be integers with (n, λ) = 1 and λ belong-
ing to the exponent d modulo n. Let χ be a primitive Dirichlet character
modulo n. Write

(1.2) Sn(χ, λ,X) =
X∑

x=1

χ(aλx + b),

where a, b and X are integers satisfying (ab, n) = 1 and 1 ≤ X ≤ d. Then

(1.3) |Sn(χ, λ,X)| < √n
(

2
π

log n+
7
5

)
.

We note that for an imprimitive χ no non-trivial bound for |Sn(χ, λ,X)|
can be obtained. Consider, for instance, the case where n = pk (p odd prime
and k ≥ 2) and χ being induced by a (primitive) character modulo p. Let
λ ≡ 1 (mod p), λ 6≡ 1 (mod p2), a+b ≡ 1 (mod p) and p - ab. Then it is easily
seen that λ belongs to exponent pk−1 modulo n and that Sn(χ, λ,X) = X
for X ≥ 1.
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Furthermore, we show that in certain cases the inequality (1.3) is essen-
tially best possible.

Theorem 2. Let n = pk, p an odd prime, k ≥ 2. Let χ be a primitive
character modulo n, g be a primitive root modulo n, and a, b be integers with
p - ab. Let Sn(χ, g,X) be as in (1.2). Then

(1.4) max
1≤X≤ϕ(n)

|Sn(χ, g,X)| � √n,

where the implicit constant is absolute.

Our second purpose is to generalize (1.1) to general finite fields. As usual,
let Fq denote the finite field of q = pk elements (p prime and k ≥ 1), and let
F ∗q be the multiplicative group of non-zero elements of Fq. Let F̂ ∗q be the set

of all multiplicative characters of F ∗q , and ε ∈ F̂ ∗q be the trivial character.

For any ψ ∈ F̂ ∗q it is convenient to extend the definition of ψ by setting
ψ(0) = 0.

Theorem 3. Let λ ∈ F ∗q belong to the exponent d. Let χ ∈ F̂ ∗q and
χ 6= ε. Write

(1.5) Tq(χ, λ,X) =
X∑

x=1

χ(aλx + b),

where a, b ∈ F ∗q , X is integer with 1 ≤ X ≤ d. Then

(1.6) |Tq(χ, λ,X)| < √q
(

2
π

log q +
7
5

)
.

By Theorem 3 and an argument similar to that used in Burgess [1, §6],
we have the following result which may be of independent interest.

Corollary. Let g be a primitive root of Fq, and a, b ∈ F ∗q . For inte-
gers X,Y with 1 ≤ Y < Y +X ≤ q − 1, we denote by H(X,Y ) the number
of primitive roots in the set

{agx + b | Y ≤ x ≤ Y +X − 1, (x, q − 1) = 1}.
Then

H(X,Y ) =
ϕ(q − 1)
q − 1

(
ϕ(q − 1)
q − 1

X + θ4ω(q−1)√q log q
)
,

where ω(q−1) is the number of different prime divisors of q−1, and |θ| ≤ 4.

Finally, we show that the inequality (1.6) is also close to best possible.

Theorem 4. Let g be a primitive root of Fq, a, b ∈ F ∗q , and Tq(χ, λ,X)
be as in (1.5). Then
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(1.7) max
1≤X≤q−1

|Tq(χ, g,X)| � √q,

where the implicit constant is absolute.

2. Proof of Theorem 1. Our argument is a modification of that used
in the proof of the Pólya–Vinogradov inequality mentioned above.

Write en(y) = e2πiy/n as usual. For any Dirichlet character ψ modulo n,
the Gaussian sum G(ψ) is defined by

(2.1) G(ψ) =
n∑′

y=1

ψ(y)en(y),

where the accent indicates that we only consider those y coprime to n.
For reference purposes, we state the following well known result in the

form of a lemma (cf. Davenport [2, §9]).

Lemma 1. (i) If (m,n) = 1, then

(2.2) ψ(m)G(ψ) =
n∑′

y=1

ψ(y)en(my).

(ii) If ψ is a primitive character modulo n, then (2.2) holds for any m.
(iii) For any character ψ modulo n we have |G(ψ)| ≤ √n, and the equal-

ity holds if and only if ψ is primitive.

We now prove Theorem 1. Since χ is a primitive character modulo n, we
have by Lemma 1(ii) and (1.2),

Sn(χ, λ,X) =
1

G(χ)

n∑′

y=1

χ(y)en(by)
X∑

x=1

en(ayλx)(2.3)

=
1

G(χ)

n∑′

y=1

χ(y)en(by)Sy(X),

say. Further, since (ayλx, n) = 1, it follows that en(ayλx) can be expanded
into a finite Fourier series with respect to the Dirichlet characters ψ modulo
n. We have (using (2.1)), for x = 1, . . . ,X,

en(ayλx) =
1

ϕ(n)

∑

ψ

G(ψ)ψ(ayλx)

and so

Sy(X) =
1

ϕ(n)

∑

ψ

G(ψ)ψ(ay)
X∑

x=1

ψ(λx).
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Substituting this in (2.3) and using Lemma 1(i) (noting that (b, n) = 1), we
get

Sn(χ, λ,X)=
1

G(χ)ϕ(n)

∑

ψ

G(ψ)ψ(a)
n∑′

y=1

χ(y)ψ(y)en(by)
X∑

x=1

ψ(λx)(2.4)

=
1

G(χ)ϕ(n)

∑

ψ

G(ψ)G(χψ)ψ(a)χψ(b)
X∑

x=1

ψ(λx).

Recall that λ belongs to the exponent d modulo n. Thus each dth root of
unity ed(j) (0 ≤ j ≤ d− 1) occurs exactly ϕ(n)/d times as a value of ψ(λ).
Therefore, by (2.4) and Lemma 1(iii), we have (cf. the proof of Niederreiter
[6, Theorem 8.3])

|Sn(χ, λ,X)| ≤
√
n

ϕ(n)

∑

ψ
ψ(λ)6=1

2
|1− ψ(λ)| +

X

ϕ(n)
· ϕ(n)

d

√
n

=
2
√
n

ϕ(n)
· ϕ(n)

d

d−1∑

j=1

1
|1− ed(j)|

+
X

d

√
n

=
√
n

d

d−1∑

j=1

1
|sin(πj/d)| +

X

d

√
n

≤
√
n

d

(
2
π
d log d+

2
5
d

)
+
X

d

√
n,

where we have used Lemma 2 of Niederreiter [5] in the last step. Theorem 1
then follows, since X ≤ d < n.

3. Proof of Theorem 2. In this section we write r = ϕ(n) and let

(3.1) S(x) =
∑

0≤y≤x
χ(agy + b)

for x ≥ 0. The function S(rx) is of bounded variation, and hence has a
convergent Fourier series

(3.2) S(rx) =
∞∑

m=−∞
cme

2πimx for 0 < x < 1.

Clearly

c0 =
1�

0

S(rx) dx =
1
r

r−1∑

l=0

S(l).
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For m 6= 0, we have

cm =
1�

0

S(rx)e−2πimx dx =
1
r

r�

0

S(x)er(−mx) dx(3.3)

=
1

2πim

( r−1∑

l=0

χ(agl + b)er(−lm)−
r−1∑

l=0

χ(agl + b)
)
.

By the hypothesis of Theorem 2 it is easily seen that

r−1∑

l=0

χ(agl + b) =
pk∑

y=1
p-y

χ(y + b) =
pk∑

y=1
p-y

χ(y)−
pk−1∑

y=1

χ(b+ py)(3.4)

= −
pk−1∑

y=1

χ(b+ py) = 0

(a proof of the last equality can be found in Davenport [2, p. 66]). Moreover,
by the same argument used in Section 2 and using the same notation as
there, we arrive at the identity

(3.5)
r−1∑

l=0

χ(agl + b)er(−lm)

=
1

rG(χ)

∑

ψ

G(ψ)G(χψ)ψ(a)χψ(b)
r−1∑

l=0

ψ(gl)er(−lm).

The inner sum is equal to r if ψ(g) = er(m) and equal to 0 otherwise.
Clearly, ψ(g) = er(m) if and only if ψ = ψm, where ψm is the Dirichlet
character modulo n given by

(3.6) ψm(x) = er(s indgx), 0 < s ≤ r and s ≡ m (mod r).

Thus by (3.3)–(3.5) we have, for m 6= 0,

(3.7) cm =
1

2πimG(χ)
G(ψm)G(χψm)ψm(a)χψm(b).

Since χ is primitive, we may write χ(x) = er(t indgx) with 0 < t < r and
p - t. From (3.6) we see that if (and only if) m satisfies m 6≡ 0, t (mod p), then
both ψm and χψm are primitive characters modulo n. Thus, by Lemma 1(iii)
and (3.7), we have

(3.8) |cm| =
√
n

2π|m| for m 6≡ 0, t (mod p).

On applying Parseval’s formula to (3.2) and using (3.8), we have
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1
r

r−1∑

l=0

|S(l)|2 =
1�

0

|S(rx)|2 dx =
∑

m

|cm|2 � n.

Now, in view of (1.2), (3.1) and (3.4), Theorem 2 follows immediately.

4. Proof of Theorems 3 and 4. We first prove Theorem 3. Our ar-
gument is a version of that used in Section 2. We observe that χ(aλx + b),
considered as a function of b, can be expanded into a finite Fourier series
with respect to the multiplicative characters of F ∗q . Thus, for x = 1, . . . ,X,

(4.1) χ(aλx + b) =
∑

ψ

cψψ(−b),

with the Fourier coefficients

(4.2) cψ =
1

q − 1

∑

y∈F ∗q

χ(aλx + y)ψ(−y) =
1

q − 1
χψ(aλx)J(χ,ψ),

where J(χ,ψ) is a Jacobi sum

J(χ,ψ) =
∑

u∈Fq
χ(1 + u)ψ(−u)

(note that we have defined that ψ(0) = 0 for any ψ ∈ F̂ ∗q ). By (1.5), (4.1)
and (4.2) we have

Tq(χ, λ,X) =
1

q − 1

∑

ψ

J(χ,ψ)χψ(a)ψ(−b)
X∑

x=1

χψ(λx)(4.3)

=
1

q − 1

∑

ψ

J(χ, χψ)ψ(a)χψ(−b)
X∑

x=1

ψ(λx).

It is well known that

(4.4) |J(χ, χψ)| ≤ √q with equality if ψ 6= ε, χ

(cf. Lidl and Niederreiter [4, Chapter 5]). Moreover, since λ belongs to the
exponent d, it follows that each dth root of unity ed(j) (0 ≤ j ≤ d − 1)
occurs exactly (q− 1)/d times as a value of ψ(λ). Hence, by (4.3), (4.4) and
the argument used in Section 2, we have

|Tq(χ, λ,X)| ≤
√
q

q − 1
· q − 1

d

d−1∑

j=1

1
|sin(πj/d)| +

X
√
q

q − 1
· q − 1

d

<
√
q

(
2
π

log q +
7
5

)
.

This completes the proof of Theorem 3.
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Proof of Theorem 4. We proceed as in the proof of Theorem 2. Write
r = q − 1 and let

T (x) =
∑

0≤y≤x
χ(agy + b)

for x ≥ 0. The function T (rx) has a convergent Fourier series

(4.5) T (rx) =
∞∑

m=−∞
c′me

2πimx for 0 < x < 1.

Clearly

c′0 =
1
r

r−1∑

l=0

T (l);

and, for m 6= 0, by an argument used in Section 3 we have

c′m =
1�

0

T (rx)e−2πimx dx(4.6)

=
1

2πim

( r−1∑

l=0

χ(agl + b)er(−lm)−
r−1∑

l=0

χ(agl + b)
)

=
1

2πim

r−1∑

l=0

χ(agl + b)er(−lm) +
χ(b)
2πim

=
1

2πimr

∑

ψ

J(χ, χψ)ψ(a)χψ(−b)
r−1∑

l=0

ψ(gl)er(−lm) +
χ(b)
2πim

=
1

2πim
J(χ, χψm)ψm(a)χψm(−b) +

χ(b)
2πim

,

where ψm ∈ F̂ ∗q being defined by ψm(g) = er(s) with 0 < s ≤ r and s ≡ m
(mod r).

Let χ be defined by χ(g) = er(t) with 0 < t < r. Then ψm 6= ε, χ if and
only if m 6≡ 0, t (mod r). Thus, by (4.4) and (4.6) we get

|c′m| ≥
1

2π|m|(
√
q − 1) for m 6≡ 0, t (mod r).

Then, Theorem 4 follows from this, (4.5) and Parseval’s formula as in Sec-
tion 3.
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