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1. Introduction. Hardy’s function, sometimes referred to as the signed
modulus, is defined by the equation

(1) Z(t) = eiθ(t)ζ
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It is a consequence of the functional equation that Z(t) is an even function of
t which is real when t is real. Furthermore t is a real zero of Z(t) if and only
if 1/2 + it is a zero of the zeta-function on the critical line Re s = 1/2. We
denote the sequence of zeros of Z(t) in R+, counted according to multiplicity
and arranged in non-decreasing order, by {tn}; a recent result [5] is that

(2) Λ := lim sup
tn+1 − tn
2π/log tn

≥
√

11/2 = 2.345207 . . .

independently of any unproved hypothesis. By Rolle’s theorem if tn+1 > tn,
then Z ′(t) must vanish at least once in (tn, tn+1); we denote the non-
decreasing sequence of real positive zeros (again counted according to mul-
tiplicity) of Z ′(t) by {un}, with t1 = 14.13 . . . < u1 < t2 = 21.02 . . . We
have Z(0) < 0, and we shall see later that Z ′′(0) > 0. We find that Z(t)
has two stationary points u−1, u0 ∈ (0, t1): a maximum approximately equal
to −.52 . . . near t = 2.4 and a minimum approximately equal to −1.55 . . .
near 10.4.

We define N∗0 (T ) := card{n : 0 < un ≤ T} and we see that

(3) N∗0 (T ) ≥ N0(T )− ε(T ) + 2

where as usual N0(T ) := {n : tn ≤ T} and ε(T ) = 0 or 1. This inequality is
true whether or not Z(t) has multiple zeros, moreover ε(T ) = 0 if

(4) max{t : t ≤ T, Z ′(t) = 0} > max{t : t ≤ T, Z(t) = 0}.
Thus ε(T ) = 0 for some arbitrarily large values of T (when we have just
passed a zero of Z ′(t)).
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In view of (3), it seems worthwhile to see what can be said about the pos-
sibly complex zeros of the function Z ′(w). We show that there are infinitely
many purely imaginary zeros, which we call trivial and which we are able to
describe fairly precisely (Theorem 5), and that the remaining, non-trivial,
zeros lie in a strip {w : |Imw| < B} (Theorem 1); moreover, on the Riemann
Hypothesis all these non-trivial zeros are real (Theorem 2). We show uncon-
ditionally that there are some relatively large spaces between the real zeros:
this result (Theorem 4) is analogous to (2). The question arises whether
similar statements about Z ′′(w) and the higher derivatives are valid. This
is not touched on here and we draw it to the reader’s attention.

There are a number of results in the literature concerning the zeros
of ζ(k)(s) and ξ(k)(s): we mention Speiser [10], Berndt [1], Spira [11]–[14],
Levinson [8] and Levinson and Montgomery [9]. As far as we are aware,
Z ′(w) has not been studied directly before now, however it appears in a
slightly disguised form in Conrey and Ghosh [3] where these authors prove
the following formula (conditional on the Riemann Hypothesis):

(5)
∑

tn≤T
max

{∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2

: tn < t < tn+1

}
∼ e2 − 5

4π
T log2 T.

It is known that on this hypothesis, the function |ζ(1/2+it)| has exactly one
maximum in each interval between successive zeros (except for (−t1, t1)), so
that the sum in (5) is

(6)
∑

tn≤T
Z(un)2.

In order to study the stationary points of Z(T ) we replace t in (1) by
the complex variable w and we put s = 1/2 + iw so that (1) becomes

(7) Z(w) = Z(s) := {χ(1− s)}1/2ζ(s), Z(s) = Z(1− s),
in which

(8) χ(1− s) = 21−sπ−s cos 1
2sπΓ (s).

It is easier to work in the familiar s-plane where the terms critical line etc.
have their usual meaning: we have only to note the correspondence between
the half-planes {w : Imw ≤ 0}, {s : Re s ≥ 1/2} and their boundaries
together with the relation Z ′(w) = iZ

′(s). We see from (7) and (8) that Z(s)
has algebraic singularities at the points . . . ,−6,−4,−2, 0, 1, 3, 5, . . . , and is
analytic in any simply connected domain not including these singularities.
This function shares the complex zeros of ζ(s) in the critical strip; there
are no poles or trivial zeros. We are interested in the zeros of Z

′(s) and we
refer to the real zeros of this function as trivial, and define N ∗(T ) to be the
number of zeros (counted according to multiplicity) such that 0 < Im s ≤ T ;
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we see that N∗0 (T ), defined above, is the number of these zeros on the critical
line. The trivial zeros of Z ′(w) lie on the imaginary axis. We deduce from
[3] (Lemma, part (iii)) that in our notation, N ∗(T ) = N(T ) +O(log T ).

Theorem 1. The non-trivial zeros of the function Z
′(s) all lie in the

strip |Re s − 1/2| < 15/2 (and so Z ′(w) has no non-trivial zeros such that
|Imw| ≥ 15/2). Suppose that T is not the ordinate of a zero of the zeta
function or of the function

H(s) :=
Z
′(s)

Z(s)
=
ζ ′(s)
ζ(s)

− 1
2
χ′(1− s)
χ(1− s)(9)

=
ζ ′(s)
ζ(s)

+
1
2
Γ ′(s)
Γ (s)

− π

4
tan

πs

2
− 1

2
log 2π,

and put

(10) A(T ) :=
1
π

argH
(

1
2

+ iT

)
,

defined by continuous variation along the line segments [8, 8 + iT ],
[8 + iT, 1/2 + iT ]. (argH(8) := 0.) Then we have, for sufficiently large T ,

(11) N∗(T ) = N(T ) +A(T ) + 3/2.

From Conrey and Ghosh’s result noted above, we see that

(12) A(T )� log T.

In the next two theorems we assume the truth of the Riemann Hypoth-
esis. Theorems 1, 4 and 5 are unconditional: they do not depend on any
unproved hypothesis.

Theorem 2. On the Riemann Hypothesis, we have

(13) N∗(T ) = N(T )− 1
2

sgn
Z ′(T )
Z(T )

+
3
2
,

provided T is not the ordinate of a zero of the zeta-function or of the func-
tion H(s) defined in (9). A corollary is that for large T , N∗(T ) = N∗0 (T )
identically , that is, all the non-trivial zeros of Z

′(s) lie on the critical line,
equivalently the non-trivial stationary points of Hardy’s function are all real.

It is interesting to compare the case of Z
′(s) with that of ξ′(s) (Titch-

marsh [15, eqs. (2.1.9), (2.12.5)]):

(14) ξ(s) =
1
2
s(s− 1)π−s/2Γ (s/2)ζ(s) =

1
2
eas
∏
{(1− s/%)es/%},

in which the product runs over the complex zeros % and

(15) a =
1
2

log 4π − 1− 1
2
γ = −

∑
Re

1
%
.
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(In this paper, γ denotes Euler’s constant, and % = β + iγ is a typical
complex zero of ζ(s).) It is well known and easy to prove that on the Riemann
Hypothesis, all critical points of ξ(s) lie on the critical line. Indeed we have

Re
ξ′(s)
ξ(s)

=
∑

%

σ − β
(σ − β)2 + (t− γ)2(16)

=
(
σ− 1

2

)∑

%

(σ−β)(σ−1+β)+(t− γ)2

{(σ−β)2 +(t−γ)2}{(σ−1+β)2 +(t− γ)2}

=:
(
σ − 1

2

)
g(s)

where we have symmetrized by averaging the terms involving β and 1− β.
On the Riemann Hypothesis,

(17) g(s) =
∑

%

1
(σ − 1/2)2 + (t− γ)2 > 0,

and so σ 6= 1/2 implies ξ′(s) 6= 0. A formula connecting Z
′(s) with ξ′(s) is

(18)
Z
′(s)

Z(s)
=
ξ′(s)
ξ(s)

− 1
4

{
Γ ′(s/2)
Γ (s/2)

− Γ ′((1− s)/2)
Γ ((1− s)/2)

}
− 2s− 1
s(s− 1)

and we remark that it should be possible to derive the corollary to Theorem 2
directly from (17) and (18). This would involve some numerical computa-
tions which I have not checked, perhaps making the proposed proof a bit
clumsy. I sketch out this method just after the proof of Theorem 2 given
below.

This conclusion, that on RH the non-trivial zeros of Z ′(w) are real, is
not one which has been taken for granted. (See for example [3, p. 196, l. 1];
Conrey and Ghosh proved a result equivalent to the following: if the Riemann
Hypothesis is true then the zeros of Z

′(s) satisfy |Re s−1/2| < 1/9.) Actually
ζ ′(s) does have zeros to the right of the critical line (even to the right of the
line σ = 2: see Titchmarsh [15, Theorem 11.5C]). Formulae involving these
zeros with σ > 1/2 appear in [9].

We see from (16) that there exists V : R→ R such that

(19)
ξ′(1/2 + it)
ξ(1/2 + it)

=
1
i
V (t);

moreover from (18) we have

(20)
Z ′(t)
Z(t)

= V (t) +
1
2

Im
Γ ′
(

1
4 + 1

2 it
)

Γ
(

1
4 + 1

2 it
) − 2t

1/4 + t2
= V (t) +

π

4
+O(1/t).
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On the Riemann Hypothesis we have

(21) V ′(t) = −
∑

%

1
(t− γ)2 , ζ(1/2 + it) 6= 0,

and V has a unique zero vn ∈ (tn, tn+1). The following result was drawn to
my attention by the referee of an earlier version of this paper.

Theorem 3. On the Riemann Hypothesis, we have

(22) 0 < un − vn �
1

log un log log un
.

One expects that, unconditionally, the roots of Z
′(s) and ξ′(s) are close

together in the sense that, if ω is a root of either of these functions, then
the disc {z : |z− ω| < ψ(|ω|)/log |ω|} contains a root of the other; here ψ is
some function which tends to 0 as |ω| → ∞. I do not have a proof of this.

Conrey and Ghosh also had a result about the spacing of the un. They
state that, on the Riemann Hypothesis, there exists un ∈ (T, 2T ] such that

(23) (un+1 − un)
log(T/2π)

2π
> 1.4

whereas it is clear that, on this hypothesis, the average value of the left-hand
side is equal to 1.

Theorem 4. Let ε(T ) → 0 in such a way that ε(T ) log T → ∞. Then
for sufficiently large T , there exists an interval contained in [T, (1 + ε(T ))T ]
which is free of zeros of Z ′(t) and has length at least

(24)

√
7723
3230

·
{

1 +O

(
1

ε(T ) log T

)}
2π

log T
.

Thus

(25) Λ∗ := lim sup
un+1 − un
2π/logun

≥
√

7723
3230

= 1.546292 . . .

This result depends on the method developed in [4], [5] (which rather sug-
gests that in some of these questions about gaps between zeros, the Riemann
Hypothesis is irrelevant, at least for the large gaps). A consequence of (25)
is that, infinitely often, the stationary points of Hardy’s function are some
distance from the Gram points. These are points gm (m = −1, 0, 1, 2, 3, . . .)
such that

(26) θ(gm) = mπ
(
where as usual θ(t) = argΓ

(
1
4 + 1

2 it
)
− 1

2 t log π
)
; at one time it was believed

that gn−2 < tn < gn−1 always, but this was disproved by Hutchinson [7].
In this too simple model one would expect Z(t) to have a maximum or
minimum between tn and tn+1 close to gn−1. It is not difficult to show
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that both gm ∼ 2πm/logm and gm − gm−1 ∼ 2π/log gm so that this rule,
sometimes referred to as Gram’s Law (but I am not aware that Gram stated
it), certainly fails infinitely often, for example by (2). Different kinds of these
failures are called Lehmer’s or Rosser’s phenomena.

We require information about the zeros and poles of an auxiliary function
F (s). We explain this next. We differentiate (8) logarithmically to obtain

(27) Z
′(s) = {χ(1− s)}1/2F (s) := {χ(1− s)}1/2H(s)ζ(s)

with H(s) as in (9). Since Z
′(1− s) = −Z

′(s) we deduce immediately that

(28) F (1− s) = −21−sπ−s cos
sπ

2
Γ (s)F (s), H(1− s) = −H(s).

(A formula equivalent to this one appears in [3, Lemma, part (ii)].) Notice
that (27) is equivalent to

(29) F (s) = ζ ′(s) +
{

1
2
Γ ′(s)
Γ (s)

− π

4
tan

sπ

2
− 1

2
log 2π

}
ζ(s).

In this investigation, we are primarily interested in the zeros of F (s) in
H := {s = σ + it : t > 0}. However, in our application of the Principle of
the Argument it will be convenient to consider all the zeros and poles of
F (s) in C. We see that F (s) is a meromorphic function with a double pole
at s = 1 and simple poles at s = 0 and 3, 5, 7, . . . , these latter arising from
the tangent in (29). There are no other singularities for σ > 0 by (27) and
therefore no singularities on R−: we can see this from (28). An immediate
consequence of (28) is that F (s) has a zero of odd order at s = 1/2, moreover
the non-real zeros are positioned symmetrically with respect to both R and
the line Re s = 1/2. We consider the other real zeros. From (29), F jumps
from −∞ to ∞ as s increases through the values 3, 5, 7, . . . ; hence F has an
odd number of zeros, say n4 in (3, 5), n6 in (5, 7) and so on. Also from (29),
F (s) is negative near the double pole at s = 1 and so the number of zeros
n2 in (1, 3) is even. There are an odd number of zeros n1/2 in (0, 1). The real
zeros are positioned symmetrically with respect to the critical line: there are
no trivial zeros on −2N. The next result is really a lemma; I state it as a
theorem because it is basic to our investigation. It concerns the location of
the trivial zeros.

Theorem 5. We have (in the above notation) n2 = 0, n4 = n6 = n8 =
. . . = 1, and n1/2 = 1. Moreover for k ≥ 4, the zero in (2k− 1, 2k+ 1) is in
(2k, 2k + 1).

We shall see in the course of the proof that H ′(1/2) > 0 so that as
claimed above, Z ′′(0) > 0 and Z(0) is a minimum.

2. Proofs of the theorems. It is logical to start with the last theorem,
which is required for the proof of Theorems 1 and 2. The proof is technical,



Stationary points of Hardy’s function 131

albeit entirely elementary, and the reader might prefer to take it on trust at
a first reading.

Proof of Theorem 5. We begin by showing that H(s) is negative through-
out (1, 3) and decreasing in each of the intervals (3, 5), (5, 7) &c., thereby
establishing the first two parts of our assertion. We note that on (1, 3),

(30)
Γ ′(s)
Γ (s)

<
Γ ′(3)
Γ (3)

=
3
2
− γ < log 2π

whence our claim holds on [2, 3) because ζ decreases and the tangent is
positive. It will therefore be sufficient to prove that for 0 < x < 1 we have

(31) −ζ
′(1 + x)
ζ(1 + x)

>
π

4
cot

πx

2
.

This is not quite straightforward and we indicate to the reader the main
steps.

For 1 < σ < 2 we have

ζ(σ) =
1

σ − 1
+

1
2

+
σ(σ + 1)

2

∞�

1

{u}(1− {u})
uσ+2 du(32)

<
1

σ − 1
+

1
2

+
σ

8
<

1
σ − 1

+
3
4
,

the {u} denoting fractional part. From (32),

−ζ ′(σ) =
1

(σ − 1)2 +
σ(σ + 1)

2

∞�

1

{u}(1− {u})
uσ+2 log u du(33)

− 2σ + 1
2

∞�

1

{u}(1− {u})
uσ+2 du

>
1

(σ − 1)2 −
2σ + 1

8(σ + 1)
>

1
(σ − 1)2 −

5
24
.

We also have tan θ > θ + 1
3θ

3 for 0 < θ < π/2 (because tangent has
non-negative Maclaurin coefficients) and so our assertion will follow from

(34)
(

1 +
π2

12
x2
)

1− 5
24x

2

1 + 3
4x

>
1
2

(0 < x < 1),

that is,

(35)
1
2
− 3

8
x+

(
π2

12
− 5

24

)
x2 − 5π2

288
x4 > 0.

The first term exceeds the second and the third exceeds the fourth whence
(35) is true and so is (31). Hence F (s) < 0 on (1, 3) as required.
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For the next part it will be sufficient to show that for s > 3 we have
π2

8
sec2 sπ

2
>

d

ds

{
ζ ′(s)
ζ(s)

+
1
2
Γ ′(s)
Γ (s)

}
(36)

=
∞∑

n=1

Λ(n) logn
ns

+
1
2

∞∑

n=0

1
(n+ s)2 ,

so that H(s) decreases between the poles. The first sum on the right is less
than ∞∑

n=2

log2 n

n3 <
log2 2

8
+
∞�

2

log2 u

u3 du < .27

while the second sum is less than ζ(2)−5/4 < .4, so that the right-hand side
of (36) is less than .47 and the inequality is clear. Also we may check that
if k≥4 then H(2k)>0 so that the zero in (2k−1, 2k+ 1) lies in (2k, 2k+ 1).

The more difficult third part is n1/2 = 1, which will follow from the
proposition

(37) H(σ)� σ − 1/2 (1/2 < σ < 1),

because ζ(σ) < 0 throughout (−2, 1). We have

(38)
Γ ′((1− s)/2)
Γ ((1− s)/2)

=
Γ ′((1 + s)/2)
Γ ((1 + s)/2)

− π tan
sπ

2

and we insert this into (18) to obtain

(39) H(s) =
ξ′(s)
ξ(s)

+
1
4

{
Γ ′((1 + s)/2)
Γ ((1 + s)/2)

− Γ ′(s/2)
Γ (s/2)

}
− π

4
tan

sπ

2
− 2s− 1
s(s− 1)

.

On taking real parts and applying (16) this becomes

ReH(s) =
(
σ − 1

2

)
g(s) +

1
4

Re
{
Γ ′((1 + s)/2)
Γ ((1 + s)/2)

− Γ ′(s/2)
Γ (s/2)

}
(40)

− π

4
Re tan

sπ

2
− Re

{
1
s

+
1

s− 1

}
;

in particular

(41) H(σ) =
(
σ − 1

2

)
g(σ) +

1
4
h(σ)− π

4
tan

σπ

2
+

1
1− σ −

1
σ

where

(42) g(σ) =
∑

%

(σ − β)(σ − 1 + β) + γ2

{(σ − β)2 + γ2}{(σ − 1 + β)2 + γ2} > 0

(because |γ| > 14), and

h(s) :=
Γ ′
(

1
2s+ 1

2

)

Γ
(

1
2s+ 1

2

) − Γ ′
(

1
2s
)

Γ
(

1
2s
)(43)

= 2
{

1
s
− 1
s+ 1

+
1

s+ 2
− 1
s+ 3

+ . . .

}
.
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We notice that h(1/2) = π (equivalently, H(1/2) = 0, as in (28)). Put
σ = 1− δ, 0 < δ ≤ 1/3. Then

(44)
π

4
tan

σπ

2
<

1
2δ

and since h(σ) > 2/σ(σ + 1) directly from (43), we have

(45) H(σ)>
1
2δ
− 1

1− δ +
1

2(1− δ)(2− δ) >
1

2(1− δ)(2− δ) >
1
2

(
1
2
−δ
)
,

which establishes (37) in this case.
On the range 1/2 < σ ≤ 2/3 we have, by convexity,

(46) tan
σπ

2
≤ 1 + 6(

√
3− 1)(σ − 1/2)

and so (37) will follow from (41), (42) and (46) if we can show that for
1/2 ≤ σ ≤ 2/3,

(47)
2σ − 1
σ(1−σ)

+
1
4

(h(σ)−π)≥B(σ−1/2), B>
3
2
π(
√

3−1) = 3.4497 . . .

From (43), with a little algebra,

h
(

1
2

)
− h(σ) = 4(σ − 1/2)

{
1
σ
− 1

3(σ+1)
+

1
5(σ+2)

− 1
7(σ+3)

+ . . .

}
(48)

<
4
σ

(σ − 1/2)

so that the left-hand side of (47) exceeds

(49)
1 + σ

σ(1− σ)
(σ − 1/2) ≥ 6(σ − 1/2).

This is all we need, and (37) follows. Thus n1/2 = 1 as required. Moreover
we have H ′(1/2) = −Z ′′(0)/Z(0) > 0, and since Z(0) is negative, we see
that Z ′′(0) > 0.

Proof of Theorem 1. Since N , in any of its guises, is right continuous we
may assume that T is not the ordinate of a zero of ζ(s) or H(s), that is,
F (s) has no zero with Im s = T . We may re-write (28) in the form

(50) π(1−s)/2Γ
(

1
2 − 1

2s
)
F (1− s) = −π−s/2Γ

(
1
2s
)
F (s),

which is equivalent to the assertion that the function

(51) G(z) := π−(1/2+z)/2Γ
(

1
4 + 1

2z
)
F
(

1
2 + z

)
/z

is an even function of z with a removable singularity at z = 0, G(0) 6= 0.
Furthermore G(z) is real for real z and it is analytic except for poles at
±1/2,±5/2,±9/2, . . . , the first pair only being double. There is a simple
zero in each interval between two simple poles: for h ≥ 4 the zero in (2h−
3/2, 2h+1/2) lies in (2h−1/2, 2h+1/2). Let R be the rectangle with corners
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±a ± iT in which a = 2h − 1/2 for some h ∈ N, h ≥ 4, and T is not the
ordinate of a zero of the zeta-function, or of a zero of G(z). We shall see
later that on the line Re s = 2h (h ≥ 4) we have ReH(s) > 0, so G(z) does
not vanish on σ = a. From Theorem 5, G(z) has 2h− 4 zeros in (−a, a) and
there are 2h+ 2 poles. If C is that part of R in the first quadrant then

(52)
2
πi

�

C

G′(z)
G(z)

dz = N − P = 2N+
h − 6

where N and P denote the number of zeros and poles of G(z) inside R and
N+
h denotes the number of such zeros in the region {z : |x| < a, 0 < y < T}.

The integral is

(53)
2
π
∆ arg

{
π−s/2Γ

(
1
2s
)
F (s)/(s− 1/2)

}
=

2
π
∆

{
H(s)ξ(s)

s(s− 1/2)(s− 1)

}

where ∆ arg is the change in the argument as s moves from a + 1/2 to
a + 1/2 + iT and thence to 1/2 + iT . We have employed (14) and (27) on
the right-hand side of (53).

In Titchmarsh’s proof ([15, 9.3]) of Backlund’s Theorem (it is inconse-
quential that he has a different oblong) he shows that

(54)
2
π
∆ arg ξ(s) = 2N(T ).

We assemble (52) and (54) to obtain

N − P = 2N(T ) +
2
π
∆ arg{H(s)/s(s− 1/2)(s− 1)}(55)

= 2N(T ) +
2
π
∆ argH(s)− 3,

whence

(56) N+
h = N(T ) +

1
π
∆ argH(s) +

3
2

= N(T ) + Ah(T ) +
3
2

where πAh(T ) is the change in the argument of H(s) as s moves from 2h to
1/2+ iT along the two perpendicular line segments. We claim that provided
h ≥ 4 both sides of (56) are independent of h, that is, G(z) has no zeros in
{z : |x| ≥ 7.5, y > 0}, F (s) and H(s) have all their non-real zeros in the
strip {s : −7 < σ < 8} and all the stationary points of Hardy’s function not
on the imaginary axis have |Imw| < 7.5 as stated in the theorem. Moreover
Ah(T ) = A4(T ) = A(T ) by definition and N+

h = N∗(T ). To prove this it will
be sufficient to prove that ReH(s) > 0 on the line segment {σ+ iT : σ ≥ 8}
(for large T ), and on all the line segments {2h+it : 0 < t ≤ T, h ∈ N, h ≥ 4}.

We need some information about the Gamma function, and we quote
a formula of Binet from Whittaker and Watson [16, Ch. 12]. This is, for
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Re s > 0,

(57)
Γ ′(s)
Γ (s)

= log s− 1
2s
−
∞�

0

{
1
2

coth
x

2
− 1
x

}
e−sx dx.

The kernel on the right is positive, so we may deduce that

(58) Re
Γ ′(s)
Γ (s)

≥ log |s| − σ

2(σ2 + t2)
+
{
Γ ′(σ)
Γ (σ)

− log σ +
1

2σ

}
.

Now for x ≥ 2 (as logΓ is convex),

(59)
Γ ′(x)
Γ (x)

>

x�

x−1

Γ ′(u)
Γ (u)

du = log(x− 1)

so (58) yields

(60) Re
Γ ′(s)
Γ (s)

≥ log |s| − log
σ

σ − 1
.

We recall that

(61) H(s) =
ζ ′(s)
ζ(s)

+
1
2
Γ ′(s)
Γ (s)

− π

4
tan

sπ

2
− 1

2
log 2π,

and if we note that Re tan(sπ/2) = 0 on Re s = 2h we see that on this line
we have

(62) ReH(s) >
ζ ′(8)
ζ(8)

+
1
2

log
7

2π
> 0.

We turn our attention to the horizontal line segment, and we show that
in fact ReH(s) > 0 on {σ + iT : σ ≥ 8}, for large T . By (60) we have

(63)
1
2

{
Re

Γ ′(s)
Γ (s)

− log 2π
}
≥ 1

2
log

7
2π

= .054 . . .

whereas

(64) Re
ζ ′(s)
ζ(s)

≥ ζ ′(8)
ζ(8)

> − 1
100

.

We also have

(65) Re tan(x+ iy) =
sinx cosx

cos2 x cosh2 y + sin2 x sinh2 y
� e−2y.

This is all we need and completes the proof of Theorem 1.

Remark. It is not the case that ReH(s) > 0 on the line segment
{σ + iT : σ ≥ 1/2} even if we assume the Riemann Hypothesis. For this
would imply |A(T )| < 1/2 which by (11) is impossible: N and N ∗ are
integers. Therefore A(T ) is half an odd integer whenever it is defined, whence
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H(1/2 + iT ) is purely imaginary and by continuity we have ReH(1/2 + it)
= 0 identically. This may be seen directly from (9) since

(66) H(s) = −i Z
′(w)
Z(w)

, H(1/2 + it) = −i Z
′(t)
Z(t)

.

Proof of Theorem 2. We assume the Riemann Hypothesis in this proof
and that of Theorem 3 only, and we show that for σ > 1/2 and t ≥ t0 we
have ReH(σ + it) > 0. We have already proved this unconditionally for
σ ≥ 8, so we may assume σ < 8. First we notice that for t ≥ 1 we have,
using standard properties of the Gamma function,

(67)
Re tan

sπ

2
=

1
cosh tπ

+O

(
σ − 1/2
cosh tπ

)
,

Reh(s) =
π

cosh tπ
+O

(
σ − 1/2
t2

)
.

Now recall from (40) and (17) that

ReH(s) = − σ − 1
(σ − 1)2 + t2

− σ

σ2 + t2
(68)

+
1
4

Reh(s)− π

4
Re tan

sπ

2
+ (σ − 1/2)g(s),

where

(69) g(s) =
∑

%

1
(σ − 1/2)2 + (t− γ)2 ,

whence by (65), there exists an absolute constant K such that

(70) ReH(s) ≥ (σ − 1/2)
{
−K
t2

+
∑

%

1
(σ − 1/2)2 + (t− γ)2

}

(σ ≥ 1/2, t ≥ 1).

For large t, there is such a zero that |t − γ| ≤ 1 whence the summand in
(70) exceeds 1/60, and we ensure that t2 > 60K. This is all we need.

Now we consider A(T ). There are two cases according to the sign of
Z ′(T )/Z(T ). If this is positive, then as s moves from 8 towards 1/2 + iT ,
H(s) stays in the right-hand half-plane and converges to a point on the
negative imaginary axis; that is, ∆ argH(s) = −π/2 and A(T ) = −1/2.
Similarly if Z ′(T )/Z(T ) < 0 then A(T ) = 1/2. We conclude that

(71) A(T ) = −1
2

sgn
Z ′(T )
Z(T )

,

whence our result follows by Theorem 1. This completes the proof of Theo-
rem 2.
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We proceed to the corollary. This involves counting the zeros of Z(t)
and Z ′(t) on R+. Let us suppose that T ∈ (tN , tN+1) so that sgnZ(T ) =
(−1)N+1 because Z(0) < 0. On the Riemann Hypothesis, Z ′(t) has just one
zero in this interval, namely sN . We have N(T ) = N and N∗0 (T ) = N + 1
or N + 2 according as T < sN or T > sN . Furthermore sgnZ ′(T )/Z(T ) = 1
if T < sN and = −1 if T > sN . To fix our ideas, let us suppose that
T ∈ (tN , sN ), so that we have N∗0 (T ) − N(T ) = 1 and A(T ) = −1/2, by
(71). Theorem 1 implies that

(72) N∗(T )−N(T ) = 1,

and we deduce that

(73) N∗(T )−N∗0 (T ) = 0.

It is easy to check that if T ∈ (sN , tN+1) then (73) still holds. This completes
the proof.

We sketch the alternative proof of the corollary employing (17) and (18).
We know unconditionally that

(74) min{|t− γ| : γ = Im %} = O(1) (t ∈ R),

indeed rather more ([15, 9.2]; for an update of this topic see also [6]). There-
fore RH implies

(75) Re
ξ′(s)
ξ(s)

� σ − 1
2

(σ > 1/2).

Next,

(76) Re
{
Γ ′(s/2)
Γ (s/2)

− Γ ′((1− s)/2)
Γ ((1− s)/2)

}

= Re
{
Γ ′((σ + it)/2)
Γ ((σ + it)/2)

− Γ ′((1− σ + it)/2)
Γ ((1− σ + it)/2)

}
� σ − 1/2

t2
.

Notice that we conjugate the term involving 1− s and then write the differ-
ence as an integral; we have

(77) Re
{
d

ds

Γ ′(s)
Γ (s)

}
� 1

t2
.

We deduce from (18), (75) and (77) that on the Riemann Hypothesis,

(78) Re
Z
′(s)

Z(s)
� σ − 1

2
(σ > 1/2, T > T0).

To complete the proof we should require a numerical value for T0 and a
check on the zeros up to this point.

Proof of Theorem 3. We put t = un in (18) and we have

(79) V (vn) = 0 = V (un) + π/4 +O(1/un)
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whence there exists wn ∈ (tn, tn+1) such that

(80) (vn − un)V ′(wn) = V (vn)− V (un) = π/4 +O(1/un),

and it is a matter of showing that −V ′(wn) is large. On the Riemann Hy-
pothesis we have S(t) := arg ζ(1/2 + it) � log t/log log t and we deduce
from Backlund’s formula that there exists a fixed c such that for sufficiently
large t,

(81) N

(
t+

c

log log t

)
−N(t) ≥ c log t

7 log log t
.

We apply (81), in each of the ranges

(82)
kc

log logwn
< γ − wn ≤

(k + 1)c
log logwn

(k ∈ N),

to the sum in (21) to obtain

(83) −V ′(wn)� logwn log logwn

whereby (22) follows from (80).

Proof of Theorem 4. We follow the argument employed in [5] except that
we find that we can streamline this a little: also we require

Lemma 1. We have, as T →∞,
T�

0

Z ′(t)4 dt =
1

1120π2 T log8 T +O(T log7 T ),(84)

T�

0

|Z ′(t)Z ′′(t)|2 dt =
19

604800π2 T log10 T +O(T log9 T ),(85)

T�

0

Z ′′(t)4 dt =
17

1774080π2 T log12 T +O(T log11 T ).(86)

Formulae (84) and (85) are to be found in [4] and (86) is proved by a
similar method. These calculations are becoming prohibitive and I hope to
design a Maple (or similar) programme to perform this algebra in future.

Lemma 2. Suppose that y = y(x) ∈ C2[0, π] and y(0) = y(π) = 0, also
that ν ≥ 0. Then we have

(87)
π�

0

{y′(x)4 + 6νy(x)2y′(x)2} dx ≥ 3λ0(ν)
π�

0

y(x)4 dx,

where

(88) λ0(ν) =
1
8
{1 + 4ν +

√
1 + 8ν}.

The constant is sharp for every ν.
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This result was proved in [5] by the Calculus of Variations. By a suitable
linear transformation we find that if y = y(x) ∈ C2[a, b] and y(a) = y(b) = 0
then

(89)
b�

a

{(
b− a
π

)4

y′(x)4+6ν
(
b− a
π

)2

y(x)2y′(x)2−3λ0(ν)y(x)4
}
dx≥0.

Suppose that ε(T ) is as in the statement of the theorem and that ul is the
first zero of Z ′(t) not less than T and um is the last zero not exceeding
(1 + ε(T ))T . Suppose further that for l ≤ n < m we have

(90) un+1 − un ≤
2πκ
log T

.

We deduce from (89) and (90) that

(91)
un+1�

un

{(
2κ

log T

)4

Z ′′(t)4+6ν
(

2κ
log T

)2

Z ′(t)2Z ′′(t)2−3λ0(ν)Z ′(t)4
}
dt≥0.

We sum this inequality for l ≤ n < m: as in [5] we find that, with
negligible error, we may replace the limits of integration by T and (1 +
ε(T ))T ; we then apply Lemma 1 to obtain

(92)
{

17κ4

110880π2 +
19νκ2

25200π2 −
3λ0(ν)
1120π2

}
T log8 T +O(T log7 T ) ≥ 0

or

(93) κ4 +
418
85

νκ2 − 297
17

λ0(ν) ≥ − C

ε(T ) log T
.

We deduce from (93) that

(94) κ2≥ −bν+
√
b2ν2 +cλ0(ν)+O

(
1

ε(T ) log T

)
, b =

209
85

, c =
297
17

.

We maximize the function of ν on the right-hand side of (94). It is easier
to work with λ as independent variable and employ the relation ν = 2λ−

√
λ,

which is equivalent to (88). Notice that λ ≥ 1/4 and ν is increasing. Denoting
this function by K(λ) we find that K ′(λ) > 0 if

(95) 4b2ν
dν

dλ
+ c− 4b2λ

(
dν

dλ

)2

> 0,

which reduces to

(96) 4b2
√
λ < c+ b2

so that we require c ≥ b2. This condition is satisfied in the application: in
[5] we had b = 7, c = 105. We put

√
λ = (1 + c/b2)/4 and this implies that

(97) ν =
1
8

(
c2

b4
− 1
)
, maxK(λ) =

1
4

(
b+

c

b

)
.
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We insert the values of b and c to obtain our result. I have worked out
the general form of this inequality as it may be useful in the future. In [5]
I used an ad hoc method to compute the maximum and I was surprised at
the time that it was rational.

Acknowledgements. I should like to record my gratitude to the referee
of an earlier version of this paper for his very helpful remarks, which have
led to substantial revisions. In particular, Theorem 3 is new to this version
and derives from one of his comments.

References

[1] B. C. Berndt, The number of zeros for ζ(k)(s), J. London Math. Soc. (2) 2 (1970),
577–580.

[2] J. B. Conrey, The zeros of derivatives of Riemann’s ξ-function on the critical line,
J. Number Theory 16 (1983), 49–74.

[3] J. B. Conrey and A. Ghosh, A mean value theorem for the Riemann zeta-function
at its relative extrema on the critical line, J. London Math. Soc. (2) 32 (1985),
193–202.

[4] R. R. Hall, The behaviour of the Riemann zeta-function on the critical line, Math-
ematika 46 (1999), 281–313.

[5] —, A Wirtinger type inequality and the spacing of the zeros of the Riemann zeta-
function, J. Number Theory 93 (2002), 235–245.

[6] R. R. Hall and W. K. Hayman, Hyperbolic distance and distinct zeros of the Riemann
zeta-function in small regions, J. Reine Angew. Math. 526 (2000), 35–59.

[7] J. I. Hutchinson, On the roots of the Riemann zeta function, Trans. Amer. Math.
Soc. 27 (1925), 49–60.

[8] N. Levinson, Zeros of derivative of Riemann’s ξ-function, Bull. Amer. Math. Soc.
80 (1974), 951–954.

[9] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zeta-
function, Acta Math. 133 (1974), 49–65.

[10] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1935),
514–521.

[11] R. Spira, Zero-free regions of ζ(k)(s), J. London Math. Soc. 40 (1965), 677–682.
[12] —, Another zero-free region for ζ(k)(s), Proc. Amer. Math. Soc. 26 (1970), 246–247.
[13] —, Zeros of ζ ′(s) in the critical strip, ibid. 35 (1972), 59–60.
[14] —, Zeros of ζ ′(s) and the Riemann Hypothesis, Illinois J. Math. 17 (1973), 147–152.
[15] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by

D. R. Heath-Brown, Oxford Univ. Press, 1986.
[16] E. T. Whittaker and G. N. Watson, Modern Analysis, 4th ed., Cambridge Univ.

Press, 1927.

Department of Mathematics
University of York
Heslington, York YO10 5DD
United Kingdom
E-mail: rrh1@york.ac.uk

Received on 1.3.2002
and in revised form on 12.11.2002 (4239)


