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1. Introduction. 1. We begin with some notations and definitions. Let
d be a positive square-free integer. We denote by Z, Q, Q, and Q(Z\/E) the
set of integers, the field of rational numbers, the field of algebraic numbers,
and an imaginary quadratic field, respectively.

We will use the polygamma function

. dk k+1
Y (z2) = V) = g logl'(2),  k=12,...,

which has the following series expansion (see [2, §1.16]):
> 1

(1) ¢(k)(z) = (_1)k+1k! Z m, z#0,—1,-2,...,

and the logarithmic derivative of I'(z),

d =/ 1 1
w(z)_ElOgF(z)__7+§<n+l_n+z>’ Z#07_17_27"’7

called the digamma function. Obviously, (1) = —~, where ~ is Euler’s
constant. The function w(k)(z), k=0,1,2,..., is single-valued and analytic
in the whole complex plane except for the points z = —m, m =0,1,2,...,
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where it has poles of order k + 1. The polygamma function satisfies many
functional relations [2, §1.16] such as

e “recurrence formula”:

(—1)kE!
) PO+ 1) = () +
e ‘“reflection formula”:
dk
(3) ¢ W1 = 2) + (D)9 B(2) = (=1)*r 7 cotmz,
e “multiplication formula”:
m—1

1 T
Y (mz) = dlogm + Y Z ) (z + E)’
r=0

where d =1if k=0and 0 =01if £ > 0.
We also introduce its alternating analog (see [2, §1.16])

@) g®(2) = (=1)Fk! i (n(;i))zﬂ _ leﬂ <¢(k) (z 42— 1> _ ) (g»’

n=0

which satisfies the similar functional relations

—1)*k!
(5) g(’“>(z+1>=(zk)+1 —g"(), k=12,
d* 1
() kR gy 4
® S9) + (DR - ) = i ().

Obviously by (1) and (4), the numbers ¥®) (1)/¢(k + 1), ¢ (1)/¢(k + 1),
¥®)(1/2)/¢(k +1) are rational (here ((s) = >.°°, 1/n® is the Riemann zeta
function) and therefore from (2), (5) we get the following inclusions:

(1) @D (m), gD (m), vV (m +1/2) € Q* -7 +Q, meN.

2. In this paper, we consider the values of the series
o P(n) o P) o P(n)
S = — T= — (= U= — ,
(8) > Gy > Gy " > G/

where P(x),Q(x) € Q[x] and f is a periodic number-theoretic function, and
express them as linear combinations of values of the polygamma functions
(see Lemmas 1-2 below). Such a representation allows one to give simple
sufficient conditions for the numbers S, T to be algebraic or transcendental,
which is done in Section 2. Further, we assume that all the zeros of Q(x)
are in the imaginary quadratic field Q(iv/d) and the polynomials P(x), Q(z)
have some symmetry properties. By formulas (3), (6), summing the series
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S, T, U explicitly and applying Nesterenko’s famous result [7] on algebraic in-
dependence of the numbers T, e™4 we show that the infinite sums (8) either
have a computable algebraic value or are transcendental. (By a computable
value, we mean a number which can be explicitly determined in terms of
its defining parameters.) Actually, we describe a mixed approach for com-
putation of infinite sums (8) combining linear combinations of values of the
polygamma functions and contour integration. The latter can be applied to
the trigonometric series

y ﬂla"'vﬂsé@a
N Q(n)
and enables us to prove that under certain conditions on the polynomials
Pi, ..., Ps,Q, the sum V is either zero or transcendental. As a consequence,

we establish the transcendence of some Fourier series (see Section 4). In
Section 5 we extend these results to a more general set of roots of the poly-
nomial Q(x) provided that the Schanuel conjecture holds. This generalizes
the well-known result of P. Bundschuh on the series > 00, 1/(n?* — 1), k > 2
(see [3], [12, Section 3.2]).

Special cases of the infinite sums (8) were considered by P. Bundschuh
in [3]. Using Baker’s theory on linear forms in logarithms, he proved that
the value of the series

where {a,}5°_; is a periodic sequence of algebraic numbers and z € QN
(0,1), is either zero or transcendental. In particular, this yields the tran-
scendence of the numbers ¥ (2) + v, ¥(z) — ¥ (z/2) for any z € Q \ Z, and
of the series > 2, ((n)z", > o7, B(n)z" for any rational z with 0 < |z| < 1,
where 3(s) = > pe, (=1)¥/(2k + 1) is the Dirichlet beta function.

The case when all the roots a, ..., a;, of Q(z) are distinct rational num-
bers was considered in [1], where by Baker’s theory it was proved that each
of the numbers (8) is either a computable algebraic number or is transcen-
dental. In particular, if Q(z) is a reduced polynomial, i.e., if aq, ..., ay, are
distinct rational numbers from [—1,0), then S, T, U and the series

o0

> 1n)fi o0 B B e T,
n=0
are either zero or transcendental.
Notice that from [1] it follows that for any rational numbers aq, ..., an,

distinct from nonnegative integers and such that ax—a; ¢ Z, 1 < k # 1 < m,
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all the values

(9) 1/1(041)7-~,¢(04m)

are transcendental except for at most one value of oy (compare this with [6,
Theorem 3]). In fact, taking into account (2) we can assume without loss of
generality that aq,. .., are distinct numbers from (0, 1] and then by [1,
Theorem 3] we have, for k # [,

oo oo
1 1 o] — Qg -
ap) — Ylag) = - = .
¥len) = ¥lax) ;(n—l—ak n+al> nz:% (n+ ax)(n + o) #Q
Therefore the set (9) cannot contain two algebraic numbers.

In 2001, G. Molteni [5] considered the generating power series for the
sequence {((2k +1)}22,, which can also be written as a linear combination
of values of the digamma function,

P = Y00k D% = 04— S0l 2) 900,

and proved that the numbers 1, F(y), ..., F(a,) are linearly independent
over Q if all oy, = ay, /by, are distinct rational numbers from the interval (0, 1)
such that (ag,br) = 1 and for any k there exists an odd prime py dividing by,
and py, 1 bj when j # k. An obvious corollary is that F'(«) is transcendental
for all @« = a/b € (0,1) with b not a power of 2. Actually, this restriction can
be removed and F'(«) is transcendental for any rational o with 0 < |a| < 1
by [1, Theorem 3], since

e’} O{2
F(O‘):;O(n+1)(n+1+a)(n+1—a)

and the last series does not vanish.

2. Sums S,7T,U as linear combinations of polygamma functions

LEMMA 1. Let f : Z — Q be periodic with period ¢ € N. Suppose that
P(z),Q(z) € Q[z], deg P(z) < degQ(x) — 1, and Q(z) = (z + a1) ...
...(3:+am)lm, where l1, ..., L, € N and ay,...,qn, are distinct, and dis-
tinct from non-negative integers. If deg P(x) = degQ(z) — 1, suppose also
that ZZ;OI (t) = 0 (convergence condition). Then the series

o P(n)
U= —— f(n
2o
converges and we have the following representation:

q—1 m g
(10) U = f(t)zz <_1)l Ak,l w(1_1)<t+ak>

RN
t=0 k=1 1=1 (l 1)' q q
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with

€ Q.

T=—qy

11 Agy =
(11) MU e = 1)1 dae

1 d%=t [ P(x)
e

Proof. Writing n in the formn=qgr+t¢, ,t €Z,0<t<qg—-1,7 >0,
we get

(x + ozk)l’“>

oo q—1 co q—1
12) U= T qTH): Plgr +t)
1) =SS g0 HEE -3 L)

where the coefficients Ajy; are defined in (11) and > ;" Ag; = 0 if
deg P(z) < deg Q(x) —

To prove (10), we first suppose that deg P(x) < deg @Q(x) — 2. Then from
(12) we have

! qT—i-t
U=) f(t
DS
where
!
P(qr +1) :i a Ag
Qqr +1) P (g7 +t + ag)!
m m g
Ag1 Ag
— 9 + )
;qT—i—t—i—ak ;;(QT—i—t—i—ak)l
1 & 1 WA Ary
= — A —
(o ) XY G ey
= q =1 1=
Therefore,

> v —az () ()

m g l
(=1)" Arr g1y (t+ak
SN e (L

q

T (=) A t+
=2 (E—i)!%w U( ak)’

q
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which yields (10). If deg P(z) = deg Q(x) — 1, then we find

I
=
s
S
+
-
B
+
=~
]
L
S
+
it
S

k=1 t=1 t=0 k=1 1=2 ( q
1 m 1
n(t+a . -1k A t+a
(-1 k _ k.l (1-1) k
o0 () 2 /0L =y (55*)

as required. m

Let us mention two particular casesq =1, f = land ¢ = 2, f(n) = (—=1)"
of Lemma, 1.

LEMMA 2. Let P(z),Q(x) € Q[z], Q(z) = (z4+a1)" ... (x4am)'™, where
l,...ylm € Noand aq,...,am are distinct, and distinct from non-negative
integers. Suppose that the series

o P(n) o P(n)
S = —, T = —= (-
2 o) 2o ¢
converge. Then the followz'ng representations are valid:

m m l_
S = ZZ A W (ay), T= ZZ b 7 Ak 1947 (w),

k=11=1 k=11=1
where the coeﬂﬁcients Ay, are defined in (11).

If Q(x) has only simple zeros, then Lemma 2 enables us to give simple
sufficient conditions for S, T to be algebraic or transcendental.

COROLLARY 1. Let P(z),Q(z) € Qlz], Q(z) = (z + 1) ... (z + am),
where oy, ..., an are distinct, and distinct from non-negative integers, and
deg P(z) < deg Q(x) — 2. If there is a subset L of {1,...,m} with #L > 2,
with j,k € L = aj — oy, € Z, and with P(—oy) =0 for 1 ¢ L, then

_N-P)
5= 5m)

s algebraic.



Infinite sums as linear combinations of polygamma functions 237

Proof. This statement easily follows from Lemma 2 and formula (2). =

REMARK 0.1. In the case m = 3 and a1,...,am € Q, P(x), Q(x) €Q][z]
the conditions of Corollary 1 are necessary and sufficient for S to be rational
(see [9, Theorem 2]).

COROLLARY 2. Let P(z),Q(z) € Qlz], Q(z) = (z + 1) ... (z + am),

where aq, . ..,y are distinct, and distinct from non-negative integers, and
deg P(z) < degQ(z) — 1. If o, — a1 =2 € Z for all 1 < k <m and
m
P(—ay)
13 —1)"* =0,
& S e
then

o~ P(n)
T = — (="
2 o Y
is algebraic. (In particular, if all n; are even and deg P(x) < deg Q(z) — 2,
then condition (13) holds automatically.)

Proof. This statement easily follows from Lemma 2 and formula (5). =

REMARK 0.2. In the case m = 2 and ay,...,ap, € Q, P(z),Q(z) € Q]
the conditions of Corollary 2 are necessary and sufficient for T" to be rational
(see [9, Theorem 1] and [10, Theorem 3]).

COROLLARY 3. Let P(z) € Q[z], Q(z) = (z + 1) ... (z + o), where
Qai, ..., Qy are distinct rational numbers, distinct from non-negative inte-
gers, and deg P(z) = m—1. If ay—ay € 27 for all1 < k,l < m, then the sum

— P(n)
T = —Z (="
2o Y
18 transcendental.

Proof. By Lemma 2 and formula (5) it follows that

o0
1 1
+aglen) ag() anZ:O<2n+oz M+ art 1>’

where A, B € Q, a # 0 is the leading coefficient of the polynomial P(z) and
a=ap (mod 1), a € (0,1]. Since the infinite sum in the latter expression of
T does not vanish, by [1, Theorem 3] we conclude that 7" is transcendental. m

LEMMA 3. For the kth derivatives we have
1 (k)
) _ ok qr(cosz)

sinmz sinf+l 7z’

(a) (cotm2)®) = 7¥p(cotmz),  (b) <

where py(2), qr(2) € Z[2], deg(pr(z) — (—1)FkIZFH1) <k, deg(qr(2) — (—2)F)
<k-1
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Proof. The proof is by induction on k. Obviously, for £k = 0 formulas
(a), (b) are valid with pg(z) = z and ¢o(z) = 1. Assuming (a), (b) to hold
for k, we will prove them for k + 1. We have
(cot m2)* D) = 7k (pr(cot m2)) = 7 gy (cot 72),
where piy1(2) = —p(2)(22 + 1) = (=1D)F Lk + 1)12F2 4 o 2f L+ €
Z|z], and

( 1 >(k+1) _ ok (qk(cos 7rz)> k1 Qk+1(cosmz)

sinmz sin*t1 7z sinft2 72

wﬁl Ge1(2) = @ (2) (22 = 1) — (k + 1)2q(2) = ()P A p dpzk + . €
Z|z]. m

3. Main results

THEOREM 1. Let Py, ..., P, Q1,...,Qs€Q[z], m1,...,msEN, r1,... 74
€ Z satisfy the following conditions: for any 1 < j < s, deg P; < degQj —2,
Pi(=z) _ Pi(rj+ )
Qi(—x)  Qj(rj + )’
Q@) = IL(x — ajp)l, where ajy = ajp + ibjpv/d € Q(VA) \ N
k =1,...,2my, are distinct and such that ajm,+r = 1 — ajk, bjr > 0,
Ljm+k =ik €N, k=1,...,m;. Then the sum

_&(Pm) . P
S‘;:‘g(@l(n)* *@sm))

s either a computable algebraic number or transcendental. Moreover, S is
transcendental if at least one of the following conditions holds:

() aje ¢ Q\Z, j=1,...,8, k=1,...,2m;, and

S
S e O
=ik ok A0
o L E7%
ii ko i= min{b; g : b > is a unique minimum of the positive
i) b in{bis : b, o i . . i ”
numbers by and res,—q; ko Pj (2)/Qj, (%) #
(iii) there emsts a unique mazimum L, . of the sequence ik, 1 <j<s,
1 <k <my, and bj, k, > 0, Pj,(jy.k) 7 0.

(14)

Proof. By Lemma 2, we have

sy ol

j=1n=0 ]Iklll

s 2my Lk

(l 1)(_

]7 7 aj7k)’
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where

From (14), (15) for 1 < k < m; it follows that
1 d \5* " Pi(r; — )
A — el J\'J o ik
TR (1 = 1) (dw> (Qj(rj oy (0T ) )

“aem(a) (@)

with y = r; — . Therefore,

€ Q.

"E:Oéjyk

T=T =0

= (-1)'Ajry

Y=ajk

s mj lik I
(—1) _ _
S = ZZ Z TEEERY] Aj,k,l(d’(l 1)(_0@',1@) + (_1)17/)(1 D(%’,k —75))-
, (1—1)!
j=1k=1I=1
Now if for some pair (j,k) we have —a;;, and o, —r; € N, then by (2),
(7), we get

s mj ik

S =Co+ E E E Cjpam
j=1 k=1 I=1
aj, kEZ leven

s mj

+ZZ ]kl I (ke + 1) + (D)D) (=),
j=1k=1 I=1
o ¢EZ

where Co,Cj; € Q. Combining this with (3) and Lemma 3 we conclude
that

s my ik
(16) S=0Co+ szj Z C;

j=1k=1 I=1
aj, kEZ leven

S
+ZZJ Z ]kl w1 (— cot may ).

j=1k=1 I=1
o K EZ
According to the formula
-627riaj,k + 627rbj,k\/g ' 2i627rmj7;C
cot Tk =1 e27riaj’k _ eQij,k\/E -t 627rijk\/a _ e?wiajyk

we see that S — Cp € @(W,e”‘/a/B), where B € N is the least common
denominator of the numbers b;;, and therefore S — Cjy is either zero or

transcendental in view of the algebraic independence of m and emVd [7].
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If we suppose that S is algebraic and condition (i) holds, then considering
the summands in (16) involving 7 to the first power we get

s my
_ﬂ-z ZAJ7k71 COt ﬂ-ajak + 7T2(' N ') = 0

j=1k=1
;K EL
or
k, 1627riaj7k )
.7
mg EA 271'25 g w(...) = 0.
e k: 1 + 27I'b] k\/_ 27riaj7k + ( )

7j=1k=1 =1 k=
b],k>0 bj,k>0

Now multiplying both sides of the last equality by

s my
(17) H H(eQﬂbj’k\/g _ 6271'1’0,]"]@)1]-’;@

j=1k=1
b; >0

we get a contradiction with the algebraic independence of m and e™vd,
If (ii) is valid and S is algebraic then (16) can be rewritten as

s ] k. 162771'(1]'7]@ 9
(18) mC1 + 2%12 kZ: 2y i gz +7%(...)=0.
J
bj x>0

If Cy # 0, then this is impossible by the same argument as above. If C; = 0,
then multiplying both sides of (18) by (17) we get

27TiAjO7kO7162majovko eZW(’B_bJ'kaO)\/E + ... = 07

which is impossible, and therefore S is transcendental.
If condition (iii) holds, then the summands with the maximal power of
7 in (16) have the form

A kol
1s J0,R05bj0 &
(19) Trti0-ko (:I:—(ljo ” _301;)_' pljo ro— ( cot Wajo,ko) + CjO,kO:le,k())’

where Ajg ko 5, ko> Coskorlig kg € Q and Ajo ko Ly x, 18 DOt zero by (15). Since
cot Tavj, k, is transcendental, the term (19) does not vanish in (16), and
hence S' is transcendental. This completes the proof of the theorem. m

REMARK 1.1. If under the assumptions of Theorem 1 we have r| = --- =
rs = —1, then S is either zero or transcendental.

COROLLARY 4. Ifa,be Z, 4b > a®, m € N, then the sum

> P(n)
2 T an 1O

n=
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is transcendental for any polynomial P(x) € Q[x] such that
deg P(z) <2m —2 and P(—z)= P(z—a).
In particular, the sum of the series
i (n? +an + c)*
= (n*+an+b)"

is transcendental for any ¢,k € Z, 0 < k < m.

THEOREM 2. Let Py, ..., P, Q1,...,Qs€Q[z], m1,...,msEN, r1,... 7s
€ Z satisfy the following conditions: for any 1 < j < s, deg P; < deg@Q;—1,

Qj(—x) Qj(rj + )
Qj(x) = im{(x—ajk.)ﬁk, where aj = ajx + ibjpVd € Q(ivd) \ Ny,
= 1,...,2mj, are distinct and such that Qjmj+k = Tj — Qjks bjr > 0,
Limj+k =ik €Ny k=1,...,m;. Then the sum

(B P
T_;)(an)* i)

1s either a computable algebraic number or transcendental. Moreover, T is
transcendental if at least one of the following conditions holds:

(1) bjoko = min{b;x : bjr > 0} is a unique mim’mum of the positive
numbers b ), and res;—q; Ko Pj,(2)/Qj,(2) #

(i) there emsts a unique mazximum lj, r, of the sequence ik, 1 <7 <s,
1 <k <my, and bj, ky > 0, Pj,(jy.k,) # 0.

Proof. From Lemma 2 it follows that

s 2m; l]k

=33 20 Cay =3 S 3 U A,

j=1n=0 j=1k=11=1

where the coeflicients A;;; are defined in (15). According to (15) and (20)
for 1 <k <mj; we have A, 1k = (—l)riHAj’k’l. Then

s my ik

_1\{—1
T-33% 2 Aunala I a5+ (gD e = )

1k=11=1

Now if for some pair (j,k) we have —a;; and o —r; € N, then by (5),
(7), we get
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s mj Lk

T=0Cy+ E E E O"k’lﬂ'l
j=1k=1 1=1
aj, kGZ leven

s my

,kl _ _
+ZZ = 1) gD (=) + gD gk + 1)),

=1 k=1 I=1
o; kEZ

where Cp, Cjx; € Q. Hence, by (6) and Lemma 3, we have
2

(21) T = Co-l-iz chle —iiz J”“ lQZ—l.(ClOSW?‘j,k)

J=1 k=1 1=1 jlklll SI Tk
a;j KEL leven PN/

and according to Euler’s formulas for cos and sin we conclude that either
T = Cy or T is transcendental.
If T is algebraic and condition (i) holds, then we rewrite (21) as

]kl 2 .
e +7TZ Zsmﬂ'a]k (...)=0,

b],k>0

from which by the same argument as in the proof of Theorem 1(ii) and

formula
1 24Tk sV

sin T & 627Tbj,k\/a _ e2ﬂ'i0«j,k

we get a contradiction.
If condition (ii) is valid and T is algebraic, then from (21) we have

Lo ( O B Aj07k07lj0,k0 quo,ko—l(COSWajmko)
T Jo,ko55g, ko 0

where AjO:kOJjO,kO # 0 by (15). Now applying Lemma 3 we easily see that
the term containing 7 to the maximal power does not vanish and we get a
contradiction with the algebraic independence of 7 and e™d. This completes
the proof. m

=0
] — - 1. ’
joko — 1)1 sinbioko T ko

REMARK 2.1. If under the assumptions of Theorem 2 we have ry = --- =
rs = —1, then T is either zero or transcendental.

REMARK 2.2. We note that there are alternative proofs of formulas (16),
(21) based on application of the residue theorem to the complex integrals

L g (Z e )mommz and gN (Z e )SIW 2z
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where Ly is a square contour with vertices (N + 1/2)(£1 £1). (See also [3,
Theorem 2].)

COROLLARY 5. Let a,b € Z, 4b > a?, and m € N. Then for any polyno-
mial P(z) € Q[x] such that deg P(x) < 2m, P(—z) = (—1)*P(x — a), the

= ()P
2 o

is transcendental. In particular, if k € Z,0 < k < 2m, and the numbers k,a
have the same parity, then the sum

i (=1)"(n+a/2)"

(n2+an +b)™

n=0
s transcendental.

THEOREM 3. Let f: 7 — Q be periodic with period g € N. Suppose that
reZ, mly,... . lm €N, P(x),Q(x) € Q[z],
P(—z) iP(a: +qr)
Q(-z) ~Qz+qr)
Q(x) = (z — ap) szl(:c — ap), where ag = qr/2, ap, = ap + ibpVd €
Q(ivVA)\N, k=1,...,2m, are distinct, i = qr — g, lypsr = U, bp > 0,
k=1,...,m, and f is an even or odd function according to whether we have
the “plus” or “minus” sign in (22). Suppose further that the series

_N~ PO
U—;Q( /()

converges. Then U is either a computable algebraic number or transcenden-
tal. Moreover, U is transcendental if at least one of the following conditions
holds:

(i) P(qr/2) =0 and

I & P(2)
2D () res s #0,

(22)

(ii) P(qr/2) =0, by, := min{by > 0} is a unique minimum of the posi-
tive numbers by, res;—q, P(2)/Q(z) #0 and > 7, f(t)e=2mit/a oL 0,

qg—1 m q—1

o s ( { }>
(iii res ) cot and
) 2 20566 7 2 Q) 21O 2
t—ar¢qZ tsﬁq/2

P(qr/2) # 0, where {x} denotes the fractional part of x.
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Proof. By Lemma 1, using the partial fraction expansion

x—ak x—qr/Q’

k=11=1

where the coefficients Ak’l are defined in (11) with oy, replaced by —aj and
Aoy = P(qr/2)/Q'(qr/2), we have

q 2m g 1 q
1 A — A
U=2 1l ZZ e 1)<t qak>_ 2’121’(75)@[)(2_%).
t=1 k=1 1=1 t=1

By (22), for 1 < k < m, 1 <1 < [, it easily follows that A, x; =
(1)1 A

To prove the theorem, we first assume that P(qr/2) = 0. Then taking
into account that f(t) = £f(—t) and f is a g-periodic function we have

4 m L -1 A —
U=3 0 Y a0 ()

q

Rate k(—)f()Akl -1 (t— o
_2;1:1 (1 —1)! v ( q >

t=1
qg m
Aeafla—=1) -y (t - am—i—k)
- SR D i) (2 Gtk
tz;kz::l = (-1 q
q m g (_1)l
=A+) Y =]
t=1 k=1 I=1

x % <¢<H> <—t _qa’“> + (—1)hypt= <1 - _qa’“>>,

g m I
U=0Cy+ Z Z th,k,lﬂl

t—ar€qZ

LR ((52))
kéqZ

with Co, Cy 1 € @, from which it follows that U is either equal to Cy € Q



Infinite sums as linear combinations of polygamma functions 245

or transcendental. If condition (i) or (ii) holds, then arguing as in the proof
of Theorem 1(i), (ii) we find that U is transcendental.

If P(qr/2) # 0, then P(—z) = P(x + gr) and thus f is an odd function
by the hypothesis. Arguing as above we deduce that Ay i, = (—1)l_1Ak,l,
1<k<m,1<I1<I, and

q—1 m g (_1)1

U=> 1> a1

(i) +-1)

As is easily seen, if ¢ is even, then f(q¢/2) = 0 and we may assume that
t # q/2 in the last sum. Now by (2), for a positive integer t < ¢—1, t # ¢/2,

we have
t T t r r+1
o(g-3)=co(i-5+[5))

t r ~ t r r
o(1-g-5)=0re(i- L5+ [3])

where C,C € Q and [z] denotes the integer part of z. Now by (3), (23) and
Lemma 3 we get

(23)

qg—1 m

(24) U= 01+ZZZ@W

t=1 k=1 =2
t—arEqZ

Sy A (e (F= )

t=1 k=1 I=1 (=a) q
t—ax¢qZ

S s e l3))

with C1,Cyry € Q, and therefore U is either equal to C; or transcendental.
If r =0, ie., if P(x) and Q(z) are even and odd polynomials respectively,
then C1 = 0 and hence U is either zero or transcendental. If condition (iii)
is valid, then the coefficient of 7 does not vanish in (24) and we conclude
that U is transcendental. This completes the proof of the theorem. m

REMARK 3.1. If under the assumptions of Theorem 3 we have r = 0,
then either U = —f(q) >, Zi’;l Ak,l/ame or U is transcendental.
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THEOREM 4. Let k € N, r € Z, qr/2 ¢ N, P(z) € Q[z] and P(—x) =
+P(x 4 qr). Let f : Z — Q be an even or odd periodic function with period
q € N depending on whether k and deg P(z) have the same parity or not.
Suppose further that the series

& fm)P)
U=2 o g2

converges. Then the sum U 1is either a computable algebraic number or tran-
scendental. In particular, if r = 0, then U is either zero or transcendental.

Proof. For the rational function P(z)/(x — qr/2)* we have the following
partial fraction expansion:

[(deg P)/2]

_ Pl A : __ 1 pena (e
(w—qr/2)F l; s B R O T 2

and ¢ equal to 0 or 1 according to whether P(—x) = P(x +qr) or P(—x) =
—P(z + gr). Then by Lemma 1, we get

[(deg P)/2] E—§—1
_ (-1) Al e—s—a—ny(t T
U_;f@) l; -2 —1) g2 . 2)

Note that if £ and deg P have the same (distinct) parity, then k — § is even
(odd) and f is an even (odd) function by the hypothesis. Thus we have

f(t) = (=1)k%f(q—1t) and
- Zq:[(degp)/ﬂ (=DF91f ) — flg—1t) A l¢(k_5_2l_1)<£ B r)

=i =S R R .2
or
-1 [(deg P)/2] s
1) A (k—s—20—1)(t T
) QUZf Z(k?(SQZ )k5211/1 i
1=0
_1\k—6,(k—6—21—1) —E_i _
+(=1)" %) 1 T
q 2
where

(26) U= (f(a)+(=1)*°£(0))

. [(deg P)/2] (— 1)k—5—1 A wk §—21—1) 1_C
(k=0 —2l— 1)l gF-0-2 2

=0

It can be easily seen that U=0if f is an odd function; if f is even, then
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k — 0 is even and by (7) we have

N [(deg P)/2]
(27) U=C+ Y, Cno
=0

with algebraic coefficients C, C;. From (23), (3), (7) and Lemma 3 it follows
that

(k—s—2-1)(t T kb (k—s—2-1) [, t T
28) v <q 2>+( DT <1 q 2>

Finally, by (25)-(28), we find

_ lesP)/2]
U=C+ Y Cr*
=0

with 6’, 6’; € Q, and therefore either U is equal to CorU ¢ Q. Ifr =0,
then from (25), (26) it easily follows that U is either zero or transcendental.
This completes the proof of the theorem. m

The special case of Theorem 4 for the number U= L(k, x)=>_o> , x(n)/nF,
where x is an even (or odd) Dirichlet character, was proved in [10, §6].

Now consider several applications of Theorem 3 which gives us means
to construct new examples of transcendental numbers. If in Theorem 3 we
put f(n) = x(n), where x(n) is a Dirichlet character mod ¢, then the Gauss
sum

q
T(X) = Y x(k)e2mk/a
k=1
is never zero when y is a primitive character (see [4, Ch. 8]). Namely, we

have |7(x)| = /g. This gives us the following.

COROLLARY 6. Let ¢ > 1 be an integer and x be a primitive char-
acter mod q. Suppose that P(x) € Qz], P(—x) = £P(x + qr), Q(x) =

izl (x — ak)l’c for somem, 1, ..., lom € N, € Z, where oy, = a+ibyVd €
Q(ivVd)\N, k=1,...,2m, are distinct numbers such that oy = qr — oy,
b >0, bk =i, k=1,...,m, and x is an even (resp. odd) character if

deg P is even (resp. odd). If by, := min{by, > 0} is a unique minimum of
the positive numbers by and res.—q, P(2)/Q(z) # 0, then the sum

o~ P(n)
ngl W x(n)

s transcendental.
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COROLLARY 7. Let ¢ > 1 be a square-free integer with ¢ = 1 (mod 4),
and let (%) denote Jacobi’s symbol. Then

> Gn(s) 0

where P(z) € Q[z], P(—z) = P(x + qr) and Q(x) is as in Corollary 6. In

particular, the sum
S
> :
—(n*+qgn+b)m

is transcendental for any m € N, b,r € Z such that ¢°r? < 4b.

COROLLARY 8. Let ¢ > 1 be a square-free integer with ¢ = 3 (mod 4).

Then
> G (1) 2

where P(x) € Q[z], P(—x) = —P(x +qr) and Q(z) is as in Corollary 6. In

particular, the sum
i n\ (n+qr/2)*m"!
q) (n*+qrn+b)m

n=1

is transcendental for any m € N, b,r € Z such that ¢°r? < 4b.
If xo is the principal character mod ¢, then

D o) =¢(@), To)= D e = u(g),

(k)=1
where ¢ and p are the Euler and Md&bius functions, respectively (see [11,
Ch. 3]) and we have

COROLLARY 9. If q¢ > 1 is a square-free integer and xo is the principal
character mod q, then the sum

.~ P(n)
; w xo(n)

is transcendental, where P(x) € Q[z], P(—x) = P(x+qr) and the polynomial
Q(z) is as in Corollary 6. In particular, the sum of the series

i Xo(n)
— (n? + grn + b)™

is transcendental for any m € N, b,r € Z such that ¢°r? < 4b.
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COROLLARY 10. Let g > 1 be an integer and xo the principal character
mod q. Suppose that P(x),Q(x) € Q[z], P(—z) = P(x + qr) and Q(z) =
Zﬁl(x—ak)lk for some m,l1,...,lam € N,7 € Z, where oy, = ay, +ibpV/d €
Q(ivVd)\ Q, k = 1,...,2m, are distinct and such that apypy = ag, by > 0,
lotm =g, k=1,...,m. If Y10 res;—q, P(2)/Q(2) # 0, then the sum

— P(n)

E —— xo(n

2 Q) "
1s transcendental.

COROLLARY 11. Let f : Z — Q be odd, periodic with period ¢ € N. Then

the sum
oo

P(n)f(n)

is either zero or transcendental for any m,b € N and any even polynomial
P(x) with deg P < 2m.

4. Transcendence of trigonometric series

THEOREM 5. Suppose that b1, ..., [Bs € [0,2) are distinct rational num-
bers, Q(z), Pi(%), ..., Py(x) € Qla], Q&) = (2 — 1)1t ... (v — )™, where
i, am €QVA)\Z are distinct, 1y, ... L, €N, h(n) :ijl Pj(n)e™bin
and for 1 < j <s,

d -1 ifB; >0,
deg Py(z) < { eg Q(z) Z'f B;
degQ(z) —2 if B; =0.
Then the sum
o (n)
V= A
2 Q)
is either zero or transcendental.

Proof. We consider the complex integral

1 S h=(z) =

27
Ly

In Q(z) sinmz

where h™(z) = > °7_; Pj(2)e™ i1z [y is a square contour with vertices
(N +1/2)(£1 £14), and N is a large positive integer such that aq,...,an
are inside Ly. For z = £(N +1/2) + iy, y € [-N —1/2, N +1/2], we have
1 2

sin 2 emy + ey’
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and therefore,
B 2|Py(2)]
QN + 70,

|PJ(’Z)’ e—w\y|min{ﬁj,2—ﬁj}'
|Qj(2)]
If B; = 0, then from (29) it follows that

(e (Bi—1)z

Q(z)sinmz

1
(30) '271'2' S )
z=x(N+1/2)+iy
~N-1/2<y<N+1/2

Pj<z)ei7r(:6j_1)z e
Q(z) sinmz

N+1/2

: _NS_W G, % = O(%)

If 0 < B; < 2, then (29) implies

1 P;(2)em BNz

(31) ‘_ | : .
2 N1y Q) SmE
—N-1/2<y<N+1/2
1 N+1/2 .
N ~-N-1/2 N
Ifz=2+i(N+1/2), x € [-N —1/2,N +1/2], then
| 2
sinmz|  en(N+1/2) _ o—m(N+1/2)
and
39 Pj(z)e'™ (B —-1)= 2|Pj(2)| e —1(N+1/2)
(32) Q(z)sinmz |Q(2)| em(N+1/2) _ g—m(N+1/2)

1

1 .
O(W) if0 < g <2

Therefore, by (30)-(32), we conclude that Iy = O(N~!) as N — oo. On the
other hand, by the residue theorem we have

IN_iziei(}g((zZ)) sinwm> :ki %(l&(z Sln7r2> i (—IZ

=—N
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Now letting N tend to infinity we get

- Lm(aten) Eaon(eis)

k=1 k=1

)
Z=ay

which implies that V' € @(7‘(‘,67”/3/ B) for some B € N, and hence either
V=0orV¢Q. n

COROLLARY 12. If in addition to the assumptions of Theorem 5, Q(x)
is an even polynomial, then the sum

B s h(n) 4+ h(—n)
V=2 "om

is either h(0)/Q(0) or transcendental.

COROLLARY 13. Suppose that 51,32 € (0,1) U (1,2) are rational num-
bers, Q(x), Pi(z), P2(z) € Q[z] such that Pi(z),Q(z) are even polynomials,
Py(z) is an odd polynomial, deg P;j(x) < deg Q(x)—1, j = 1,2, and all roots
of Q(z) belong to Q(iv/d) \ Z. Then the trigonometric series

oo

_ Pi(0) Py (n) cos(mBin) + Pa(n) sin(mf2n)
~2Q00) 2 Q(n)

is either zero or transcendental.

Proof. We define

h(n) %Pl (n)e P — %in(n)ei”ﬁQ" if 81 # B,
n = . .
1P (n)e™n 4 LiPy(n)e™(=A0n if B = By,

w

n=1

and consider the sum
o0 oo

h(n) +h(-—n) h(0) _ P1(0) Py (n) cos(mfin)+ P (n) sin(mf2n)
270w Q0 Q0 = Q) ’

which, by Corollary 12, is either zero or transcendental. m

n=0 n=1

5. Schanuel’s conjecture and infinite sums. For more general set
of roots of the polynomials Q;(x), when not all o, are in Q(ivd), we give
some statements on the transcendence of the sums S, T, U,V provided that
the Schanuel conjecture holds (see [12, §3.1], [8, §10.7.G]).

SCHANUEL CONJECTURE (S). If a1,...,ap € C are linearly indepen-
dent over Q, then the transcendence degree over Q of the field Q( ay,. .., an,
el . ..,e") is at least n.

We formulate the following propositions, which are consequences of (S):
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CONJECTURE (S1). Let Py,...,Ps, Q1,...,Qs € Q[z], 71,...,75 € 7Z,
where for any 1 < j < s the polynomials Pj, Q; satisfy the following condi-
tions: deg P; < degQ; — 2, Q;(rj/2) #0, Qj(n) #0,n=0,1,..., and

Pi(-x) _ Pj(rj+2)
Qi(—z)  Qj(rj+x)

~~(Pi(n) - P
S‘nz:%(@l(n)* *@sm))

1s either a computable algebraic number or transcendental.

Then the sum

Proof. Under the conditions stated above, we see that for 1 < j < s,
Qj(x) = Himl (z—avj k)%, where i, are distinct algebraic numbers distinct

from non- negatwe integers and such that «;, mi+k = Tj = Ok, l]7m]+k ik
eN k=1,. . Therefore, from (16) we have
s My
(33) S=Co+> >, Zc,m
j=1k=1 I=1

a; LEZ leven

S
+ Z z]: Z ‘7 kil mlpi_1 (= cot T k),

j=1k=1 I=1

o L E7
where Cp and all the coefficients C 11, A; 1, are algebraic numbers. From
(33) it follows that S is equal to C or transcendental by (S). Indeed, suppose
that S # Cp and S is algebraic. Assume that the numbers

1 «; k Q) ke
34 -, 31’1’ el lel’
(34) AN Al
where A1,...,A\; € N, are linearly independent over Q and all the other roots

a1, are Z-linear combinations of (34). Then the numbers

T TG, ky TG,
1 N y
are also linearly independent over Q. Put
T WO, T, - -
K = Q( AJl 17”.’ )\]l l767”0@171“1/)‘17,“7@7”0‘””“1/’”)
1 !

— @(%’ eWiajlvkl/Al’ e eWiajbkl//\l) .

Then by (8S), it follows that trdeg(K : Q) = I + 1. From (33) we see that
S—Coe K. If S—Cp € Q) {0}, then there exists a non-zero polynomial
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A(z) € Z[x] such that A(S — Cp) = 0. Hence trdeg(K : Q) < [ and the
contradiction obtained proves (S;). =

REMARK 5.1. If all o), € Q(iv/d), then (S1) is true by Theorem 1.
By a similar argument we have

CONJECTURE (S2). Let Pi,...,Ps, Q1,...,Qs € Q[z], r1,...,75 € 7Z,
where for any 1 < j < s the polynomials P;,Q); satisfy the following condi-
tions: deg P; < deg@Q; — 1, Q;(r;/2) #0, Qj(n) #0,n=0,1,..., and

I)J(_:C) 1\ I)j(rj—i_x)
Qj(—x) =1 Qj(rj +x)
(P P\, .,
T‘%(Qmﬁ +Qs(n)>< D

1s either a computable algebraic number or transcendental.

Then the sum

CONJECTURE (S3). Let f : Z — Q be periodic with period q € N. Suppose
that 7 € Z, P(x),Q(x) € Qla], (Q(ar/2)? + (Q(ar/2))? # 0, Q(n) # 0,
n=12,...,

P(—x) P(xz+qr)
(%) Q) Q)
and f is an even or odd function according to whether we have the “plus’
or “minus” sign in (35). Suppose further that the series

oo
P(n)
U= —— f(n
2 o 1™
converges. Then U is either a computable algebraic number or transcen-

dental.

CONJECTURE (S4). Suppose that fy,...,[Bs € [0,2) are distinct ratio-
nal numbers, Q(x), Pi(x),...,Ps(x) € Q[z], Q(n) # 0, n € Z, h(n) =
2;21 Pj(n)ei”ﬁj", and for 1 < j <'s, deg Pj(z) < degQ(z)—1if0 < §; <2
and deg Pj(z) < deg Q(x) — 2 if ; = 0. Then the sum

= h(n)
V= —
2 Q)

n=—oo

4

s either zero or transcendental.
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