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1. Introduction. 1. We begin with some notations and definitions. Let
d be a positive square-free integer. We denote by Z, Q, Q, and Q(i

√
d) the

set of integers, the field of rational numbers, the field of algebraic numbers,
and an imaginary quadratic field, respectively.

We will use the polygamma function

ψ(k)(z) =
dk

dzk
ψ(z) =

dk+1

dzk+1
logΓ (z), k = 1, 2, . . . ,

which has the following series expansion (see [2, §1.16]):

(1) ψ(k)(z) = (−1)k+1k!
∞∑

n=0

1

(n+ z)k+1
, z 6= 0,−1,−2, . . . ,

and the logarithmic derivative of Γ (z),

ψ(z) =
d

dz
logΓ (z) = −γ +

∞∑

n=0

(
1

n+ 1
− 1

n+ z

)
, z 6= 0,−1,−2, . . . ,

called the digamma function. Obviously, ψ(1) = −γ, where γ is Euler’s
constant. The function ψ(k)(z), k = 0, 1, 2, . . . , is single-valued and analytic
in the whole complex plane except for the points z = −m, m = 0, 1, 2, . . . ,

2000 Mathematics Subject Classification: Primary 11J81.
Key words and phrases: polygamma function, digamma function, transcendental num-

ber, Schanuel conjecture.
Research of Kh. Hessami Pilehrood supported in part by a grant from IPM (No.

85110020).
Research of T. Hessami Pilehrood supported in part by a grant from IPM (No.

85110021).

[231] c© Instytut Matematyczny PAN, 2007



232 Kh. Hessami Pilehrood and T. Hessami Pilehrood

where it has poles of order k + 1. The polygamma function satisfies many
functional relations [2, §1.16] such as

• “recurrence formula”:

(2) ψ(k)(z + 1) = ψ(k)(z) +
(−1)kk!

zk+1
,

• “reflection formula”:

(3) ψ(k)(1 − z) + (−1)k+1ψ(k)(z) = (−1)kπ
dk

dzk
cotπz,

• “multiplication formula”:

ψ(k)(mz) = δ logm+
1

mk+1

m−1∑

r=0

ψ(k)

(
z +

r

m

)
,

where δ = 1 if k = 0 and δ = 0 if k > 0.

We also introduce its alternating analog (see [2, §1.16])

(4) g(k)(z) = (−1)kk!
∞∑

n=0

(−1)n

(n+ z)k+1
=

1

2k+1

(
ψ(k)

(
z + 1

2

)
− ψ(k)

(
z

2

))
,

which satisfies the similar functional relations

(5) g(k)(z + 1) =
(−1)kk!

zk+1
− g(k)(z), k = 1, 2, . . . ,

(6) g(k)(z) + (−1)kg(k)(1 − z) = π
dk

dzk

(
1

sinπz

)
.

Obviously by (1) and (4), the numbers ψ(k)(1)/ζ(k + 1), g(k)(1)/ζ(k + 1),
ψ(k)(1/2)/ζ(k+1) are rational (here ζ(s) =

∑∞
n=1 1/ns is the Riemann zeta

function) and therefore from (2), (5) we get the following inclusions:

(7) ψ(2k−1)(m), g(2k−1)(m), ψ(2k−1)(m+ 1/2) ∈ Q× · π2k + Q, m ∈ N.

2. In this paper, we consider the values of the series

(8) S =

∞∑

n=0

P (n)

Q(n)
, T =

∞∑

n=0

P (n)

Q(n)
(−1)n, U =

∞∑

n=0

P (n)

Q(n)
f(n),

where P (x), Q(x) ∈ Q[x] and f is a periodic number-theoretic function, and
express them as linear combinations of values of the polygamma functions
(see Lemmas 1–2 below). Such a representation allows one to give simple
sufficient conditions for the numbers S, T to be algebraic or transcendental,
which is done in Section 2. Further, we assume that all the zeros of Q(x)
are in the imaginary quadratic field Q(i

√
d) and the polynomials P (x), Q(x)

have some symmetry properties. By formulas (3), (6), summing the series
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S, T, U explicitly and applying Nesterenko’s famous result [7] on algebraic in-

dependence of the numbers π, eπ
√

d we show that the infinite sums (8) either
have a computable algebraic value or are transcendental. (By a computable

value, we mean a number which can be explicitly determined in terms of
its defining parameters.) Actually, we describe a mixed approach for com-
putation of infinite sums (8) combining linear combinations of values of the
polygamma functions and contour integration. The latter can be applied to
the trigonometric series

V =
∞∑

n=−∞

P1(n)eiβ1n + · · · + Ps(n)eiβsn

Q(n)
, β1, . . . , βs ∈ Q,

and enables us to prove that under certain conditions on the polynomials
P1, . . . , Ps, Q, the sum V is either zero or transcendental. As a consequence,
we establish the transcendence of some Fourier series (see Section 4). In
Section 5 we extend these results to a more general set of roots of the poly-
nomial Q(x) provided that the Schanuel conjecture holds. This generalizes
the well-known result of P. Bundschuh on the series

∑∞
n=2 1/(n2k − 1), k ≥ 2

(see [3], [12, Section 3.2]).

Special cases of the infinite sums (8) were considered by P. Bundschuh
in [3]. Using Baker’s theory on linear forms in logarithms, he proved that
the value of the series

F (z) = z

∞∑

m=1

am

m(m− z)
,

where {am}∞m=1 is a periodic sequence of algebraic numbers and z ∈ Q ∩
(0, 1), is either zero or transcendental. In particular, this yields the tran-
scendence of the numbers ψ(z) + γ, ψ(z) − ψ(z/2) for any z ∈ Q \ Z, and
of the series

∑∞
n=2 ζ(n)zn,

∑∞
n=2 β(n)zn for any rational z with 0 < |z| < 1,

where β(s) =
∑∞

k=0 (−1)k/(2k + 1)s is the Dirichlet beta function.

The case when all the roots α1, . . . , αm of Q(x) are distinct rational num-
bers was considered in [1], where by Baker’s theory it was proved that each
of the numbers (8) is either a computable algebraic number or is transcen-
dental. In particular, if Q(x) is a reduced polynomial, i.e., if α1, . . . , αm are
distinct rational numbers from [−1, 0), then S, T, U and the series

∞∑

n=0

P1(n)βn
1 + · · · + Ps(n)βn

s

Q(n)
, β1, . . . , βs ∈ Q,

are either zero or transcendental.

Notice that from [1] it follows that for any rational numbers α1, . . . , αm

distinct from nonnegative integers and such that αk−αl /∈ Z, 1 ≤ k 6= l ≤ m,
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all the values

(9) ψ(α1), . . . , ψ(αm)

are transcendental except for at most one value of αk (compare this with [6,
Theorem 3]). In fact, taking into account (2) we can assume without loss of
generality that α1, . . . , αm are distinct numbers from (0, 1] and then by [1,
Theorem 3] we have, for k 6= l,

ψ(αl) − ψ(αk) =
∞∑

n=0

(
1

n+ αk
− 1

n+ αl

)
=

∞∑

n=0

αl − αk

(n+ αk)(n+ αl)
/∈ Q.

Therefore the set (9) cannot contain two algebraic numbers.
In 2001, G. Molteni [5] considered the generating power series for the

sequence {ζ(2k+ 1)}∞k=1, which can also be written as a linear combination
of values of the digamma function,

F (z) =
∞∑

k=1

ζ(2k + 1)z2k = −1

2
ψ(1 + z) − 1

2
ψ(1 − z) + ψ(1),

and proved that the numbers 1, F (α1), . . . , F (αm) are linearly independent
over Q if all αk = ak/bk are distinct rational numbers from the interval (0, 1)
such that (ak, bk) = 1 and for any k there exists an odd prime pk dividing bk
and pk ∤ bj when j 6= k. An obvious corollary is that F (α) is transcendental
for all α = a/b ∈ (0, 1) with b not a power of 2. Actually, this restriction can
be removed and F (α) is transcendental for any rational α with 0 < |α| < 1
by [1, Theorem 3], since

F (α) =

∞∑

n=0

α2

(n+ 1)(n+ 1 + α)(n+ 1 − α)

and the last series does not vanish.

2. Sums S, T, U as linear combinations of polygamma functions

Lemma 1. Let f : Z → Q be periodic with period q ∈ N. Suppose that

P (x), Q(x) ∈ Q[x], degP (x) ≤ degQ(x) − 1, and Q(x) = (x + α1)
l1 . . .

. . . (x+ αm)lm , where l1, . . . , lm ∈ N and α1, . . . , αm are distinct , and dis-

tinct from non-negative integers. If degP (x) = degQ(x) − 1, suppose also

that
∑q−1

t=0 f(t) = 0 (convergence condition). Then the series

U =
∞∑

n=0

P (n)

Q(n)
f(n)

converges and we have the following representation:

(10) U =

q−1∑

t=0

f(t)
m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!

Ak,l

ql
ψ(l−1)

(
t+ αk

q

)
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with

(11) Ak,l =
1

(lk − l)!

dlk−l

dxlk−l

(
P (x)

Q(x)
(x+ αk)

lk

)∣∣∣∣
x=−αk

∈ Q.

Proof. Writing n in the form n = qτ + t, τ, t ∈ Z, 0 ≤ t ≤ q − 1, τ ≥ 0,
we get

(12) U =
∞∑

τ=0

q−1∑

t=0

f(qτ + t)
P (qτ + t)

Q(qτ + t)
=

∞∑

τ=0

q−1∑

t=0

f(t)
P (qτ + t)

Q(qτ + t)
.

Decomposing P (x)/Q(x) into partial fractions, we have

P (x)

Q(x)
=

m∑

k=1

lk∑

l=1

Ak,l

(x+ αk)l
,

where the coefficients Ak,l are defined in (11) and
∑m

k=1Ak,1 = 0 if
degP (x) ≤ degQ(x) − 2.

To prove (10), we first suppose that degP (x) ≤ degQ(x)−2. Then from
(12) we have

U =

q−1∑

t=0

f(t)
∞∑

τ=0

P (qτ + t)

Q(qτ + t)
,

where

P (qτ + t)

Q(qτ + t)
=

m∑

k=1

lk∑

l=1

Ak,l

(qτ + t+ αk)l

=

m∑

k=1

Ak,1

qτ + t+ αk
+

m∑

k=1

lk∑

l=2

Ak,l

(qτ + t+ αk)l

=
1

q

m∑

k=2

Ak,1

(
1

τ + t+αk

q

− 1

τ + t+α1

q

)
+

m∑

k=1

lk∑

l=2

Ak,l

(qτ + t+ αk)l
.

Therefore,

∞∑

τ=0

P (qτ + t)

Q(qτ + t)
=

1

q

m∑

k=2

Ak,1

(
ψ

(
t+ α1

q

)
− ψ

(
t+ αk

q

))

+
m∑

k=1

lk∑

l=2

(−1)l

(l − 1)!

Ak,l

ql
ψ(l−1)

(
t+ αk

q

)

=
m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!

Ak,l

ql
ψ(l−1)

(
t+ αk

q

)
,
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which yields (10). If degP (x) = degQ(x) − 1, then we find

q−1∑

t=0

P (qτ + t)

Q(qτ + t)
f(t) =

q−1∑

t=0

f(t)
m∑

k=1

lk∑

l=1

Ak,l

(qτ + t+ αk)l

=

q−1∑

t=0

f(t)
m∑

k=1

Ak,1

qτ + t+ αk
+

q−1∑

t=0

f(t)
m∑

k=1

lk∑

l=2

Ak,l

(qτ + t+ αk)l

=
m∑

k=1

Ak,1

q

q−1∑

t=1

f(t)

(
1

τ + t+αk

q

− 1

τ + αk

q

)
+

q−1∑

t=0

f(t)
m∑

k=1

lk∑

l=2

Ak,l

(qτ + t+ αk)l
.

Hence, by (12), we get

U =
m∑

k=1

Ak,1

q

q−1∑

t=1

f(t)

(
ψ

(
αk

q

)
−ψ

(
t+ αk

q

))
+

q−1∑

t=0

f(t)
m∑

k=1

lk∑

l=2

(−1)l

(l − 1)!

Ak,l

ql

× ψ(l−1)

(
t+ αk

q

)
=

q−1∑

t=0

f(t)
m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!

Ak,l

ql
ψ(l−1)

(
t+ αk

q

)
,

as required.

Let us mention two particular cases q = 1, f ≡ 1 and q = 2, f(n) = (−1)n

of Lemma 1.

Lemma 2. Let P (x), Q(x) ∈ Q[x], Q(x) = (x+α1)
l1 . . . (x+αm)lm , where

l1, . . . , lm ∈ N and α1, . . . , αm are distinct , and distinct from non-negative

integers. Suppose that the series

S =
∞∑

n=0

P (n)

Q(n)
, T =

∞∑

n=0

P (n)

Q(n)
(−1)n

converge. Then the following representations are valid :

S =
m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!
Ak,lψ

(l−1)(αk), T =
m∑

k=1

lk∑

l=1

(−1)l−1

(l − 1)!
Ak,lg

(l−1)(αk),

where the coefficients Ak,l are defined in (11).

If Q(x) has only simple zeros, then Lemma 2 enables us to give simple
sufficient conditions for S, T to be algebraic or transcendental.

Corollary 1. Let P (x), Q(x) ∈ Q[x], Q(x) = (x + α1) . . . (x + αm),
where α1, . . . , αm are distinct , and distinct from non-negative integers, and

degP (x) ≤ degQ(x) − 2. If there is a subset L of {1, . . . ,m} with #L ≥ 2,
with j, k ∈ L⇒ αj − αk ∈ Z, and with P (−αl) = 0 for l /∈ L, then

S =
∞∑

n=0

P (n)

Q(n)

is algebraic.
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Proof. This statement easily follows from Lemma 2 and formula (2).

Remark 0.1. In the case m = 3 and α1, . . . , αm ∈ Q, P (x), Q(x)∈Q[x]
the conditions of Corollary 1 are necessary and sufficient for S to be rational
(see [9, Theorem 2]).

Corollary 2. Let P (x), Q(x) ∈ Q[x], Q(x) = (x + α1) . . . (x + αm),
where α1, . . . , αm are distinct , and distinct from non-negative integers, and

degP (x) ≤ degQ(x) − 1. If αk − α1 =: nk ∈ Z for all 1 ≤ k ≤ m and

(13)

m∑

k=1

(−1)nk
P (−αk)

Q′(−αk)
= 0,

then

T =
∞∑

n=0

P (n)

Q(n)
(−1)n

is algebraic. (In particular , if all nk are even and degP (x) ≤ degQ(x)− 2,
then condition (13) holds automatically.)

Proof. This statement easily follows from Lemma 2 and formula (5).

Remark 0.2. In the case m = 2 and α1, . . . , αm ∈ Q, P (x), Q(x) ∈ Q[x]
the conditions of Corollary 2 are necessary and sufficient for T to be rational
(see [9, Theorem 1] and [10, Theorem 3]).

Corollary 3. Let P (x) ∈ Q[x], Q(x) = (x + α1) . . . (x + αm), where

α1, . . . , αm are distinct rational numbers, distinct from non-negative inte-

gers, and degP (x) = m−1. If αk−αl ∈ 2Z for all 1 ≤ k, l ≤ m, then the sum

T =
∞∑

n=0

P (n)

Q(n)
(−1)n

is transcendental.

Proof. By Lemma 2 and formula (5) it follows that

T = A+ ag(α1) = B ± ag(α) = B ± a

∞∑

n=0

(
1

2n+ α
− 1

2n+ α+ 1

)
,

where A,B ∈ Q, a 6= 0 is the leading coefficient of the polynomial P (x) and
α ≡ α1 (mod 1), α ∈ (0, 1]. Since the infinite sum in the latter expression of
T does not vanish, by [1, Theorem 3] we conclude that T is transcendental.

Lemma 3. For the kth derivatives we have

(a) (cotπz)(k) = πkpk(cotπz), (b)

(
1

sinπz

)(k)

= πk qk(cosπz)

sink+1 πz
,

where pk(z), qk(z) ∈ Z[z], deg(pk(z)− (−1)kk!zk+1) ≤ k, deg(qk(z)− (−z)k)
≤ k − 1.
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Proof. The proof is by induction on k. Obviously, for k = 0 formulas
(a), (b) are valid with p0(z) = z and q0(z) = 1. Assuming (a), (b) to hold
for k, we will prove them for k + 1. We have

(cotπz)(k+1) = πk(pk(cotπz))′ = πk+1pk+1(cotπz),

where pk+1(z) = −p′k(z)(z2 + 1) = (−1)k+1(k + 1)!zk+2 + ck+1z
k+1 + · · · ∈

Z[z], and
(

1

sinπz

)(k+1)

= πk

(
qk(cosπz)

sink+1 πz

)′
= πk+1 qk+1(cosπz)

sink+2 πz

with qk+1(z) = q′k(z)(z
2 − 1) − (k + 1)zqk(z) = (−1)k+1zk+1 + dkz

k + · · · ∈
Z[z].

3. Main results

Theorem 1. Let P1, . . . , Ps, Q1, . . . , Qs∈Q[x], m1, . . . ,ms∈N, r1, . . . , rs
∈ Z satisfy the following conditions: for any 1 ≤ j ≤ s, degPj ≤ degQj −2,

(14)
Pj(−x)
Qj(−x)

=
Pj(rj + x)

Qj(rj + x)
,

Qj(x) =
∏2mj

k=1(x − αj,k)
lj,k , where αj,k = aj,k + ibj,k

√
d ∈ Q(i

√
d) \ N0,

k = 1, . . . , 2mj , are distinct and such that αj,mj+k = rj − αj,k, bj,k ≥ 0,
lj,mj+k = lj,k ∈ N, k = 1, . . . ,mj. Then the sum

S =
∞∑

n=0

(
P1(n)

Q1(n)
+ · · · + Ps(n)

Qs(n)

)

is either a computable algebraic number or transcendental. Moreover , S is

transcendental if at least one of the following conditions holds:

(i) αj,k /∈ Q \ Z, j = 1, . . . , s, k = 1, . . . , 2mj, and

s∑

j=1

mj∑

k=1

αj,k /∈Z

res
z=αj,k

Pj(z)

Qj(z)
6= 0,

(ii) bj0,k0
:= min{bj,k : bj,k > 0} is a unique minimum of the positive

numbers bj,k and resz=αj0,k0
Pj0(z)/Qj0(z) 6= 0,

(iii) there exists a unique maximum lj0,k0
of the sequence lj,k, 1 ≤ j ≤ s,

1 ≤ k ≤ mj , and bj0,k0
> 0, Pj0(αj0,k0

) 6= 0.

Proof. By Lemma 2, we have

S =

s∑

j=1

∞∑

n=0

Pj(n)

Qj(n)
=

s∑

j=1

2mj∑

k=1

lj,k∑

l=1

(−1)l

(l − 1)!
Aj,k,lψ

(l−1)(−αj,k),
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where

(15) Aj,k,l =
1

(lj,k − l)!

(
d

dx

)lj,k−l(Pj(x)

Qj(x)
(x− αj,k)

lj,k

)∣∣∣∣
x=αj,k

∈ Q.

From (14), (15) for 1 ≤ k ≤ mj it follows that

Aj,mj+k,l =
1

(lj,k − l)!

(
d

dx

)lj,k−l(Pj(rj − x)

Qj(rj − x)
(x− rj + αj,k)

lj,k

)∣∣∣∣
x=rj−αj,k

=
(−1)l

(lj,k − l)!

(
d

dy

)lj,k−l(Pj(y)

Qj(y)
(y − αj,k)

lj,k

)∣∣∣∣
y=αj,k

= (−1)lAj,k,l

with y = rj − x. Therefore,

S =
s∑

j=1

mj∑

k=1

lj,k∑

l=1

(−1)l

(l − 1)!
Aj,k,l(ψ

(l−1)(−αj,k) + (−1)lψ(l−1)(αj,k − rj)).

Now if for some pair (j, k) we have −αj,k and αj,k − rj ∈ N, then by (2),
(7), we get

S = C0 +

s∑

j=1

mj∑

k=1
αj,k∈Z

lj,k∑

l=1
l even

Cj,k,lπ
l

+
s∑

j=1

mj∑

k=1

αj,k /∈Z

lj,k∑

l=1

Aj,k,l

(l − 1)!
(ψ(l−1)(αj,k + 1) + (−1)lψ(l−1)(−αj,k)),

where C0, Cj,k,l ∈ Q. Combining this with (3) and Lemma 3 we conclude
that

S = C0 +
s∑

j=1

mj∑

k=1
αj,k∈Z

lj,k∑

l=1
l even

Cj,k,lπ
l(16)

+
s∑

j=1

mj∑

k=1

αj,k /∈Z

lj,k∑

l=1

(−1)l−1Aj,k,l

(l − 1)!
πlpl−1(− cotπαj,k).

According to the formula

cotπαj,k = i
e2πiaj,k + e2πbj,k

√
d

e2πiaj,k − e2πbj,k

√
d

= −i− 2ie2πiaj,k

e2πbj,k

√
d − e2πiaj,k

we see that S − C0 ∈ Q(π, eπ
√

d/B), where B ∈ N is the least common
denominator of the numbers bj,k, and therefore S − C0 is either zero or

transcendental in view of the algebraic independence of π and eπ
√

d [7].
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If we suppose that S is algebraic and condition (i) holds, then considering
the summands in (16) involving π to the first power we get

−π
s∑

j=1

mj∑

k=1

αj,k /∈Z

Aj,k,1 cotπαj,k + π2(. . .) = 0

or

πi
s∑

j=1

mj∑

k=1
bj,k>0

Aj,k,1 + 2πi
s∑

j=1

mj∑

k=1
bj,k>0

Aj,k,1e
2πiaj,k

e2πbj,k

√
d − e2πiaj,k

+ π2(. . .) = 0.

Now multiplying both sides of the last equality by

(17)
s∏

j=1

mj∏

k=1
bj,k>0

(e2πbj,k

√
d − e2πiaj,k)lj,k

we get a contradiction with the algebraic independence of π and eπ
√

d.

If (ii) is valid and S is algebraic, then (16) can be rewritten as

(18) πC1 + 2πi
s∑

j=1

mj∑

k=1
bj,k>0

Aj,k,1e
2πiaj,k

e2πbj,k

√
d − e2πiaj,k

+ π2(. . .) = 0.

If C1 6= 0, then this is impossible by the same argument as above. If C1 = 0,
then multiplying both sides of (18) by (17) we get

2πiAj0,k0,1e
2πiaj0,k0e2π(β−bj0,k0

)
√

d + · · · = 0,

which is impossible, and therefore S is transcendental.

If condition (iii) holds, then the summands with the maximal power of
π in (16) have the form

(19) πlj0,k0

(
±
Aj0,k0,lj0,k0

(lj0,k0
− 1)!

plj0,k0
−1(− cotπαj0,k0

) + Cj0,k0,lj0,k0

)
,

where Aj0,k0,lj0,k0
, Cj0,k0,lj0,k0

∈ Q and Aj0,k0,lj0,k0
is not zero by (15). Since

cotπαj0,k0
is transcendental, the term (19) does not vanish in (16), and

hence S is transcendental. This completes the proof of the theorem.

Remark 1.1. If under the assumptions of Theorem 1 we have r1 = · · · =
rs = −1, then S is either zero or transcendental.

Corollary 4. If a, b ∈ Z, 4b > a2, m ∈ N, then the sum

∞∑

n=0

P (n)

(n2 + an+ b)m
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is transcendental for any polynomial P (x) ∈ Q[x] such that

degP (x) ≤ 2m− 2 and P (−x) = P (x− a).

In particular , the sum of the series

∞∑

n=0

(n2 + an+ c)k

(n2 + an+ b)m

is transcendental for any c, k ∈ Z, 0 ≤ k < m.

Theorem 2. Let P1, . . . , Ps, Q1, . . . , Qs∈Q[x], m1, . . . ,ms∈N, r1, . . . , rs
∈ Z satisfy the following conditions: for any 1 ≤ j ≤ s, degPj ≤ degQj −1,

(20)
Pj(−x)
Qj(−x)

= (−1)rj
Pj(rj + x)

Qj(rj + x)
,

Qj(x) =
∏2mj

k=1(x − αj,k)
lj,k , where αj,k = aj,k + ibj,k

√
d ∈ Q(i

√
d) \ N0,

k = 1, . . . , 2mj , are distinct and such that αj,mj+k = rj − αj,k, bj,k ≥ 0,
lj,mj+k = lj,k ∈ N, k = 1, . . . ,mj. Then the sum

T =
∞∑

n=0

(
P1(n)

Q1(n)
+ · · · + Ps(n)

Qs(n)

)
(−1)n

is either a computable algebraic number or transcendental. Moreover , T is

transcendental if at least one of the following conditions holds:

(i) bj0,k0
:= min{bj,k : bj,k > 0} is a unique minimum of the positive

numbers bj,k and resz=αj0,k0
Pj0(z)/Qj0(z) 6= 0,

(ii) there exists a unique maximum lj0,k0
of the sequence lj,k, 1 ≤ j ≤ s,

1 ≤ k ≤ mj, and bj0,k0
> 0, Pj0(αj0,k0

) 6= 0.

Proof. From Lemma 2 it follows that

T =
s∑

j=1

∞∑

n=0

Pj(n)

Qj(n)
(−1)n =

s∑

j=1

2mj∑

k=1

lj,k∑

l=1

(−1)l−1

(l − 1)!
Aj,k,lg

(l−1)(−αj,k),

where the coefficients Aj,k,l are defined in (15). According to (15) and (20)
for 1 ≤ k ≤ mj we have Aj,mj+k,l = (−1)rj+lAj,k,l. Then

T =
s∑

j=1

mj∑

k=1

lj,k∑

l=1

(−1)l−1

(l − 1)!
Aj,k,l(g

(l−1)(−αj,k) + (−1)rj+lg(l−1)(αj,k − rj)).

Now if for some pair (j, k) we have −αj,k and αj,k − rj ∈ N, then by (5),
(7), we get
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T = C0 +
s∑

j=1

mj∑

k=1
αj,k∈Z

lj,k∑

l=1
l even

Cj,k,lπ
l

+

s∑

j=1

mj∑

k=1

αj,k /∈Z

lj,k∑

l=1

Aj,k,l

(l − 1)!
((−1)l−1g(l−1)(−αj,k) + g(l−1)(αj,k + 1)),

where C0, Cj,k,l ∈ Q. Hence, by (6) and Lemma 3, we have

(21) T = C0 +
s∑

j=1

mj∑

k=1
αj,k∈Z

L∑

l=1
l even

Cj,k,lπ
l −

s∑

j=1

mj∑

k=1

αj,k /∈Z

lj,k∑

l=1

Aj,k,l

(l − 1)!
πl ql−1(cosπαj,k)

sinl παj,k

and according to Euler’s formulas for cos and sin we conclude that either
T = C0 or T is transcendental.

If T is algebraic and condition (i) holds, then we rewrite (21) as

πC1 + π
s∑

j=1

mj∑

k=1
bj,k>0

Aj,k,1

sinπαj,k
+ π2(. . .) = 0,

from which by the same argument as in the proof of Theorem 1(ii) and
formula

1

sinπαj,k
= − 2ieiπaj,keπbj,k

√
d

e2πbj,k

√
d − e2πiaj,k

we get a contradiction.

If condition (ii) is valid and T is algebraic, then from (21) we have

πlj0,k0

(
Cj0,k0,lj0,k0

−
Aj0,k0,lj0,k0

(lj0,k0
− 1)!

qlj0,k0
−1(cosπαj0,k0

)

sinlj0,k0 παj0,k0

)
+ · · · = 0,

where Aj0,k0,lj0,k0
6= 0 by (15). Now applying Lemma 3 we easily see that

the term containing π to the maximal power does not vanish and we get a

contradiction with the algebraic independence of π and eπ
√

d. This completes
the proof.

Remark 2.1. If under the assumptions of Theorem 2 we have r1 = · · · =
rs = −1, then T is either zero or transcendental.

Remark 2.2. We note that there are alternative proofs of formulas (16),
(21) based on application of the residue theorem to the complex integrals

1

2πi

\
LN

( s∑

j=1

Pj(z)

Qj(z)

)
(π cotπz) dz and

1

2πi

\
LN

( s∑

j=1

Pj(z)

Qj(z)

)
π

sinπz
dz,
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where LN is a square contour with vertices (N + 1/2)(±1± i). (See also [3,
Theorem 2].)

Corollary 5. Let a, b ∈ Z, 4b > a2, and m ∈ N. Then for any polyno-

mial P (x) ∈ Q[x] such that degP (x) < 2m, P (−x) = (−1)aP (x − a), the

sum
∞∑

n=0

(−1)nP (n)

(n2 + an+ b)m

is transcendental. In particular , if k ∈ Z, 0 ≤ k < 2m, and the numbers k, a
have the same parity , then the sum

∞∑

n=0

(−1)n(n+ a/2)k

(n2 + an+ b)m

is transcendental.

Theorem 3. Let f : Z → Q be periodic with period q ∈ N. Suppose that

r ∈ Z, m, l1, . . . , lm ∈ N, P (x), Q(x) ∈ Q[x],

(22)
P (−x)
Q(−x) = ±P (x+ qr)

Q(x+ qr)
,

Q(x) = (x − α0)
∏2m

k=1(x − αk)
lk , where α0 = qr/2, αk = ak + ibk

√
d ∈

Q(i
√
d) \N, k = 1, . . . , 2m, are distinct , αm+k = qr−αk, lm+k = lk, bk ≥ 0,

k = 1, . . . ,m, and f is an even or odd function according to whether we have

the “plus” or “minus” sign in (22). Suppose further that the series

U =
∞∑

n=1

P (n)

Q(n)
f(n)

converges. Then U is either a computable algebraic number or transcenden-

tal. Moreover , U is transcendental if at least one of the following conditions

holds:

(i) P (qr/2) = 0 and

q∑

t=1

m∑

k=1
t−αk /∈qZ

f(t) res
z=αk

P (z)

Q(z)
6= 0,

(ii) P (qr/2) = 0, bk0
:= min{bk > 0} is a unique minimum of the posi-

tive numbers bk, resz=αk0
P (z)/Q(z) 6= 0 and

∑q
t=1 f(t)e−2πit/q 6= 0,

(iii)

q−1∑

t=1

m∑

k=1
t−αk /∈qZ

f(t) res
z=αk

P (z)

Q(z)
6= i

2

P (qr/2)

Q′(qr/2)

q−1∑

t=1
t6=q/2

f(t) cot

(
πt

q
+ π

{
r

2

})
and

P (qr/2) 6= 0, where {x} denotes the fractional part of x.



244 Kh. Hessami Pilehrood and T. Hessami Pilehrood

Proof. By Lemma 1, using the partial fraction expansion

P (x)

Q(x)
=

2m∑

k=1

lk∑

l=1

Ak,l

(x− αk)l
+

A0,1

x− qr/2
,

where the coefficients Ak,l are defined in (11) with αk replaced by −αk and
A0,1 = P (qr/2)/Q′(qr/2), we have

U =

q∑

t=1

f(t)
2m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!

Ak,l

ql
ψ(l−1)

(
t− αk

q

)
− A0,1

q

q∑

t=1

f(t)ψ

(
t

q
− r

2

)
.

By (22), for 1 ≤ k ≤ m, 1 ≤ l ≤ lk, it easily follows that Am+k,l =
±(−1)lAk,l.

To prove the theorem, we first assume that P (qr/2) = 0. Then taking
into account that f(t) = ±f(−t) and f is a q-periodic function we have

U =

q∑

t=1

f(t)
m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!

Ak,l

ql

(
ψ(l−1)

(
t− αk

q

)

± (−1)lψ(l−1)

(
t− αm+k

q

))

=

q∑

t=1

m∑

k=1

lk∑

l=1

(−1)lf(t)

(l − 1)!

Ak,l

ql
ψ(l−1)

(
t− αk

q

)

+

q∑

t=1

m∑

k=1

lk∑

l=1

Ak,lf(q − t)

(l − 1)!ql
ψ(l−1)

(
t− αm+k

q

)

= A+

q∑

t=1

f(t)
m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!

× Ak,l

ql

(
ψ(l−1)

(
t− αk

q

)
+ (−1)lψ(l−1)

(
1 − r − t− αk

q

))
,

where A = −f(q)
∑m

k=1

∑lk
l=1Ak,l/α

l
m+k ∈ Q. Now by (3), (7) and Lemma 3

we get

U = C0 +

q∑

t=1

m∑

k=1
t−αk∈qZ

lk∑

l=2

Ct,k,lπ
l

−
q∑

t=1

m∑

k=1
t−αk /∈qZ

lk∑

l=1

(−π)lf(t)Ak,l

ql
pl−1

(
cot

(
π(t− αk)

q

))

with C0, Ct,k,l ∈ Q, from which it follows that U is either equal to C0 ∈ Q
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or transcendental. If condition (i) or (ii) holds, then arguing as in the proof
of Theorem 1(i), (ii) we find that U is transcendental.

If P (qr/2) 6= 0, then P (−x) = P (x+ qr) and thus f is an odd function
by the hypothesis. Arguing as above we deduce that Ak+m,l = (−1)l−1Ak,l,
1 ≤ k ≤ m, 1 ≤ l ≤ lk, and

U =

q−1∑

t=1

f(t)
m∑

k=1

lk∑

l=1

(−1)l

(l − 1)!

× Ak,l

ql

(
ψ(l−1)

(
t− αk

q

)
+ (−1)lψ(l−1)

(
1 − r − t− αk

q

))

− A0,1

2q

q−1∑

t=1

f(t)

(
ψ

(
t

q
− r

2

)
− ψ

(
1 − t

q
− r

2

))
.

As is easily seen, if q is even, then f(q/2) = 0 and we may assume that
t 6= q/2 in the last sum. Now by (2), for a positive integer t ≤ q−1, t 6= q/2,
we have

(23)

ψ

(
t

q
− r

2

)
= C + ψ

(
t

q
− r

2
+

[
r + 1

2

])
,

ψ

(
1 − t

q
− r

2

)
= C̃ + ψ

(
1 − t

q
− r

2
+

[
r

2

])
,

where C, C̃ ∈ Q and [x] denotes the integer part of x. Now by (3), (23) and
Lemma 3 we get

U = C1 +

q−1∑

t=1

m∑

k=1
t−αk∈qZ

lk∑

l=2

Ct,k,lπ
l(24)

−
q−1∑

t=1

m∑

k=1
t−αk /∈qZ

lk∑

l=1

Ak,lπ
lf(t)

(−q)l
pl−1

(
cot

(
π(t− αk)

q

))

+
A0,1π

2q

q−1∑

t=1

f(t) cot

(
πt

q
+ π

{
r

2

})

with C1, Ct,k,l ∈ Q, and therefore U is either equal to C1 or transcendental.
If r = 0, i.e., if P (x) and Q(x) are even and odd polynomials respectively,
then C1 = 0 and hence U is either zero or transcendental. If condition (iii)
is valid, then the coefficient of π does not vanish in (24) and we conclude
that U is transcendental. This completes the proof of the theorem.

Remark 3.1. If under the assumptions of Theorem 3 we have r = 0,
then either U = −f(q)

∑m
k=1

∑lk
l=1Ak,l/α

l
k+m or U is transcendental.
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Theorem 4. Let k ∈ N, r ∈ Z, qr/2 /∈ N, P (x) ∈ Q[x] and P (−x) =
±P (x+ qr). Let f : Z → Q be an even or odd periodic function with period

q ∈ N depending on whether k and degP (x) have the same parity or not.

Suppose further that the series

U =
∞∑

n=1

f(n)P (n)

(n− qr/2)k

converges. Then the sum U is either a computable algebraic number or tran-

scendental. In particular , if r = 0, then U is either zero or transcendental.

Proof. For the rational function P (x)/(x− qr/2)k we have the following
partial fraction expansion:

P (x)

(x−qr/2)k
=

[(deg P )/2]∑

l=0

Al

(x−qr/2)k−δ−2l
with Al =

1

(2l+δ)!
P (2l+δ)

(
qr

2

)

and δ equal to 0 or 1 according to whether P (−x) = P (x+ qr) or P (−x) =
−P (x+ qr). Then by Lemma 1, we get

U =

q∑

t=1

f(t)

[(deg P )/2]∑

l=0

(−1)k−δ−1

(k − δ − 2l − 1)!

Al

qk−δ−2l
ψ(k−δ−2l−1)

(
t

q
− r

2

)
.

Note that if k and degP have the same (distinct) parity, then k− δ is even
(odd) and f is an even (odd) function by the hypothesis. Thus we have
f(t) = (−1)k−δf(q − t) and

2U =

q∑

t=1

[(deg P )/2]∑

l=0

(−1)k−δ−1f(t) − f(q − t)

(k − δ − 2l − 1)!

Al

qk−δ−2l
ψ(k−δ−2l−1)

(
t

q
− r

2

)

or

2U=

q−1∑

t=1

f(t)

[(deg P )/2]∑

l=0

(−1)k−δ−1

(k − δ − 2l − 1)!

Al

qk−δ−2l

(
ψ(k−δ−2l−1)

(
t

q
− r

2

)
(25)

+ (−1)k−δψ(k−δ−2l−1)

(
1 − t

q
− r

2

))
+ Ũ ,

where

Ũ = (f(q) + (−1)k−δf(0))(26)

×
[(deg P )/2]∑

l=0

(−1)k−δ−1

(k − δ − 2l − 1)!

Al

qk−δ−2l
ψ(k−δ−2l−1)

(
1 − r

2

)
.

It can be easily seen that Ũ = 0 if f is an odd function; if f is even, then
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k − δ is even and by (7) we have

(27) Ũ = C +

[(deg P )/2]∑

l=0

Clπ
k−δ−2l

with algebraic coefficients C,Cl. From (23), (3), (7) and Lemma 3 it follows
that

(28) ψ(k−δ−2l−1)

(
t

q
− r

2

)
+ (−1)k−δψ(k−δ−2l−1)

(
1 − t

q
− r

2

)

∈ Qπk−δ−2l + Q.

Finally, by (25)–(28), we find

U = C̃ +

[(deg P )/2]∑

l=0

C̃lπ
k−δ−2l

with C̃, C̃l ∈ Q, and therefore either U is equal to C̃ or U /∈ Q. If r = 0,
then from (25), (26) it easily follows that U is either zero or transcendental.
This completes the proof of the theorem.

The special case of Theorem 4 for the number U=L(k, χ)=
∑∞

n=1 χ(n)/nk,
where χ is an even (or odd) Dirichlet character, was proved in [10, §6].

Now consider several applications of Theorem 3 which gives us means
to construct new examples of transcendental numbers. If in Theorem 3 we
put f(n) = χ(n), where χ(n) is a Dirichlet character mod q, then the Gauss
sum

τ(χ) =

q∑

k=1

χ(k)e−2πik/q

is never zero when χ is a primitive character (see [4, Ch. 8]). Namely, we
have |τ(χ)| =

√
q. This gives us the following.

Corollary 6. Let q > 1 be an integer and χ be a primitive char-

acter mod q. Suppose that P (x) ∈ Q[x], P (−x) = ±P (x + qr), Q(x) =∏2m
k=1 (x− αk)

lk for some m, l1, . . . , l2m ∈ N, r ∈ Z, where αk = ak+ibk
√
d ∈

Q(i
√
d) \N, k = 1, . . . , 2m, are distinct numbers such that αm+k = qr− αk,

bk ≥ 0, lm+k = lk, k = 1, . . . ,m, and χ is an even (resp. odd) character if

degP is even (resp. odd). If bk0
:= min{bk > 0} is a unique minimum of

the positive numbers bk and resz=αk0
P (z)/Q(z) 6= 0, then the sum

∞∑

n=1

P (n)

Q(n)
χ(n)

is transcendental.



248 Kh. Hessami Pilehrood and T. Hessami Pilehrood

Corollary 7. Let q > 1 be a square-free integer with q ≡ 1 (mod 4),
and let

(
n
q

)
denote Jacobi’s symbol. Then

∞∑

n=1

P (n)

Q(n)

(
n

q

)
/∈ Q,

where P (x) ∈ Q[x], P (−x) = P (x + qr) and Q(x) is as in Corollary 6. In

particular , the sum
∞∑

n=1

(
n
q

)

(n2 + qrn+ b)m

is transcendental for any m ∈ N, b, r ∈ Z such that q2r2 < 4b.

Corollary 8. Let q > 1 be a square-free integer with q ≡ 3 (mod 4).
Then

∞∑

n=1

P (n)

Q(n)

(
n

q

)
/∈ Q,

where P (x) ∈ Q[x], P (−x) = −P (x+ qr) and Q(x) is as in Corollary 6. In

particular , the sum
∞∑

n=1

(
n

q

)
(n+ qr/2)2m−1

(n2 + qrn+ b)m

is transcendental for any m ∈ N, b, r ∈ Z such that q2r2 < 4b.

If χ0 is the principal character mod q, then
q∑

n=1

χ0(n) = ϕ(q), τ(χ0) =

q∑

k=1
(k,q)=1

e−2πik/q = µ(q),

where ϕ and µ are the Euler and Möbius functions, respectively (see [11,
Ch. 3]) and we have

Corollary 9. If q > 1 is a square-free integer and χ0 is the principal

character mod q, then the sum

∞∑

n=1

P (n)

Q(n)
χ0(n)

is transcendental , where P (x) ∈ Q[x], P (−x) = P (x+qr) and the polynomial

Q(x) is as in Corollary 6. In particular , the sum of the series

∞∑

n=1

χ0(n)

(n2 + qrn+ b)m

is transcendental for any m ∈ N, b, r ∈ Z such that q2r2 < 4b.
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Corollary 10. Let q > 1 be an integer and χ0 the principal character

mod q. Suppose that P (x), Q(x) ∈ Q[x], P (−x) = P (x + qr) and Q(x) =∏2m
k=1(x−αk)

lk for some m, l1, . . . , l2m ∈ N, r ∈ Z, where αk = ak + ibk
√
d ∈

Q(i
√
d) \ Q, k = 1, . . . , 2m, are distinct and such that αk+m = αk, bk ≥ 0,

lk+m = lk, k = 1, . . . ,m. If
∑m

k=1 resz=αk
P (z)/Q(z) 6= 0, then the sum

∞∑

n=1

P (n)

Q(n)
χ0(n)

is transcendental.

Corollary 11. Let f : Z → Q be odd , periodic with period q ∈ N. Then

the sum
∞∑

n=1

P (n)f(n)

n(n2 + b)m

is either zero or transcendental for any m, b ∈ N and any even polynomial

P (x) with degP ≤ 2m.

4. Transcendence of trigonometric series

Theorem 5. Suppose that β1, . . . , βs ∈ [0, 2) are distinct rational num-

bers, Q(x), P1(x), . . . , Ps(x) ∈ Q[x], Q(x) = (x−α1)
l1 . . . (x−αm)lm , where

α1, . . . , αm∈Q(i
√
d)\Z are distinct , l1, . . . , lm∈N, h(n)=

∑s
j=1 Pj(n)eiπβjn,

and for 1 ≤ j ≤ s,

degPj(x) ≤
{

degQ(x) − 1 if βj > 0,

degQ(x) − 2 if βj = 0.

Then the sum

V =
∞∑

n=−∞

h(n)

Q(n)

is either zero or transcendental.

Proof. We consider the complex integral

IN =
1

2πi

\
LN

h−(z)

Q(z)

π

sinπz
dz,

where h−(z) =
∑s

j=1 Pj(z)e
iπ(βj−1)z, LN is a square contour with vertices

(N + 1/2)(±1 ± i), and N is a large positive integer such that α1, . . . , αm

are inside LN . For z = ±(N + 1/2) + iy, y ∈ [−N − 1/2, N + 1/2], we have
∣∣∣∣

1

sinπz

∣∣∣∣ =
2

eπy + e−πy
,
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and therefore,
∣∣∣∣
Pj(z)e

iπ(βj−1)z

Q(z) sinπz

∣∣∣∣ =
2|Pj(z)|

|Qj(z)|(eπβjy + eπ(βj−2)y)
(29)

≤ 2
|Pj(z)|
|Qj(z)|

e−π|y|min{βj ,2−βj}.

If βj = 0, then from (29) it follows that

(30)

∣∣∣∣
1

2πi

\
z=±(N+1/2)+iy

−N−1/2≤y≤N+1/2

Pj(z)e
iπ(βj−1)z

Q(z)

π

sinπz
dz

∣∣∣∣

≤
N+1/2\
−N−1/2

|Pj(z)|
|Qj(z)|

dy = O

(
1

N

)
.

If 0 < βj < 2, then (29) implies

(31)

∣∣∣∣
1

2πi

\
z=±(N+1/2)+iy

−N−1/2≤y≤N+1/2

Pj(z)e
iπ(βj−1)z

Q(z)

π

sinπz
dz

∣∣∣∣

≤ O

(
1

N

) N+1/2\
−N−1/2

e−π|y|min{βj ,2−βj} dy = O

(
1

N

)
.

If z = x± i(N + 1/2), x ∈ [−N − 1/2, N + 1/2], then
∣∣∣∣

1

sinπz

∣∣∣∣ =
2

eπ(N+1/2) − e−π(N+1/2)

and
∣∣∣∣
Pj(z)e

iπ(βj−1)z

Q(z) sinπz

∣∣∣∣ ≤
2|Pj(z)|
|Q(z)|

eπ|βj−1|(N+1/2)

eπ(N+1/2) − e−π(N+1/2)
(32)

=





O

(
1

N2

)
if βj = 0,

O

(
1

Neπ(1−|βj−1|)N

)
if 0 < βj < 2.

Therefore, by (30)–(32), we conclude that IN = O(N−1) as N → ∞. On the
other hand, by the residue theorem we have

IN −
m∑

k=1

res
z=αk

(
h−(z)

Q(z)

π

sinπz

)
=

N∑

k=−N

res
z=k

(
h−(z)

Q(z)

π

sinπz

)
=

N∑

k=−N

h(k)

Q(k)
.
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Now letting N tend to infinity we get

V = −
m∑

k=1

res
z=αk

(
πh−(z)

Q(z) sinπz

)
=

m∑

k=1

−π
(lk − 1)!

(
h−(z)(z − αk)

lk

Q(z) sinπz

)(lk−1)∣∣∣∣
z=αk

,

which implies that V ∈ Q(π, eπ
√

d/B) for some B ∈ N, and hence either
V = 0 or V /∈ Q.

Corollary 12. If in addition to the assumptions of Theorem 5, Q(x)
is an even polynomial , then the sum

W =
∞∑

n=0

h(n) + h(−n)

Q(n)

is either h(0)/Q(0) or transcendental.

Corollary 13. Suppose that β1, β2 ∈ (0, 1) ∪ (1, 2) are rational num-

bers, Q(x), P1(x), P2(x) ∈ Q[x] such that P1(x), Q(x) are even polynomials,
P2(x) is an odd polynomial , degPj(x) ≤ degQ(x)−1, j = 1, 2, and all roots

of Q(x) belong to Q(i
√
d) \ Z. Then the trigonometric series

W =
P1(0)

2Q(0)
+

∞∑

n=1

P1(n) cos(πβ1n) + P2(n) sin(πβ2n)

Q(n)

is either zero or transcendental.

Proof. We define

h(n) =

{
1
2P1(n)eiπβ1n − 1

2 iP2(n)eiπβ2n if β1 6= β2,
1
2P1(n)eiπβ1n + 1

2 iP2(n)eiπ(2−β1)n if β1 = β2,

and consider the sum
∞∑

n=0

h(n) + h(−n)

Q(n)
− h(0)

Q(0)
=
P1(0)

2Q(0)
+

∞∑

n=1

P1(n) cos(πβ1n)+P2(n) sin(πβ2n)

Q(n)
,

which, by Corollary 12, is either zero or transcendental.

5. Schanuel’s conjecture and infinite sums. For more general set
of roots of the polynomials Qj(x), when not all αj,k are in Q(i

√
d), we give

some statements on the transcendence of the sums S, T, U, V provided that
the Schanuel conjecture holds (see [12, §3.1], [8, §10.7.G]).

Schanuel Conjecture (S). If α1, . . . , αn ∈ C are linearly indepen-

dent over Q, then the transcendence degree over Q of the field Q(α1, . . . , αn,
eα1 , . . . , eαn) is at least n.

We formulate the following propositions, which are consequences of (S):
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Conjecture (S1). Let P1, . . . , Ps, Q1, . . . , Qs ∈ Q[x], r1, . . . , rs ∈ Z,
where for any 1 ≤ j ≤ s the polynomials Pj , Qj satisfy the following condi-

tions: degPj ≤ degQj − 2, Qj(rj/2) 6= 0, Qj(n) 6= 0, n = 0, 1, . . . , and

Pj(−x)
Qj(−x)

=
Pj(rj + x)

Qj(rj + x)
.

Then the sum

S =
∞∑

n=0

(
P1(n)

Q1(n)
+ · · · + Ps(n)

Qs(n)

)

is either a computable algebraic number or transcendental.

Proof. Under the conditions stated above, we see that for 1 ≤ j ≤ s,

Qj(x) =
∏2mj

k=1(x−αj,k)
lj,k , where αj,k are distinct algebraic numbers distinct

from non-negative integers and such that αj,mj+k = rj − αj,k, lj,mj+k = lj,k
∈ N, k = 1, . . . ,mj . Therefore, from (16) we have

S = C0 +
s∑

j=1

mj∑

k=1
αj,k∈Z

lj,k∑

l=1
l even

Cj,k,lπ
l(33)

+
s∑

j=1

mj∑

k=1

αj,k /∈Z

lj,k∑

l=1

(−1)l−1Aj,k,l

(l − 1)!
πlpl−1(− cotπαj,k),

where C0 and all the coefficients Cj,k,l, Aj,k,l are algebraic numbers. From
(33) it follows that S is equal to C0 or transcendental by (S). Indeed, suppose
that S 6= C0 and S is algebraic. Assume that the numbers

(34)
1

λ
,
αj1,k1

λ1
, . . . ,

αjl,kl

λl
,

where λ1, . . . , λl ∈ N, are linearly independent over Q and all the other roots
αj,k are Z-linear combinations of (34). Then the numbers

πi

λ
,
πiαj1,k1

λ1
, . . . ,

πiαjl,kl

λl

are also linearly independent over Q. Put

K = Q

(
πi

λ
,
πiαj1,k1

λ1
, . . . ,

πiαjl,kl

λl
, eπiαj1,k1

/λ1 , . . . , eπiαjl,kl
/λl

)

= Q

(
πi

λ
, eπiαj1,k1

/λ1 , . . . , eπiαjl,kl
/λl

)
.

Then by (S), it follows that tr deg(K : Q) = l + 1. From (33) we see that
S − C0 ∈ K. If S − C0 ∈ Q \ {0}, then there exists a non-zero polynomial
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A(x) ∈ Z[x] such that A(S − C0) = 0. Hence tr deg(K : Q) ≤ l and the
contradiction obtained proves (S1).

Remark 5.1. If all αj,k ∈ Q(i
√
d), then (S1) is true by Theorem 1.

By a similar argument we have

Conjecture (S2). Let P1, . . . , Ps, Q1, . . . , Qs ∈ Q[x], r1, . . . , rs ∈ Z,
where for any 1 ≤ j ≤ s the polynomials Pj , Qj satisfy the following condi-

tions: degPj ≤ degQj − 1, Qj(rj/2) 6= 0, Qj(n) 6= 0, n = 0, 1, . . . , and

Pj(−x)
Qj(−x)

= (−1)rj
Pj(rj + x)

Qj(rj + x)
.

Then the sum

T =

∞∑

n=0

(
P1(n)

Q1(n)
+ · · · + Ps(n)

Qs(n)

)
(−1)n

is either a computable algebraic number or transcendental.

Conjecture (S3). Let f : Z → Q be periodic with period q ∈ N. Suppose

that r ∈ Z, P (x), Q(x) ∈ Q[x], (Q′(qr/2))2 + (Q(qr/2))2 6= 0, Q(n) 6= 0,
n = 1, 2, . . . ,

(35)
P (−x)
Q(−x) = ±P (x+ qr)

Q(x+ qr)

and f is an even or odd function according to whether we have the “plus”

or “minus” sign in (35). Suppose further that the series

U =
∞∑

n=1

P (n)

Q(n)
f(n)

converges. Then U is either a computable algebraic number or transcen-

dental.

Conjecture (S4). Suppose that β1, . . . , βs ∈ [0, 2) are distinct ratio-

nal numbers, Q(x), P1(x), . . . , Ps(x) ∈ Q[x], Q(n) 6= 0, n ∈ Z, h(n) =∑s
j=1 Pj(n)eiπβjn, and for 1 ≤ j ≤ s, degPj(x) ≤ degQ(x)−1 if 0 < βj < 2

and degPj(x) ≤ degQ(x) − 2 if βj = 0. Then the sum

V =

∞∑

n=−∞

h(n)

Q(n)

is either zero or transcendental.
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