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1. Introduction. In 1946, Davenport and Heilbronn [3] adapted the
Hardy–Littlewood method to prove that if λi (i = 1, . . . ,K) are non-zero
real numbers, not all of the same sign, and if λ1/λ2 is irrational, then the
values of

λ1x
k
1 + . . .+ λKx

k
K

as xi’s run independently through all natural numbers, are everywhere dense
on the real line provided that K ≥ 2k + 1. In the case k = 1, Baker [1] (see
also [11] and [13]) showed that for any positive integer n there exist infinitely
many primes p1, p2, p3 satisfying the inequality

|λ1p1 + λ2p2 + λ3p3| < (ln p)−n,

where p denotes the maximum of p1, p2, p3. More recently, Harman [5]
showed that if α is a real number, then there are infinitely many ordered
triples of primes p1, p2, p3 for which

|α+ λ1p1 + λ2p2 + λ3p3| < (max
j
pj)−1/5+ε.

In the case k ≥ 2, Ramachandra [11] (see also [12]) showed that when
K ≥ 2k + 1 if 1 ≤ k ≤ 11 and K ≥ 2[2k2 ln k + k2 ln ln k + 2.5k2] − 1 if
k ≥ 12, the values of

λ1p
k
1 + . . .+ λKp

k
K

as the pj ’s run independently through all primes, are everywhere dense on
the real line. The key to the Hardy–Littlewood method on the real line is
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the integral

(1)
∞�

−∞
exp(xy)

(
sinπx
πx

)2

dx = max{1− |y|, 0}.

In this paper, we study the Hardy–Littlewood method for the completion
K∞ = Fq((1/T )) of the rational function field K = Fq(T ) at the infinite
place, where Fq denotes the finite field with q elements. We have a natural
discrete valuation | · | on K∞ defined by

|f | = qdeg f ,

where deg f denotes the degree of f ∈ K∞ at T , and set deg 0 = −∞. Since
K∞ is complete under the non-Archimedean valuation |·| and the Pontryagin
(self) duality K̂∞ = K∞ holds (cf. Section 2), we have the following basic
analogy:

Fq[T ] ∼ Z, K ∼ Q, K∞ ∼ R.
Let p be the characteristic of Fq, let λ1, . . . , λD be non-zero elements in K∞
satisfying λ1/λ2 6∈ K and

sgnλ1 + . . .+ sgnλD = 0,

where sgn f ∈ Fq denotes the leading coefficient of f ∈ K∞. We show that
if p > d ≥ 1 and

D ≥
{

1 + 2d if 2 ≤ d < 11,
2[2d2 ln d+ d2 ln ln d+ 2d2 − 2d] + 1 if d ≥ 11,

then the values of the sum

λ1P
d
1 + . . .+ λDP

d
D,

as the Pi’s run independently through all monic irreducible polynomials in
Fq[T ], are everywhere dense on the “non-Archimedean” line K∞. In fact,
we obtain a more explicit inequality in Theorem 2.1. In the proof of Theo-
rem 2.1, the integral (cf. Lemma 2.2)

�

K∞

E(af)χn(a) da =
{

1 if deg f < n,
0 if deg f ≥ n,

plays a role entirely analogous to the integral (1) on the real line.
We studied the case d = 1, D = 3 in [8]. In the present paper, we attack

this problem in the case when d ≥ 2. In this situation, we need more additive
theory of monic irreducible polynomials in Fq[T ] (see, e.g., Theorems 4.3,
4.4, and 2.4).

2. The main theorem and definition. Let Fq be the finite field with
q elements. Let p be its characteristic and let Fp = Z/pZ be the subfield of
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Fq with p elements. Let ψ0 : Fp → C× be the canonical additive character
defined by

ψ0([c]) = exp
(

2πi · c
p

)
,

where [c] denotes the canonical image of c in Fp. Let ψ : Fq → C× be
the additive character defined by ψ(x) = ψ0(Tr(x)) for all x ∈ Fq where
Tr is the trace map from Fq to Fp. Let A = Fq[T ] (resp. K = Fq(T )) be
the polynomial ring (resp. rational function field) with coefficients in Fq.
Let A+ denote the subset of A consisting of all monic polynomials. Let
K∞ = Fq((1/T )) denote the completion of K at the infinite place; in other
words, for every a ∈ K∞, if a 6= 0, then a can be expressed as

a =
−∞∑

i=d

ciT
i,

where ci ∈ Fq and cd 6= 0. The sign, degree, and absolute value of a are
defined by sgn a = cd,deg a = d, and |a| = qd. The residue of a at the infinite
place is denoted by Res∞ f = c−1. The exponential map E : K∞ → C× is
defined by

E(a) = ψ(Res∞ a).

The exponential map E is a non-trivial additive character from K∞ to C×
and the Pontryagin (self) duality K̂∞ = K∞ is deduced by the bilinear map

K∞ ×K∞ → C×, (a, f) 7→ E(a · f).

In this paper, the Haar integral for K∞ is defined to satisfy
�

deg a≤−1

1 da = 1.

This implies that �

K∞

f(a) d(ba) = |b|
�

K∞

f(a) da

for all b ∈ K∞ and continuous functions f (with compact support). With
these properties, we have the following basic analogy:

A ∼ Z, K ∼ Q, K∞ ∼ R, E ∼ exp .

The main theorem of this paper is

Theorem 2.1. Suppose that d, D, m are positive integers and λ, λ1, . . .
. . . , λD are non-zero elements in K∞ satisfying λ1/λ2 6∈ K, 2 ≤ d < p,

(2) deg λ1 = . . . = deg λD = 0,

and
sgnλ1 + . . .+ sgnλD = 0.
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Then if

D ≥
{

1 + 2d if 2 ≤ d < 11,
2[2d2 ln d+ d2 ln ln d+ 2d2 − 2d] + 1 if d ≥ 11,

then there exist infinitely many positive integers N for which there are

� q(D−d)N

ND+m

D-tuples (P1, . . . , PD) of monic irreducible polynomials with deg(λiPi) = N
and

deg(λ+ λ1P
d
1 + . . .+ λDP

d
D) < −m lnN + 1,

where the implied constant depends only on A, λ, λi, d, D, and m, but not
on N .

Remark 1. The complete proof of Theorem 2.1 is given in Section 5. In
fact, if we define the value of Ij(a) in (3) to be

Ij(a) = I(aTΛ−deg λjλj),

where
Λ = max

1≤j≤D
{deg λj},

then without the condition (2), the statement of Theorem 2.1 is also true.
2. The choice of N depends on λ1/λ2 ∈ K∞/K and this condition is

used only in Lemmas 4.2 and 4.6. Combining this theorem and [8], Theorem
1.2, we obtain

Consequence 1. Under the hypothesis of Theorem 2.1, suppose p > d
≥ 1 and

D ≥
{

1 + 2d if d < 11,
2[2d2 ln d+ d2 ln ln d+ 2d2 − 2d] + 1 if d ≥ 11.

Then the values of the sum

λ1P
d
1 + . . .+ λDP

d
D,

as the Pi’s run independently through all monic irreducible polynomials in
Fq[T ], are everywhere dense on the non-Archimedean line Fq((1/T )).

Let M be the subring of K∞ consisting of a ∈ K∞ with deg a ≤ −1 and
let χ0 be the characteristic function of M; in other words, χ0 : K∞ → R
satisfies

χ0(a) =
{

1 if a ∈M,
0 otherwise.

Given any integer n, the function χn : K∞ → R is defined by

χn(a) = qnχ0(aTn) for a ∈ K∞.
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Lemma 2.2. We have
�

K∞

E(af)χn(a) da =
{

1 if deg f < n,
0 if deg f ≥ n.

Proof. See [6], Theorem 3.5.

Let p > d ≥ 2, N be fixed positive integers. We define functions

(3)

S(a) =
∑′

degP=N

E(aP d), I(a) =
1
N

�

y∈TN+TNM

E(ayd) dy,

Sj(a) = S(aλj), Ij(a) = I(aλj), j = 1, . . . ,D,

F (a) =
D∏

j=1

Sj(a), H(a) =
D∏

j=1

Ij(a),

where
∑′ denotes the sum over monic irreducible polynomials in A. Let πN

denote the number of monic irreducible polynomials in A of degree N . The
prime number theorem for A is

(4) qN/N − qN/2 < πN ≤ qN/N.
As deg λj = 0, by the definition of E we have

(5) Ij(a) =
{
qN/N if deg a < −dN − 1,
(qN/N)ψ(sgn(aλj)) if deg a = −dN − 1,

and

(6) Sj(a) =
{
πN if deg a < −dN − 1,
πNψ(sgn(aλj)) if deg a = −dN − 1.

Lemma 2.3. If deg a ≥ −dN , then Ij(a) = 0.

Proof. Since deg λj = 0, it suffices to show that I(a) = 0 for deg a ≥
−dN . Let deg a = −dN + l for some integer l ≥ 0 and let

a = alT
−dN+l + . . .+ a−1T

−dN−1 + a′ ∈ K∞,

where aj ∈ Fq, al 6= 0, and deg a′ ≤ −dN − 2. Let

y = TN +
∞∑

j=1

b−jT
N−j ∈ TN + TNM,

where b−j ∈ Fq. Then we have

(7) yd = T dN +
∞∑

j=1

(db−j + c−j(b−1, . . . , b−(j−1)))T
dN−j,
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for some c−j(x1, . . . , xj−1) ∈ Fq[x1, . . . , xj−1] and c−1 = 0. Since E(a′yd)
= 1, we have

(8) E(ayd) = E((a− a′)yd) = ψ
(
a−1 +

l∑

j=0

ajb
′
−(j+1)

)
,

where
b′−j = db−j + c−j(b−1, . . . , b−(j−1)).

By (7), since 2 ≤ d < p, we know that the dth power mapping

F : TN + TNM→ T dN + T dNM, y 7→ yd

is bijective and satisfies

(9) F (y + TN−(l+1)M) = ydN + T dN−(l+1)M.

By (8), (9), since ψ is a non-trivial additive character of Fq, and al 6= 0, we
obtain

I(a) =
1
N

�

y∈TN+TNM

E(ayd) dy =
1
N

�

y∈TN+TNM

E((a− a′)yd) dy

=
1
N

�

z∈TN−(l+1)M

∑

c∈Fq
ql · ψ(c) dz = 0.

Let a positive integer l satisfy l ≤ N/2 and let y be a monic element in
K∞ of degree N . Let πN (y, l) denote the number of monic irreducible poly-
nomials P ∈ A+ of degree N with deg(P − y) < N − l. In [7], Corollary 2.6,
or [2], Theorem 1.4, we have

(10) πN (y, l) =
qN−l

N
+O(qN/2),

where the implied constant depends only on A. Given

x =
−∞∑

i=−dN+l−1

aiT
i ∈ K∞, f = T dN +

0∑

j=dN−1

fjT
j ∈ A,

where ai, fj ∈ Fq, a−dN+l−1 6= 0, and setting fdN = 1, we have

(11) Res∞(xf) =
l∑

k=0

a−dN+k−1fdN−k.

Let πN,d(f, l) be the number of monic irreducible polynomials P of degree
N with deg(P d − f) < dN − l. By (7), since 2 ≤ d < p, there exists a
monic element y ∈ K∞ of degree N satisfying deg(yd − f) < dN − l and
πN,d(f, l) = πN,d(yd, l) = πN (y, l). Thus by (10) we get

(12) πN,d(f, l) =
qN−l

N
+O(qN/2),
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where the implied constant depends only on A. If P is a monic irreducible
polynomial of degree N satisfying deg(P d − f) < dN − l, then by (11),
Res∞(xP d) = Res∞(xf). Hence combining (12), (11), and a−dN+l−1 6= 0,
we get

(13) #{monic irreducibles P | degP = N, Res∞(xP d) = c}

= ql−1
(
qN−l

N
+O(qN/2)

)
=
qN−1

N
+O(ql+N/2)

for any c ∈ Fq. Since

E(xP d) = exp
(

2πiTr(Res∞(xP d))
p

)
,

and Tr is a surjective Fp-linear mapping from Fq onto Fp, by (13) we obtain

|S(x)| =
∣∣∣
∑′

degP=N

E(xP d)
∣∣∣ = O(ql+N/2).

Therefore we have

Theorem 2.4. Let m be an integer satisfying 0 ≤ m < N/2. Then

|S(x)| = O(qm+N/2)

for all x ∈ K∞ with deg x = −dN +m, where the implied constant depends
only on A.

Remark. If m ≥ N/2, then the result of Theorem 2.4 is trivial.

3. The major arcs

Lemma 3.1. Let n be a positive integer and let −dN ≤ m ≤ −dN+N/4.
Then

�

deg a≤m
|F (a)−H(a)|χ−n(a) da = o

(
q(D−d)N−N/2−n

ND

)
,

as N →∞.

Proof. Using (5), (6), sgnλ1 + . . . + sgnλD = 0, χ−n(a) ≤ q−n, Lem-
ma 2.3, and (4), we obtain

�

deg a≤m
|F (a)−H(a)|χ−n(a) da

≤ q−n
�

deg a≤−dN−1

|πDN − qDN/ND| da+ q−n
m∑

i=−dN

�

deg a=i

|F (a)| da

≤ O
(
q(D−d)N−N/2−n

ND−1

)
+ q−n

m∑

i=−dN

�

deg a=i

|F (a)| da,
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where the implied constant depends only on A. Since Sj(a) = S(aλj) and
deg(aλj) = deg a, by Theorem 2.4, we obtain

|Sj(a)| = O(qdN+m+N/2)

for −dN ≤ deg a ≤ m, where the implied constant depends only on A. As
d ≥ 2 and D ≥ 1 + 2d ≥ 5, we obtain

q−n
m∑

i=−dN

�

deg a=i

|F (a)| da = O
(
q−n

m∑

i=−dN

�

deg a=i

qdDN+DN/2+Dm da
)

= O(q−n · qm · qdDN+DN/2+Dm)

= O(q(dD+D/2)N+(D+1)m−n)

= O

(
q(D−d)N−N/2−n

ND−1

)
,

where the implied constant depends only on A.

Lemma 3.2. Let n be a positive integer and let λ ∈ K∞. Then if m ≥
−dN and dN > deg λ, we have

�

deg a≤m
H(a)E(aλ)χ−n(a) da =

q(D−d)N−n

ND
.

Proof. By Lemma 2.3 and the definition of H, we have H(a) = 0 if
deg a ≥ m ≥ −dN . Thus

(14)
�

deg a≥m
H(a)E(aλ)χ−n(a) da = 0.

By the definitions of H, E and Lemma 2.3, we have
�

K∞

H(a)E(aλ)χ−n(a) da

=
1
ND

�

deg a<−dN

�

TN+TNM

. . .
�

TN+TNM

E
(
a
(
λ+

D∑

j=1

λjy
d
j

))

× χ−n(a) dy1 . . . dyD da

=
1
ND

�

TN+TNM

. . .
�

TN+TNM

�

deg a<−dN
E
(
a
(
λ+

D∑

j=1

λjy
d
j

))

× χ−n(a) da dy1 . . . dyD.
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By the definition of χ−n(a) and since deg a < −dN , the above is

q−n

ND

�

TN+TNM

. . .
�

TN+TNM

�

deg a<−dN
E
(
a
(
λ+

D∑

j=1

λjy
d
j

))
da dy1 . . . dyD.

Given any y1, . . . , yD ∈ TN + TNM, set

f = λ+ λ1y
d
1 + . . .+ λDy

d
D.

Since dN > deg λ, deg λj = 0, and sgnλ1 + . . . + sgnλD = 0, we have
deg f < dN . This implies

�

deg a<−dN
E(af) da =

�

deg a<−dN
1 da = q−dN .

Therefore
�

K∞

H(a)E(aλ)χ−n(a) da =
q−n

ND
· qDN · q−dN =

q(D−d)N−n

ND
.

Combining these with (14), we complete the proof.

4. The minor arcs. We recall Dirichlet’s theorem for A in

Theorem 4.1. Given any α ∈ K∞ and a positive integer N , there exists
a unique monic polynomial Q and a polynomial a in A satisfying (Q, a)
= 1,degQ ≤ N , and deg(α− a/Q) ≤ −(degQ+N + 1).

Proof. See [6].

For any x ∈ K∞, define

V (x) = min{|S1(x)|, |S2(x)|}.

Lemma 4.2. Suppose p > d ≥ 2 and that positive numbers ε, D1, and σ0

satisfy d− 6ε < 2D1 < d. Then there exist infinitely many positive integers
N such that

V (x)� qN/Nσ0 for all x ∈ K∞ with − (d− ε)N ≤ deg x ≤ D1N,

where the implied constant depends only on d, ε, D1 and σ0.

Proof. Since λ1/λ2 ∈ K∞ \ K, by Theorem 4.1 there exist infinitely
many monic polynomials Q and polynomials a in A such that (Q, a) = 1
and

(15) deg(λ1/λ2 − a/Q) < −2 degQ.

For a fixed pair (Q, a), let N be the least integer satisfying 2 degQ ≤ dN
and write

(16)
λ1

λ2
=

a

Q
+ f for some f ∈ K∞ with deg f < −2 degQ.
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Throughout the proof of this lemma, assume that (d− 2D1)N ≥ 6d. Given
any x ∈ K∞ satisfying −(d − ε)N ≤ deg x ≤ D1N , let m denote the
least integer satisfying (5d+ 2D1)N/6 ≤ m. For any j = 1, 2, again by
Theorem 4.1 there exist monic polynomials Q1, Q2 and polynomials a1, a2

such that

(17) deg(xλj − aj/Qj) < −degQj −m, j = 1, 2,

where (Qj , aj) = 1 and degQj ≤ m. Since deg λj = 0, deg(xλj) = deg x ≥
−(d−ε)N . Combining this with (17) andm > (d−ε)N because d−6ε < 2D1,
we have aj 6= 0 and we can write

xλj =
aj
Qj

+
fj
Qj

=
aj
Qj

(
1 +

fj
aj

)
for some fj ∈ K∞ with deg fj < −m.

Thus
λ1

λ2
=
xλ1

xλ2
=
Q2a1

Q1a2

(
1 +

f1

a1

)(
1 +

f2

a2

)−1

.

Since deg λ1 = deg λ2 = 0, we have deg(Q2a1) = deg(Q1a2). We may write

λ1

λ2
=
Q2a1

Q1a2
+ f3 for some f3 ∈ K∞ with deg f3 < −m.

By (16), and since 0 < m ≤ d(N − 1) because (d− 2D1)N ≥ 6d, we have

deg
(
a

Q
− Q2a1

Q1a2

)
< −m.

This implies

deg(a2Q1a−Q2a1Q) < dN/2−m+ deg(Q1a2).

If a2Q1a−Q2a1Q 6= 0, then deg(Q1a2) > −dN/2+m. If a2Q1a−Q2a1Q = 0,
then

a

Q
=
Q2a1

Q1a2
.

Since (Q, a) = 1 and d ≥ 2, deg(Q1a2) ≥ degQ > d(N − 1)/2 ≥ −dN/2+m
because (d− 2D1)N ≥ 6d. Thus we always have deg(Q1a2) > −dN/2 +m.
Since deg(xλ2−a2/Q2) < −degQ2−m, −(d−ε)N ≤ deg x ≤ D1N , deg λ2

= 0, and m > (d − ε)N , we have D1N ≥ deg x = deg xλ2 = deg(a2/Q2).
Combining these, we have

deg(Q1Q2) = deg(Q1a2) + deg(Q2/a2) > −dN/2 +m−D1N.

This implies that max{degQ1,degQ2} > −dN/4 + (m−D1N)/2. Without
loss of generality, assume that degQ1 > −dN/4 + (m−D1N)/2. By the
definition of m, we have

degQ1 +m > −dN
4

+
m−D1N

2
+m ≥ dN.
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Combining this with (17), we obtain

S1(x) = S(xλ1) = S(a1/Q1).

Set σ = (dN −m)/lnN . Since m − 1 < (5d+ 2D1)N/6 and d > 2D1, we
have

σ >
(d− 2D1)N − 6

6 lnN
≥ d26d(σ0 + 1)

for large N . Since

σ lnN = dN −m < degQ1 ≤ m = dN − σ lnN,

by Theorem 4.3 below, we obtain

|S1(x)| = |S(xλ1)| = |S(a1/Q1)| � qN/Nσ0

for large N . Thus there exist infinitely many positive integers N such that

V (x)� qN/Nσ0 for all − (d− ε)N ≤ deg x ≤ D1N.

Now we recall three theorems proved in [9]. They are used in the proof of
Lemma 4.6 and in the proofs of polynomial Waring and polynomial Waring–
Goldbach problems (cf. [4] and [9]).

Theorem 4.3. Let 2 ≤ d < p and let σ0 ≥ 0. Suppose that (Q, a) = 1,
σ lnN ≤ degQ ≤ dN − σ lnN . Then, if σ ≥ d26d(σ0 + 1), we have

|S(a/Q)| � qN/Nσ0 ,

where the implied constant depends only on d, σ0, and q.

Proof. See [9], Theorem 11.8.

Theorem 4.4 (Hua’s lemma). Suppose that 1 ≤ d < p. Then

(18)
�

M

∣∣∣
∑

x∈A+, deg x=N

E(xda)
∣∣∣
2d

da� NCqN(2d−d)

for some C, where the implied constant and the constant C depend on d and
A, but not on N . In other words, the number of solutions of

xd1 + . . .+ xd2d−1 = yd1 + . . .+ yd2d−1

with xi, yi ∈ A+ and deg xi = deg yi = N is � NCqN(2d−d).

Proof. See [9], Theorem 4.2.

Remark. In [4], Theorem 8.13, the right-hand side of (18) is qN(2d−d+ε).
Following Hua’s idea (cf. [10], Theorem 4), we improve this to the form of
Theorem 4.4.
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Theorem 4.5. Suppose d ≥ 9 and s ≥ 2d2 ln d + d2 ln ln d + 2d2 − 2d.
Then

�

M

∣∣∣
∑

x∈A+, deg x=N

E(xda)
∣∣∣
2s
da� qN(2s−d),

where the implied constant depends only on d, s, and q. In other words, the
number of solutions of

xd1 + . . .+ xds = yd1 + . . .+ yds

with xi, yi ∈ A+ and deg xi = deg yi = N is � qN(2s−d).

Proof. See [9], Theorem 7.5.

Lemma 4.6. Let D, n be positive integers and let d, ε, D1 and N be as
in Lemma 4.2. Then, if D1N ≥ n and

D ≥
{

1 + 2d if 2 ≤ d < 11,
2[2d2 ln d+ d2 ln ln d+ 2d2 − 2d] + 1 if d ≥ 11,

we have �

−(d−ε)N≤deg a

|F (a)|χ−n(a) da� q(D−d)N/Nσ0

for any positive number σ0, where the implied constant depends only on D,
d, ε, D1, σ0, and the constant C of Theorem 4.4.

Proof. By the definition of χ−n, we know that χ−n(a) = 0 if deg a ≥ n.
Thus χ−n(a) = 0 if deg a ≥ D1N . Thus

�

−(d−ε)N≤deg a

|F (a)|χ−n(a) da =
�

−(d−ε)N≤deg a≤D1N

|F (a)|χ−n(a) da.

If V (a) = min{|S1(a)|, |S2(a)|}, then

|F (a)| ≤ V (a)
(∣∣∣S1(a)

D∏

j=3

Sj(a)
∣∣∣+
∣∣∣S2(a)

D∏

j=3

Sj(a)
∣∣∣
)
.

This implies

|F (a)| ≤ V (a)
( D∑

j=1

|Sj(a)|D−1
)
.

Since

D ≥
{

1 + 2d if 2 ≤ d < 11,
2[2d2 ln d+ d2 ln ln d+ 2d2 − 2d] + 1 if d ≥ 11,

and deg λj = 0, |Sj(a)| ≤ qN , we have
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(19)
�

K∞

|Sj(a)|D−1χ−n(a) da

≤
{
qN(D−1−2d) �

K∞
|S(a)|2dχ−n(a) da if 2 ≤ d < 11,

qN(D−2s−1) �
K∞
|S(a)|2sχ−n(a) da if d ≥ 11,

where s = [2d2 ln d+d2 ln ln d+2d2−2d]. By Lemma 2.2, the last integral is
equal to the number of monic irreducible 2s-tuples (P1, . . . , P2s) such that
degPi = N and

deg
( s∑

i=1

(P di − P ds+i)
)
< −n.

Since n > 0, this integral is equal to the number of monic irreducible 2s-
tuples (P1, . . . , P2s) such that degPi = N and

s∑

i=1

(P di − P ds+i) = 0.

Using (19) and Theorems 4.4 and 4.5, we obtain

�

K∞

|Sj(a)|D−1χ−n(a) da�
{
NCqN(D−d−1) if 2 ≤ d < 11,

qN(D−d−1) if d ≥ 11.

Combining these with Lemma 4.2 (substitute σ0 + C for σ0), we obtain
�

−(d−ε)N≤deg a

|F (a)|χ−n(a) da

≤
�

−(d−ε)N≤deg a≤D1N

V (a)
D∑

j=1

|Sj(a)|D−1χ−n(a) da

� qN

Nσ0+C ·N
CqN(D−d−1) =

q(D−d)N

Nσ0
.

5. Completion of the proof of the main theorem. We conclude the
proof of Theorem 2.1 by collecting the above results. First of all, Lemma 3.2
with ε > 0 and a positive integer n gives

�

deg a≤−(d−ε)N
H(a)E(aλ)χ−n(a) da = q(D−d)N−n/ND,

as dN > deg λ. Combining this with Lemma 3.1, when 0 < ε < 1/4 and
n = [m lnN ], we have

(20)
�

deg a≤−(d−ε)N
F (a)E(aλ)χ−[m lnN ](a) da� q(D−d)N/ND+m,
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as N →∞. In Lemmas 4.2 and 4.6, if ε, D1, d, D, n and σ0 satisfy d−6ε <
2D1 < d, 2 ≤ d < p, σ0 = D +m+ 1, n = [m lnN ], D1N ≥ n, and

D ≥
{

1 + 2d if 2 ≤ d < 11,
2[2d2 ln d+ d2 ln ln d+ 2d2 − 2d] + 1 if d ≥ 11,

then there are infinitely many positive integers N (note that these N come
from λ1/λ2 ∈ K∞/K) such that

(21)
�

−(d−ε)N≤deg a

F (a)E(aλ)χ−[m lnN ](a) da� q(D−d)N/ND+m+1.

Therefore, taking ε = 1/6, D1 = d/2 − 1/4 and combining (20) and (21),
we see that for any positive integer m,

�

K∞

∑′

deg P1=N

. . .
∑′

degPD=N

E
(
a
(
λ+

D∑

i=1

λiP
d
i

))
χ−[m lnN ](a) da

=
�

K∞

F (a)E(aλ)χ−[m lnN ](a) da� q(D−d)N/ND+m.

It follows from Lemma 2.2 that there exist infinitely many positive integers
N for which there are � q(D−d)N/ND+m D-tuples (P1, . . . , PD) of monic
irreducible polynomials with degPi = N and

deg(λ+ λ1P
d
1 + . . .+ λDP

d
D) < −m lnN + 1.

This completes the proof of Theorem 2.1.
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