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1. Introduction. In 1946, Davenport and Heilbronn [3] adapted the
Hardy-Littlewood method to prove that if A\; (i = 1,..., K) are non-zero
real numbers, not all of the same sign, and if A1/ is irrational, then the
values of

Mk 4+ A

as x;’s run independently through all natural numbers, are everywhere dense
on the real line provided that K > 2¥ + 1. In the case k = 1, Baker [1] (see
also [11] and [13]) showed that for any positive integer n there exist infinitely
many primes pi, p2, p3 satisfying the inequality

|A1p1 + Aop2 + Asps| < (Inp) ™",

where p denotes the maximum of p;, p2, ps. More recently, Harman [5]
showed that if « is a real number, then there are infinitely many ordered
triples of primes p1, ps2, ps for which

lac + A1p1 + Aap2 + A3ps3| < (m]axpj)_l/f’“.

In the case k > 2, Ramachandra [11] (see also [12]) showed that when
K>24+1if1 <k <11 and K > 22k%Ink + k®>Inlnk + 2.5k%] — 1 if
k > 12, the values of

Alp’f++)\Kp’f<

as the p;’s run independently through all primes, are everywhere dense on
the real line. The key to the Hardy—Littlewood method on the real line is
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In this paper, we study the Hardy—Littlewood method for the completion
Ko = F,(1/T)) of the rational function field K = F,(T) at the infinite
place, where [F, denotes the finite field with ¢ elements. We have a natural
discrete valuation | - | on K, defined by

|f| = g8/,

where deg f denotes the degree of f € K, at T, and set deg 0 = —o0. Since
K is complete under the non-Archimedean valuation |-| and the Pontryagin
(self) duality Ko, = K holds (cf. Section 2), we have the following basic
analogy:

F,T)~2Z, K~Q Ksx~R

Let p be the characteristic of Iy, let A1,..., Ap be non-zero elements in K,
satisfying A1 /A2 ¢ K and

sgnA; +...+sgnAp =0,

where sgn f € [F, denotes the leading coefficient of f € K,,. We show that
ifp>d>1and

D> 1424 if2<d<11,
~ | 2[2d®Ind + d*Inlnd + 2d*> — 2d] + 1 if d > 11,

then the values of the sum
MPI+ ...+ ApP2,

as the P;’s run independently through all monic irreducible polynomials in
F,[T], are everywhere dense on the “non-Archimedean” line K. In fact,
we obtain a more explicit inequality in Theorem 2.1. In the proof of Theo-
rem 2.1, the integral (cf. Lemma 2.2)

1 ifdegf <n,

KS E(af)xn(a)da = {0 if deg f > n,

plays a role entirely analogous to the integral (1) on the real line.

We studied the case d =1, D = 3 in [8]. In the present paper, we attack
this problem in the case when d > 2. In this situation, we need more additive
theory of monic irreducible polynomials in F,[T] (see, e.g., Theorems 4.3,
4.4, and 2.4).

2. The main theorem and definition. Let F, be the finite field with
q elements. Let p be its characteristic and let F,, = Z/pZ be the subfield of
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F, with p elements. Let 9o : F, — C* be the canonical additive character
defined by

where [c] denotes the canonical image of ¢ in F,. Let ¢ : F, — C* be
the additive character defined by ¢ (z) = ¢o(Tr(z)) for all z € F, where
Tr is the trace map from F, to F). Let A = F,[T] (resp. K = F(T')) be
the polynomial ring (resp. rational function field) with coefficients in F,.
Let A denote the subset of A consisting of all monic polynomials. Let
Ko = F,(1/T)) denote the completion of K at the infinite place; in other
words, for every a € K, if a # 0, then a can be expressed as

—0o0
a= E T,
i=d

where ¢; € F, and ¢4 # 0. The sign, degree, and absolute value of a are
defined by sgna = c4,dega = d, and |a| = ¢%. The residue of a at the infinite
place is denoted by Ress f = ¢_1. The exponential map F : Ko, — C* is
defined by

E(a) = ¢ (Res a).

The exponential map F is a non-trivial additive character from Ko, to C*
and the Pontryagin (self) duality K., = K is deduced by the bilinear map

Ko x Ko —C*, (a,f)— E(a-f).
In this paper, the Haar integral for K, is defined to satisfy
S lda = 1.
dega<—1
This implies that
| fl@)d(ba)=po| | f(a)da

Ko Koo

for all b € K, and continuous functions f (with compact support). With
these properties, we have the following basic analogy:

A~Z, K~Q Kio~R, FE~exp.
The main theorem of this paper is

THEOREM 2.1. Suppose that d, D, m are positive integers and A, A1, ...
..., Ap are non-zero elements in Koo satisfying \ /A2 € K,2 < d < p,

(2) degAi =...=degAp =0,

and
sgn Ay +...+sgnAp =0.
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Then if
14 24 if 2<d<11,
D> 2 2 2 ;
2[2d°Ind + d*Inlnd + 2d* — 2d] +1 if d > 11,
then there exist infinitely many positive integers N for which there are
. g(P—N
ND+m

D-tuples (P, ..., Pp) of monic irreducible polynomials with deg(\;P;) = N
and
deg(A\+ M Pl +... 4+ ApP%) < —mInN +1,

where the implied constant depends only on A, X\, \;, d, D, and m, but not
on N.

REMARK 1. The complete proof of Theorem 2.1 is given in Section 5. In
fact, if we define the value of I(a) in (3) to be

Ii(a) = I(aT" 98N \;),
where

A= 1g%XD{deg At

then without the condition (2), the statement of Theorem 2.1 is also true.

2. The choice of N depends on A\;/Ay € K, /K and this condition is
used only in Lemmas 4.2 and 4.6. Combining this theorem and [8], Theorem
1.2, we obtain

CONSEQUENCE 1. Under the hypothesis of Theorem 2.1, suppose p > d
>1 and

D> 1+ 24 if d < 11,
~ | 2[2d*Ind + d*Inlnd + 2d* —2d] + 1 if d > 11.

Then the values of the sum
MPL4 .. 4+ ApPY,

as the P;’s run independently through all monic irreducible polynomials in
F,[T], are everywhere dense on the non-Archimedean line Fy(1/T)).

Let 9t be the subring of K, consisting of a € K, with dega < —1 and
let xo be the characteristic function of 9; in other words, xo : Koo — R

satisfies )
X (a) _ { 1 ifa c WL
0 0 otherwise.
Given any integer n, the function y, : Ko, — R is defined by

xXn(a) =q"xo(aT™) fora€ Ku.
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LEMMA 2.2. We have

1 if deg f <n,
S E(af)xn(a)da = {0 ZZ diiﬁgz.

Koo

Proof. See [6], Theorem 3.5. m

Let p > d > 2, N be fixed positive integers. We define functions

Sw= 3 B@PY) Iw=v | By,

deg P=N yeTN+TNM
3)  Sjla)=5(ar;), Ij(a) =1I(ar;), j=1,...,D,
D D
F(a) =[] S(0), H(a)=]]La),
j=1 j=1

where 3" denotes the sum over monic irreducible polynomials in A. Let 7y
denote the number of monic irreducible polynomials in A of degree N. The
prime number theorem for A is

(4) ¢V /N — ¢V?* < 7x < ¢V/N.
As deg \; = 0, by the definition of E' we have
N .

v _Jdv/N if dega < —dN —1,
(5) Ij(a) = { (¢ /N)y(sgn(ar;)) if dega = —dN —1,
and

N )TN if dega < —dN — 1,

(6) Sjla) = {ﬂNdJ(sgn(a)\j)) if dega = —dN — 1.

LEMMA 2.3. If dega > —dN, then I;(a) = 0.

Proof. Since deg A\; = 0, it suffices to show that I(a) = 0 for dega >
—dN. Let dega = —dN + [ for some integer [ > 0 and let

a=aqT Nt 4 +a T V144 e Ky,
where a; € Fy, a; #0, and dega’ < —dN — 2. Let
Yy = ™ + Z b,jTN_j eV + TNEUI,
j=1
where b_; € F,. Then we have

(7) y? =T 4 Z(db,j tej(bor, . by )TN,

j=1
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for some c_j(z1,...,2j-1) € Fylz1,...,2;_1] and c_; = 0. Since E(a'y?)
=1, we have
!
(8) E(ayd) — E((CL — a/)yd) — ZD(CLl + Zajb/_(-j"'_l))’
§=0
where

bLj = db_j + C_]'(b_l, RN b,(j,l)).
By (7), since 2 < d < p, we know that the dth power mapping
F:TN + TV — T 4 70, s y?
is bijective and satisfies
(9) F(y 4 TN—(l—‘rl)m) — de 4 TdN_(l+1)9ﬁ.

By (8), (9), since v is a non-trivial additive character of Fy, and a; # 0, we

obtain

1

_ d _ = o ,,d

lo)=~ | Blahdy=+= |  E(a-d)y’)dy
yeTN+TN M yeTN+TN M

=< | > d - v(e)dz=0.m
zETN_(l"'l)m CE]Fq

Let a positive integer [ satisfy [ < N/2 and let y be a monic element in
K of degree N. Let mn(y,!) denote the number of monic irreducible poly-
nomials P € A of degree N with deg(P —y) < N —1. In [7], Corollary 2.6,
or [2], Theorem 1.4, we have

gV
(10) N (y,1) = — O(q"?),
where the implied constant depends only on A. Given
oo 0
r= Y al" €Ky, [f=T"+ Y F£{T7€A,
i=—dN+1—1 j=dN—1

where a;, f; € Fy, a_an4i1—1 # 0, and setting fqn = 1, we have

I
(11) Reseo(zf) = ZadeJrkfldefk-
k=0

Let mn q(f,1) be the number of monic irreducible polynomials P of degree
N with deg(P? — f) < dN — 1. By (7), since 2 < d < p, there exists a
monic element y € K., of degree N satisfying deg(y? — f) < dN — [ and
mn.a(f1) = mn.a(y? 1) = 7 (y,1). Thus by (10) we get

(12) 7'[-N,(Jl(fv l) = qN_l + O(qN/2)7
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where the implied constant depends only on A. If P is a monic irreducible
polynomial of degree N satisfying deg(P? — f) < dN — I, then by (11),
Reso (7P%) = Ress(xf). Hence combining (12), (11), and a_gn41-1 # 0,
we get

(13)  #{monic irreducibles P | deg P = N, Resoo(zP?%) = ¢}

(N N/2 g" ! I+N/2
= (L + 0 ) = L+ Ol

for any c € IF,. Since

27i Tr(Resoo (2P
E(xP?) = exp < i Tr(Resso (z )))7
p
and Tr is a surjective Fp-linear mapping from F, onto F,, by (13) we obtain
/
S@l=| Y B@Ph| =0,

deg P=N
Therefore we have
THEOREM 2.4. Let m be an integer satisfying 0 < m < N/2. Then
|S(@)] = O(g™*N?)

for all x € Ko, with degx = —dN + m, where the implied constant depends
only on A.

REMARK. If m > N/2, then the result of Theorem 2.4 is trivial.

3. The major arcs

LEMMA 3.1. Let n be a positive integer and let —dN < m < —dN+N/4.
Then

[ IF(@) - H(@)x_n(a) da= (

q(Dd)NN/2n>
dega<m

ND
as N — 0o.

Proof. Using (5), (6), sgnA; + ... +sgnAp = 0, x_n(a) < ¢, Lem-
ma 2.3, and (4), we obtain

| 1F(a) — H(a)|x-n(a)da

dega<m
m
<¢" | mwR-d"V/NPlda+q " DY | [|F(a)lda
dega<—dN-—-1 i=—dN dega=1

g(P~d)N=N/2-n m
<ot ) rat X | F@lde
i=—dN dega=:i
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where the implied constant depends only on A. Since S;(a) = S(a);) and
deg(a);) = dega, by Theorem 2.4, we obtain

[Sj(a)| = O(g*N+m+N/2)

for —dN < dega < m, where the implied constant depends only on A. As
d>2and D >1+2%> 5, we obtain

Y | IF@lda=0(g Y | g gg)
i=—dN dega=i i=—dN dega=i
=0(qg " q™- quN+DN/2+Dm)
= O(q(dD+D/2)N+(D+1)m—n)

(D—d)N—N/2—n
—of4
()

where the implied constant depends only on A. =

LEMMA 3.2. Let n be a positive integer and let A € K. Then if m >
—dN and dN > deg X\, we have

_ gP—dN-n

| H(a)E(aN)x-n(a)da N

dega<m

Proof. By Lemma 2.3 and the definition of H, we have H(a) = 0 if
dega > m > —dN. Thus

(14) | H(a)E(aM\)x-n(a)da =0.

dega>m

By the definitions of H, F and Lemma 2.3, we have
\ H(a)E(aX)x_n(a)da
Koo
1 D
_ 29
dega<—dN TN TN TN4+TNIM Jj=1
X X—n(a)dyy ...dypda
1 D
_ 29
TN4LTNOR  TN4HTN9N dega<—dN j=1
X X—n(a)dady; ...dyp.
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By the definition of x_,,(a) and since dega < —dN, the above is

n D
;IV—D S S S E(a()\—l—Z)\jy;l))dadyl...dyp.
TN4+TNM TNHTN9 dega<—dN j=1

Given any y1,...,yp € TN + TNIM, set
F=X+ Myl 4+ 4+ Apyd.

Since dN > deg A, deg); = 0, and sgnA; + ... +sgnAp = 0, we have
deg f < dN. This implies

S E(af)da = S lda=q .
dega<—dN dega<—dN
Therefore
= (o da— q—n DN LN q(D—d)N—n
S (a)E(aX)x—n(a)da = ND 1 d =~ ND

Koo

Combining these with (14), we complete the proof. m

4. The minor arcs. We recall Dirichlet’s theorem for A in

THEOREM 4.1. Given any o € K, and a positive integer N, there exists
a unique monic polynomial Q@ and a polynomial a in A satisfying (Q,a)
=1,deg@ < N, and deg(a — a/Q) < —(deg Q@ + N + 1).

Proof. See [6]. m
For any x € K, define
V(z) = min{|S1(z)], [S2(2)[}-

LEMMA 4.2. Suppose p > d > 2 and that positive numbers €, D1, and og
satisfy d — 6e < 2D < d. Then there exist infinitely many positive integers
N such that

V(z) < ¢V /N  for all x € Ko with — (d—e)N < degz < DN,
where the implied constant depends only on d, €, D1 and oq.
Proof. Since \1/A2 € Ky \ K, by Theorem 4.1 there exist infinitely

many monic polynomials @) and polynomials a in A such that (Q,a) =1
and

(15) deg(A1 /A2 — a/Q) < —2deg Q.
For a fixed pair (Q,a), let N be the least integer satisfying 2deg @ < dN
and write

A
(16) /\—; = % + f  for some f € K, with deg f < —2deg Q.



262 C. N. Hsu

Throughout the proof of this lemma, assume that (d —2D;)N > 6d. Given
any x € K satisfying —(d — e)N < degz < DN, let m denote the
least integer satisfying (5d +2D1)N/6 < m. For any j = 1,2, again by
Theorem 4.1 there exist monic polynomials ()1, @2 and polynomials ay, as
such that

(17) deg(x/\] - aj/Qj) < _deng —m, ] = 1727

where (Qj,a;) =1 and deg Q; < m. Since deg\; = 0, deg(z);) = degz >
—(d—e)N. Combining this with (17) and m > (d—e)N because d—6e < 2Dy,
we have a; # 0 and we can write

i a; < f]) .
o= 9y Ji 1+ for some f; € K with deg f; < —m.
TQ Q Q aj ’ ’

Thus
A TA1 Qzal ( fl) ( f2>_
T 1+ 2= 14 2=
)\2 SC)\Q Q16L2 al ag

Since deg A1 = deg A2 = 0, we have deg(Q2a1) = deg(Q1a2). We may write
A1 _ (2a1

Ay Q1a2
By (16), and since 0 < m < d(N — 1) because (d — 2D1)N > 6d, we have

a Qa1
deg (Q Q1a2> < —m.

+ f3  for some f3 € K., with deg f3 < —m.

This implies
deg(az@Qra — Q2a1Q) < dN/2 —m + deg(Qraz).

If as@Q1a—Q2a1Q # 0, then deg(Qqa2) > —dN/24+m. If a2Qra—Q2a1Q = 0,
then
a Qo

Q Qiaz
Since (Q,a) =1 and d > 2, deg(Q1a2) > deg@ > d(N —1)/2 > —dN/2+m
because (d —2D1)N > 6d. Thus we always have deg(Q1az2) > —dN/2 + m.
Since deg(zA2 —a2/Q2) < —degQa—m, —(d—e)N < degzx < D1 N, deg Ay
=0, and m > (d — )N, we have D1N > degx = degxAy = deg(az/Q2).
Combining these, we have

deg(Q1Q2) = deg(Q1az2) + deg(Q2/az) > —dN/2 +m — D1 N.

This implies that max{deg Q1,deg Q2} > —dN/4+ (m — D1 N)/2. Without
loss of generality, assume that deg@y; > —dN/4 + (m — D1N)/2. By the
definition of m, we have

dN m— DN
degQ1+m>—T+T1
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Combining this with (17), we obtain
S1(x) = S(xA1) = S(a1/Q).

Set 0 = (AN —m)/InN. Since m — 1 < (5d +2D1)N/6 and d > 2D, we
have

>
o> GV > d2°(og+ 1)

for large N. Since
clnN=dN —m<deg@Qi <m=dN —clnN,
by Theorem 4.3 below, we obtain
S ()] = [S(zA1)| = [S(ar/Qu)| < ¢ /N
for large N. Thus there exist infinitely many positive integers N such that
V(z) < ¢V /N7 forall —(d—e)N <degz < D;N. u

Now we recall three theorems proved in [9]. They are used in the proof of
Lemma 4.6 and in the proofs of polynomial Waring and polynomial Waring—
Goldbach problems (cf. [4] and [9]).

THEOREM 4.3. Let 2 < d < p and let oy > 0. Suppose that (Q,a) =1,
oclnN <deg@Q < dN —oIlnN. Then, if o > d2% (o + 1), we have

S(a/Q)| < ¢ /N,
where the implied constant depends only on d, g, and q.
Proof. See [9], Theorem 11.8. m

THEOREM 4.4 (Hua’s lemma). Suppose that 1 < d < p. Then
2d
(18) S ‘ Z E(z%a)| da < NCqN(ded)
M z€Ai,degz=N
for some C, where the implied constant and the constant C depend on d and
A, but not on N. In other words, the number of solutions of
o+t aga =yl ySa

with z;,y; € Ay and degz; =degy; = N is < NCqN(zd_d).

Proof. See [9], Theorem 4.2. m

REMARK. In [4], Theorem 8.13, the right-hand side of (18) is ¢V (2*~d+),
Following Hua’s idea (cf. [10], Theorem 4), we improve this to the form of
Theorem 4.4.
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THEOREM 4.5. Suppose d > 9 and s > 2d*Ind + d?Inlnd + 2d? — 2d.
Then

2s
S ‘ Z E(zta)| da < ¢V,
M x€Ai,degz=N

where the implied constant depends only on d, s, and q. In other words, the
number of solutions of

et =yl 4y

with z;,y; € Ay and degz; = degy; = N is < ¢N(Zs—9),
Proof. See [9], Theorem 7.5. m

LEMMA 4.6. Let D, n be positive integers and let d, €, D1 and N be as
i Lemma 4.2. Then, if D1N > n and

D> 1424 if 2<d < 11,
2[2d?Ind + d?Inlnd + 2d* — 2d) +1 if d > 11,

we have

| |F(a)|x—n(a) da < ¢P=DN /N0
—(d—e)N<dega

for any positive number oy, where the implied constant depends only on D,
d, €, D1, 09, and the constant C' of Theorem 4.4.

Proof. By the definition of x_,,, we know that x_,(a) = 0 if dega > n.
Thus x_n(a) =0 if dega > D1 N. Thus

[ IP@)Ix-n(a) da = | [F(@)|xn(a) da.

—(d—e)N<dega —(d—e)N<dega<D;N

If V(a) = min{|S:1(a)|,|S2(a)|}, then

F(a)] < V(a)(|$1(a HS (@) + |S2(a)

This implies

=
2

a)().

||<V(

IIMU

|D 1)
Since

D> 1+ 24 if 2<d<11,
22d%Ind + d*Inlnd + 2d*> — 2d) + 1 if d > 11,

and deg \; = 0, |S;(a)| < ¢, we have
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(19§ [85(a)[" " x-n(a)da
Koo

gV P12 [S(a)* Xon(a)da if 2 <d <11,
gV (D=25-1) SKW 1S(a)]?*x_n(a)da if d > 11,

where s = [2d? Ind+ d? Inln d + 2d? — 2d]. By Lemma 2.2, the last integral is
equal to the number of monic irreducible 2s-tuples (P, ..., Pas) such that
deg P, = N and

s

deg (Z(P Pfﬂ)) < —n.

i=1

Since n > 0, this integral is equal to the number of monic irreducible 2s-
tuples (Py,..., Pas) such that deg P, = N and

S

Z(Pid - Ps;d+i) =0.

i=1
Using (19) and Theorems 4.4 and 4.5, we obtain

NCGNDP=d=1) if 9 < d < 11,

S:(a)P1y_,(a)d <<{ -
KSOO] i(@)|” " " x—n(a)da gV D=d=1) if d > 11.

Combining these with Lemma 4.2 (substitute o¢ 4+ C' for o), we obtain

| IF@lx-n(a)da

—(d—e)N<dega

< X (0 X111 (o) do

—(d—e)N<dega<DiN
NCgN(D=d=1) _ gP= DN

q
< NO'0+C ) NO'O

5. Completion of the proof of the main theorem. We conclude the
proof of Theorem 2.1 by collecting the above results. First of all, Lemma 3.2
with € > 0 and a positive integer n gives

| H(a)E(aX)x-n(a)da = g7~ DN /NP,
dega<—(d—e)N
as dN > deg A. Combining this with Lemma 3.1, when 0 < ¢ < 1/4 and

n = [mln N], we have

(20) | F(a)E(aN)X—fm 1 n(a) da > ¢ P~ IN /NP,
dega<—(d—e)N
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as N — oo. In Lemmas 4.2 and 4.6, if ¢, D1, d, D, n and o satisfy d — 6e <
2Dy <d,2<d<p,oo=D+m+1,n=[mlnN|], DiN > n, and

D> 1424 if2<d<11,

~ | 2[2d?Ind + d?Inlnd + 2d* — 2d] + 1 if d > 11,

then there are infinitely many positive integers N (note that these N come
from A1 /A2 € Koo /K) such that
(21) | F(a)E(aX)X—mm (@) da < ¢ P7 DN /NPEmEL

—(d—e)N<dega

Therefore, taking ¢ = 1/6, D1 = d/2 — 1/4 and combining (20) and (21),
we see that for any positive integer m,

S Z Z/ E(a()‘+zD:)‘iPid>)X[mlnN](a) da
K. deg P,=N  deg Pp=N =

= S F(a)E(aN)X_m n)(a) da > ¢P=DN /NPT,
Koo

!/

It follows from Lemma 2.2 that there exist infinitely many positive integers
N for which there are > q(D_d)N/ND+m D-tuples (Py, ..., Pp) of monic
irreducible polynomials with deg P; = N and

deg(\ + M P+ ...+ A\pPE) < —mInN + 1.
This completes the proof of Theorem 2.1. =m
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