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1. INTRODUCTION

A typical arithmetic equidistribution theorem says something like the
following: if X is an algebraic variety over a global field K that has an
arithmetic height function h, then for each place v of K there exists an an-
alytic space Xan

v and a measure µv supported on it so that the Galois orbits
of any suitably generic sequence of algebraic points with heights tending to
zero become equidistributed with respect to µv. The primary goal of this
article is to prove such a theorem when K is the function field of a smooth
curve and h and µv are intimately connected with the dynamics of a polar-
ized endomorphism of X. Arithmetic equidistribution theorems of this type
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abound in the literature of the last decade, beginning with the pioneering
work of Szpiro/Ullmo/Zhang [SUZ97]. For a nice survey, see the recent text
by Silverman [Sil07, Section 3.10].

A (polarized algebraic) dynamical system (X,ϕ,L) defined over a field
K consists of a projective variety X/K, an endomorphism ϕ of X, and an
ample line bundle L on X such that ϕ∗L ∼= Lq for some integer q ≥ 2.
The line bundle L is often referred to as a polarization of the dynamical
system. A preperiodic point x ∈ X is a closed point such that the forward
orbit {ϕn(x) : n = 1, 2, . . .} is finite. In studying the arithmetic of algebraic
dynamical systems, one might ask if, for example, the set of K-rational
preperiodic points is Zariski dense in X. We present a criterion in §5 for
non-Zariski density as a corollary to the main equidistribution theorem of
this paper.

Perhaps the best-known example of an algebraic dynamical system is
(A, [2], L), where A is an abelian variety over K, [2] is the multiplication by 2
morphism, and L is a symmetric ample line bundle on A (i.e., [−1]∗L ∼= L).
In this case, torsion points of A are the same as preperiodic points for
the morphism [2]. Another important example of a dynamical system is
(PdK , ϕ,O(1)) for some finite endomorphism ϕ of PdK . If (z0 : · · · : zd) are
homogeneous coordinates on projective space, then ϕ can be described more
concretely by giving d+ 1 homogeneous polynomials fi of degree q without
a common zero over K and setting ϕ = (f0 : · · · : fd). This is in a sense a
“universal dynamical system” because any other dynamical system can be
embedded in one of this type. (See the paper of Fakhruddin [Fak03] for an
explanation.)

To state a version of our theorem, we set the following notation. Let
B be a proper smooth geometrically connected curve over a field k. Let
K = k(B) be the function field of B. The places of K—i.e., equivalence
classes of non-trivial valuations on K that are trivial on k—are in bijective
correspondence with the closed points of B. For a place v, denote by Kv

the completion of K with respect to v. The Berkovich analytification of the
scheme XKv will be denoted by Xan

v . It is a compact Hausdorff topological
space with the same number of connected components as XKv . For any
dynamical system (X,ϕ,L), there exists a measure µϕ,v on Xan

v that is
invariant under ϕ; it reflects the distribution of preperiodic points for the
morphism ϕ. Also, each closed point x of X breaks up into a finite set
of points Ov(x) in Xan

v , and we can define local degrees degv(y) for each
y ∈ Ov(x) such that

∑
y∈Ov(x) degv(y) = deg(x). To the set Ov(x), we can

associate a probability measure on Xan
v by

1
deg(x)

∑
y∈Ov(x)

degv(y)δy.
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There also exists a dynamical height function hϕ on closed points of X
defined via intersection theory, so that hϕ(x) measures the “arithmetic and
dynamical complexity” of the point x. For example, hϕ(x) = 0 if x is a
preperiodic point for ϕ.

Theorem 1.1. Let (X,ϕ,L) be an algebraic dynamical system over the
function field K. Suppose {xn} is a sequence of closed points of X such that

• no infinite subsequence of {xn} is contained in a proper closed subset
of X, and
• hϕ(xn)→ 0 as n→∞.

Then for any place v of K, and for any continuous function f : Xan
v → R,

we have
lim
n→∞

1
deg(xn)

∑
y∈Ov(xn)

degv(y)f(y) =
�

Xan
v

f dµϕ,v.

That is, the sequence of measures
{

1
deg(xn)

∑
y∈Ov(xn) degv(y)δy

}
n

converges
weakly to µϕ,v.

Theorem 1.1 is a simplified form of Theorem 4.1, which is the main result
of this paper. In the latter result, we prove that generic nets of small subva-
rieties are equidistributed. See Section 4 for the statement. The proof follows
the technique espoused in the work of Yuan [Yua08] using the “classical”
version of Siu’s Theorem from algebraic geometry.

Several equidistribution theorems in the function field case already exist
in the literature. The work of Baker/Hsia [BH05] and that of Baker/Rumely
[BR06] deal with polynomial maps and rational maps on the projective line,
respectively. These papers approach equidistribution using nonarchimedean
capacity and potential theory. Favre/Rivera-Letelier give a quantitative form
of equidistribution for rational maps on the projective line, which should ap-
ply to the function field case despite the fact that they state their results for
number fields [FRL06, FRL07]. Petsche has proved a quantitative equidistri-
bution result for points of small Néron–Tate height on elliptic curves using
Fourier analysis [Pet07]. Gubler has approached equidistribution using arith-
metic intersection techniques (following Szpiro/Ullmo/Zhang). He gives an
equidistribution result for abelian varieties that admit a place of totally
degenerate reduction [Gub07]. He has recently and independently proved
equidistribution results essentially equivalent to our Theorems 1.1 and 4.1
[Gub08]. The work of Petsche and Gubler holds also over the function field
of a smooth projective variety equipped with an ample divisor class.

In Section 2 we state and prove all of the tools of arithmetic intersection
theory over function fields necessary for the task at hand. This will only re-
quire the use of intersection theory of first Chern classes in classical algebraic
geometry and a small amount of formal and analytic geometry. Our approach
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is novel in that it is developed from global rather than local intersection
theory. The associated measures and height functions will be introduced in
that section as well. Section 3 is devoted to recalling the construction of
invariant metrics for dynamical systems, the dynamical height hϕ, and the
associated invariant measure µϕ,v. We state and prove the main equidistri-
bution theorem in Section 4. Finally, in Section 5 we discuss applications of
the equidistribution theorem to the distribution of preperiodic points and to
the Zariski density of dynamically small points. Section 6 contains several
auxiliary results whose proofs could not be located in the literature.

2. ARITHMETIC INTERSECTION THEORY OVER FUNCTION FIELDS

In this section we collect some definitions and facts from intersection
theory needed for the calculation of heights and for the proof of the main
theorem. The basic principle is that heights can be computed via (limits
of) classical intersection numbers on models. Much has been written in
the literature on the subject of local intersection theory. Bloch/Gillet/Soulé
have studied nonarchimedean local intersection theory by formally defining
arithmetic Chow groups using cycles on special fibers of models [BGS95].
Gubler carries out a very careful study of local intersection theory on special
fibers of formal schemes in a more geometric fashion, and then he patches
it together into a global theory of heights using his theory of M -fields
[Gub97, Gub98, Gub03]. One can avoid most of the technical difficulties
that arise in these approaches by working almost exclusively with classical
intersection theory on models of an algebraic variety; this requires a lemma
of Yuan to lift data from a local model to a global model (Lemma 2.7).
The upshot is that this treatment uses only ideas from algebraic geometry
and a small input from formal geometry, and it works for any field k of
constants.

Most of these ideas appear in the literature on adelic metrics and height
theory. We have endeavored to give complete proofs when the literature does
not provide one or when the known proof for the number field case requires
significant modification.

2.1. Notation and terminology

2.1.1. When we speak of a variety , we will always mean an integral
scheme, separated and of finite type over a field. We do not require a variety
to be geometrically integral. Throughout, we fix a field k of constants, and
a proper smooth geometrically connected k-curve B. At no point do we
require that the constant field k be algebraically closed. Denote by K the
field of rational functions on B.
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2.1.2. The field K admits a set of nontrivial normalized valuations that
correspond bijectively to the closed points of B. The correspondence asso-
ciates to a point v ∈ B the valuation ordv on the local ring OB,v at v, which
is a discrete valuation ring by smoothness. The normalization of v is such
that a uniformizer in OB,v has valuation 1. Extend ordv to K by additivity.
Such a valuation will be called a place of K. We will often identify closed
points of B with places of K without comment unless further clarification
is necessary.

The places of K satisfy a product formula. For a ∈ K, set |a|v =
exp{− ordv(a)}. Then for any a ∈ K×, we have∏

v∈B

|a|[k(v):k]v = 1,

where k(v) is the residue degree of the point v. This formula appears more
frequently in its logarithmic form, in which it asserts that a rational function
has the same number of zeros as poles when counted with the appropriate
weights: ∑

v∈B

[k(v) : k] ordv(a) = 0.

2.1.3. Now let X be a projective variety over K. Given an open sub-
variety U ⊂ B, a U -model of X consists of the data of a k-variety X ,
a projective flat k-morphism X → U , and a preferred K-isomorphism
ι : X ∼→ XK . In most cases the morphism X → U and the isomorphism ι
will be implicit, and we will use them to identify X with the generic fiber
of X . If L is a line bundle on X, a U -model of the pair (X,L) is a pair
(X ,L ) such that X is a U -model of X and L is a line bundle on X
equipped with a preferred isomorphism ι∗L |XK

∼→ L (1). Again, this iso-
morphism will often be implicit. We may also say that L is a model of L.
To avoid trivialities, if we speak of a U -model (X ,L ) of a pair (X,Le)
without extra qualifier, we will implicitly assume that e ≥ 1.

For a line bundle L on a variety X /k with function field k(X ), a
rational section of L is a global section of the sheaf L ⊗k(X ). Equivalently,
a rational section is a choice of a nonempty open set U ⊂ X and a section
s ∈ L (U).

Requiring X to be projective guarantees the existence of B-models. For
example, let L be a very ample line bundle on X. Let

X ↪→ PnK ↪→ PnB = Pn ×B

be an embedding induced by L followed by identifying PnK with the generic
fiber of PnB, and define X to be the Zariski closure of X in PnB with the

(1) As is customary, we will use the terms “line bundle” and “invertible sheaf” inter-
changeably, but we will always work with them as sheaves.
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reduced subscheme structure. Let L = OX (1). Then (X ,L ) is a B-model
of (X,L). More generally, if M is any line bundle on X, then we can write
M = M1⊗M∨2 for some choice of very ample line bundles M1 and M2. The
procedure just described gives a means of constructing B-models (Xi,Mi)
of (X,Mi). By the Simultaneous Model Lemma (Lemma 2.2 below), there
exists a single B-model X of X as well as line bundles M ′

i on X such
that (X ,M ′

i ) is a B-model of (X,Mi). Evidently, (X ,M ′
1 ⊗ (M ′

2)∨) is a
B-model of (X,M).

2.1.4. For each place v of K, we let Kv be the completion of K with
respect to the valuation v. Let K◦v be the valuation ring of Kv.

We now briefly recall the relevant definitions from formal and analytic
geometry. For full references on these topics, see [Ber90, §2, 3.4], [Ber94, §1]
and [BL93]. For each place v of K, let Xan

v be the Berkovich analytic space
associated to the Kv-scheme XKv . It is a compact Hausdorff topological
space equipped with the structure of a locally ringed space. The space Xan

v

is covered by compact subsets of the form M (A ), where A is a strictly
affinoid Kv-algebra and M (A ) is its Berkovich spectrum. As a set, M (A )
consists of all bounded multiplicative seminorms on A . The definition of the
analytic space Xan

v includes a natural surjective morphism of locally ringed
spaces ψv : Xan

v → XKv . If L is a line bundle on X, there is a functorially
associated line bundle Lv on Xan

v defined by ψ∗v(L⊗K Kv).
A continuous metric on Lv, denoted ‖ · ‖, is a choice of a Kv-norm on

each fiber of Lv that varies continuously on Xan
v . More precisely, suppose

{(Ui, si)} is a trivialization of Lv where {Ui} is an open cover of Xan
v and si is

a generator of the OXan
v

(Ui)-module Lv(Ui). Then the metric ‖·‖ is defined by
a collection of continuous functions %i : Ui → R>0 satisfying an appropriate
cocycle condition by the formula ‖s(x)‖ = |σ(x)|%(x), where s is any section
of Lv over Ui and σ is the regular function on Ui such that s = σsi. Here
|σ(x)| denotes the value of the seminorm corresponding to the point x at
the function σ (2). A formal metric ‖ · ‖ on the line bundle Lv is one for
which there exists a trivialization {(Ui, si)} such that the metric is defined
by %i ≡ 1. Equivalently, for this trivialization we have ‖s(x)‖ = |σ(x)| with
s and σ as above.

To an admissible formal K◦v -scheme Xv, one can associate in a functo-
rial way its generic fiber Xv,η, which is an analytic space in the sense of
Berkovich. For us, the most important example will be when Xv is the for-
mal completion of a proper flat K◦v -scheme with generic fiber X/Kv. In this

(2) Several authors (e.g., [BG06]) speak of bounded continuous metrics on L ⊗ Cv
over XCv , where Cv is the completion of an algebraic closure of Kv. Bounded and con-
tinuous metrics in their context are equivalent to our notion of continuous metric by
compactness of the Berkovich analytic space Xan

v .
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setting, properness implies there is a canonical isomorphism Xv,η
∼→ Xan

v

[Con99, Thm. A.3.1]. A formal line bundle Lv on Xv determines a formal
metric on Lv = Lv ⊗Kv as follows. Let {(Ui, si)} be a formal trivialization
of Lv. Then the generic fiber functor gives a trivialization of Lv, namely
{(Ui,η, si)}. We set %i ≡ 1. This definition works (i.e., the functions %i trans-
form correctly) because the transition functions for the cover {(Ui,η, si)} all
have supremum norm 1 [Gub98, §7].

For an open subscheme U ⊂ B, a U -model (X ,L ) of the pair (X,Le)
determines a family of continuous metrics, one on Lv for each place v of U .
Indeed, let X̂v be the formal completion of the scheme XK◦v along its closed
fiber, and let L̂v be the formal completion of L . As XK◦v is K◦v -flat, we
know that X̂v is flat over K◦v , hence admissible. We denote by ‖ · ‖L ,v the
formal metric on L̂v ⊗Kv

∼= Lev. A metric ‖ · ‖1/eL ,v on Lv can then be given

by defining ‖`‖1/eL ,v = ‖`⊗e‖1/eL ,v for any local section ` of Lv.
There is an important subtlety here that is worth mentioning. If (X ,L )

is a B-model of (X,OX) and v is a place of B, then we get a metric ‖ · ‖ =
‖ · ‖L ,v on OXan

v
. However, OX

∼→ OnX for any positive integer n via the
canonical isomorphism given by 1 7→ 1⊗n, and so we just as easily view
(X ,L ) as B-model of (X,OnX). The metric induced on OXan

v
by this B-

model is given by ‖ · ‖1/n.

2.1.5. An adelic metrized line bundle L on X consists of the data of a
line bundle L on X and, for each place v ∈ B, a continuous metric ‖ · ‖v
on the analytic line bundle Lv subject to the following adelic coherence
condition: there exists an open subscheme U ⊂ B, and a U -model (X ,L )
of the pair (X,Le) for some positive integer e, such that at all places v in
U we have equality of the metrics ‖ · ‖v = ‖ · ‖1/eL ,v. The adelic metrized
line bundle L will be called semipositive if there exists an open subscheme
U ⊂ B, a sequence of positive integers en and a sequence of B-models
(Xn,Ln) of the pairs (X,Len) such that

• Ln is relatively semipositive for all n: it has nonnegative degree on
any curve in a closed fiber of X (3);
• for each place v of U , we have equality of the metrics ‖ · ‖v = ‖ · ‖1/enLn,v

for all n; and
• for each place v 6∈ U , the sequence of metrics ‖ · ‖1/enLn,v

converges
uniformly to ‖ · ‖v on Xan

v .

(3) Modern algebraic geometers would probably call this line bundle relatively nef,
but we preserve the term “relatively semipositive” for historical reasons.
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The distance between two metrics ‖ · ‖1,v and ‖ · ‖2,v on Lv is given by

distv(‖ · ‖1,v, ‖ · ‖2,v) = max
x∈Xan

v

∣∣∣∣log
‖s(x)‖1,v
‖s(x)‖2,v

∣∣∣∣,
where s is any local section of Lv that does not vanish at x. The quo-
tient inside the logarithm is independent of the choice of s and defines a
non-vanishing continuous function on the compact space Xan

v . This im-
plies the existence of the maximum. A sequence (‖ · ‖n,v)n of metrics on
Lv is said to converge uniformly to the metric ‖ · ‖v if distv(‖ · ‖n,v, ‖ · ‖v)
→ 0 as n → ∞. By abuse of notation, in the definition of semipositive
metrized line bundle we may say that the B-models Ln converge uniformly
to L.

An adelic metrized line bundle is called integrable if it is of the form
L1 ⊗ L∨2 for two semipositive metrized line bundles L1 and L2. We denote
by Pic(X) the group of integrable adelic metrized line bundles on X (under
tensor product). Semipositive metrized line bundles form a semigroup inside
Pic(X). (This follows from Lemma 2.2 and the fact that the tensor product
of nef line bundles is nef.)

2.2. Arithmetic intersection numbers. Given d + 1 integrable me-
trized line bundles L0, . . . , Ld, we wish to define the arithmetic intersection
number ĉ1(L0) · · · ĉ1(Ld). In the present situation, this is accomplished by
approximating the metrics on these line bundles by using B-models, per-
forming an intersection calculation on the B-models, and then passing to a
limit. This procedure appears in the work of Zhang for the number field set-
ting [Zha95b], and we devote this section to proving it works very generally
for function fields of transcendence degree one.

Those well acquainted with intersection products in Arakelov theory will
find little surprising in Theorem 2.1 below and probably nothing new in its
proof. However, the literature on the subject appears only to contain these
facts and their proofs in the case where K is a number field or when K
is a function field over an algebraically closed field k [Gub07, §3]. Here we
have removed the hypothesis that k is algebraically closed, with the only
consequence being that a residue degree appears in some of the formulas.
The benefit is that the proofs are global and algebraic in nature rather than
local and formal.

For a projective variety Y over a field k, we will almost always iden-
tify a zero cycle

∑
nP [P ] with its degree

∑
nP [k(P ) : k]. For a line

bundle L on Y , we write c1(L) to denote the first Chern class valued
in A1(Y ), the group of codimension-1 cycles on Y . When Y has dimen-
sion d, we will write degL1,...,Ld

(Y ) or c1(L1) · · · c1(Ld) instead of the more
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correct form deg(c1(L1) · · · c1(Ld) · [Y ]). Similarly, we may write degL(Y )
for c1(L)d.

Theorem 2.1. Let X be a projective variety of dimension d over the
function field K. There exists a pairing ĉ1(L0) · · · ĉ1(Ld) on Pic(X)d+1 with
the following properties:

(i) Let X be a B-model of X and let L0, . . . ,Ld be models on X of
the line bundles Le00 , . . . , L

ed
d for some positive integers e0, . . . , ed.

If L0, . . . , Ld are the associated adelic metrized line bundles with
underlying algebraic bundles L0, . . . , Ld, then

ĉ1(L0) · · · ĉ1(Ld) =
c1(L0) · · · c1(Ld)

e0 · · · ed
.

(ii) Let L1, . . . , Ld be semipositive metrized line bundles and take L0

and L′0 to be two integrable metrized lined bundles with the same
underlying algebraic bundle L0. The metrics of L0 and L′0 agree at
almost all places, and if ‖ · ‖0,v and ‖ · ‖′0,v are the corresponding
metrics at the place v, then

|ĉ1(L0 ⊗ (L′0)∨)ĉ1(L1) · · · ĉ1(Ld)|
≤ degL1,...,Ld

(X)
∑
v∈B

[k(v) : k] distv(‖ · ‖0,v, ‖ · ‖′0,v).

(iii) ĉ1(L0) · · · ĉ1(Ld) is symmetric and multilinear in L0, . . . , Ld.
(iv) Let Y be a projective variety over K, and suppose ϕ : Y → X is a

generically finite surjective morphism. Then

ĉ1(ϕ∗L0) · · · ĉ1(ϕ∗Ld) = deg(ϕ)ĉ1(L0) · · · ĉ1(Ld).

Moreover , the pairing on Pic(X)d+1 is uniquely defined by (i) and (ii).

The proof of this theorem will occupy the remainder of Section 2.2.

2.2.1. Preliminary lemmas. In order to define the pairing and show it
is well-defined, we need a number of preliminary facts. The following result
allows one to take metrics induced from line bundles on several different
models of X and consolidate the data on a single B-model of X.

Lemma 2.2 (Simultaneous Model Lemma). Let (X1,L1), . . . , (Xn,Ln)
be B-models of the pairs (X,L1), . . . , (X,Ln), respectively. Then there exists
a single B-model X along with B-morphisms pri : X →Xi that restrict to
isomorphisms on the generic fiber. For each i, the line bundle L ′

i = pr∗i Li

is a model of Li such that for each place v of K, the corresponding metrics
on Li,v satisfy ‖ · ‖Li,v = ‖ · ‖Li′ ,v

. If Li is nef on Xi, then L ′
i is nef

on X .
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Proof. Suppose that n = 2; the general case is only notationally more
difficult. Consider the following commutative diagram:

X

$$

∆

%%KKKKKKKKKK

%%

X1 ×B X2 pr2
//

pr1
��

X2

��
X1

// B

The maps Xi → B are the structure morphisms. The map ∆ is the diagonal
embedding of X in the generic fiber of X1 ×B X2, which is just X ×K X,
and the square is the fiber product. Let X be the Zariski closure of ∆(X)
in X1 ×B X2 with the reduced subscheme structure; it is a B-model of X
via the diagonal map as preferred isomorphism on the generic fiber. When
restricted to ∆(X), the projections pri are isomorphisms, and so they induce
isomorphisms between the generic fibers of X and Xi. Let L ′

i = pr∗i Li|X .
The metrics on a line bundle L ′ are unchanged by pullback through a

B-morphism X →X ′ that restricts to an isomorphism on the generic fiber.
Indeed, completing at the closed fiber over v gives a morphism of admissible
formal K◦v -schemes f : X→ X′. Over open sets

Spf A ′ ⊂ X′ and Spf A ⊂ f−1(Spf A ′) ⊂ X

where the line bundles L′ and f∗L′ are trivial, flatness of these algebras
over K◦v implies that we have a commutative diagram of inclusions:

A ′
α //

��

A

��
A ′ ⊗K◦v Kv

// A ⊗K◦v Kv

Over these open sets, the formal metrics on L′ and on f∗L′ are given at x
by evaluation [Gub98, Lemma 7.4]; i.e., for any local section s of L′ defined
near x corresponding to an element σ ∈ A ′, we have

‖f∗(s)(x)‖f∗L′ = |α(σ)(x)| = |σ(x)| = ‖s(x)‖L′ ;
the middle equality follows because f is an isomorphism on the generic fiber.

The final claim of the lemma is simply the fact that the pullback of a
nef line bundle is nef (which follows from the projection formula for classical
intersection products).

Next we show that intersection numbers vary nicely in fibers over the
base curve B. This is well-known for fibers over the closed points of B (cf.
[Ful98, §10.2, “Conservation of Number”]), but we are also interested in
comparing with the generic fiber.
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Lemma 2.3. Let X be a projective variety over K of dimension d, let
L1, . . . , Ld be line bundles on X, π : X → B a B-model of X, and
L1, . . . ,Ld models of L1, . . . , Ld on X . Then for any closed point v ∈ B,
we have the equality

[k(v) : k] degL1,...,Ld
(X) = c1(L1) · · · c1(Ld) · [Xv],

where Xv is the (scheme-theoretic) fiber over v.

Proof. As B is regular, we may speak of its Cartier and Weil divisors
interchangeably. Note that [Xv] is the cycle associated to the Cartier divisor
π∗[v]. Indeed, each is cut out on X by the image of a local equation for the
point v under the map OB → OX .

Now we proceed by induction on d = dimX. If d = 0, then X = SpecF
corresponds to a finite extension of fields F/K. Also, π : X → B is a proper
surjection of curves. Hence

deg([Xv]) = deg(π∗[v]) = deg(π∗π∗[v])
= [k(X ) : k(B)] deg([v]) (projection formula)
= [F : K][k(v) : k],

which is exactly what we want.
Next assume the result holds for all K-varieties of dimension at most

d− 1, and let dimX = d. Let sd be a rational section of Ld. Write [div(sd)]
= Dh + Df , where Dh is horizontal and Df is vertical on X . Then
Df · [Xv] = Df · [π∗[v]] = 0 in the Chow group because we may use linear
equivalence on B to push π∗[v] away from the support of Df . In the next
computation, we use the letter Y to denote an arbitrary horizontal prime
divisor on X , and we set Y = YK , the generic fiber of Y . This gives a bi-
jective correspondence between horizontal prime divisors on X and prime
divisors on X. Moreover, OX,Y = OX ,Y for any such prime divisor, and
codim(Y,X) = codim(Y ,X ). Now we compute:

c1(L1) · · · c1(Ld) · [Xv] = c1(L1) · · · c1(Ld−1) · [π∗[v]] · [div(sd)]
= c1(L1) · · · c1(Ld−1) · [π∗[v]] ·Dh

=
∑

Y ⊆supp(Dh)
codim(Y ,X )=1

ordY (sd)c1(L1|Y ) · · · c1(Ld−1|Y ) · [π∗[v]|Y ]

= [k(v) : k]
∑

Y⊆supp(Dh∩X)
codim(Y,X)=1

ordY (sd|X) degL1|Y ,...,Ld−1|Y (Y )

= [k(v) : k]c1(L1) · · · c1(Ld−1) · [div(sd|X)]

= [k(v) : k] degL1,...,Ld
(X).

In the third to last equality we applied the induction hypothesis.
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The next lemma allows us to see what happens to metrics after pullback
through a morphism of B-models.

Lemma 2.4. Let ϕ : Y → X be a morphism of projective K-varieties.
Let L be a line bundle on X and (X ,L ) a B-model of the pair (X,L).

(i) There exists a B-model Y of Y and a B-morphism ϕ̃ : Y → X
such that ϕ̃K = ϕ.

(ii) For any B-morphism ϕ̃ as in (i), the pair (Y , ϕ̃∗L ) is a B-model
of the pair (Y, ϕ∗L), and for each v we have the equality of metrics
ϕ∗‖ · ‖L ,v = ‖ · ‖eϕ∗L ,v.

Proof. Let Y0 be any B-model of Y . Define jX : X ↪→ X to be the
inclusion of the generic fiber (always implicitly precomposed with the pre-
ferred isomorphism ι : X ∼→ XK), and similarly for jY : Y ↪→ Y0. Let
Γϕ : Y → Y ×K X be the graph morphism. Consider the commutative
diagram

Y jX◦ϕ

##

eΓϕ
$$JJJJJJJJJJ

jY

%%

Y0 ×B X pr2
//

pr1
��

X

��
Y0

// B

where Γ̃ϕ = (jY × jX) ◦ Γϕ. Define Y to be the Zariski closure of Γ̃ϕ(Y )
in Y0 ×B X with the reduced subscheme structure, and give it the obvious
structure as a flat proper B-scheme. Let ϕ̃ = pr2|Y . The graph morphism
Γϕ gives the preferred isomorphism between Y and the generic fiber of Y .
With this identification, it is evident that ϕ̃K = ϕ.

For any ϕ̃ : Y → X such that ϕ̃K = ϕ, we find that (Y , ϕ̃∗L ) is a
B-model of (Y, ϕ∗L) because passage to the generic fiber commutes with
pullback of line bundles.

The final statement of the lemma is a consequence of the compatibility
of the generic fiber functor for admissible formal schemes and the pullback
morphism. Let ϕ̂v : X̂v → Ŷv be the morphism induced between the for-
mal completions of X and Y , respectively, along their closed fibers over v,
and let L̂v be the formal completion of L . The metric ‖ · ‖L ,v is deter-
mined by a formal trivialization {(Ui, si)} of L̂v and a collection of functions
%i : Ui,η → R>0. (Recall that Ui,η is the generic fiber of Ui, and that {Ui,η}
is a cover of Xan

v .) If ϕan
v : Y an

v → Xan
v is the induced morphism between

analytic spaces, we find that (ϕan
v )−1(Ui,η) = ϕ̂−1

v (Ui)η; i.e., pullback com-
mutes with formation of the generic fiber. Therefore both metrics ϕ∗‖ · ‖L ,v
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and ‖ · ‖eϕ∗L ,v are given by the cover {((ϕan
v )−1(Ui,η), (ϕan

v )∗(si))} and the
functions %i ◦ ϕan

v : (ϕan
v )−1(Ui,η)→ R>0.

Next we prove an estimate that indicates the dependence of intersection
numbers for line bundles on the metrics induced by them. In the course of
the proof we shall need to relate special values of the metric on a section of
the model to the orders of vanishing of the section. We recall now how this
works. Let (X ,L ) be a B-model of (X,OX) with X normal, and let s be
a rational section of L that restricts to the section 1 on the generic fiber.
Write [div(s)] =

∑
v

∑
j ordWv,j (s)[Wv,j ], where {Wv,j}j are the distinct

irreducible components of the fiber Xv over the point v. Let us also write
[Xv] =

∑
jm(v, j)[Wv,j ] for some positive integers m(v, j).

There exists a surjective reduction map r : Xan
v → Xv, and for each

component Wv,j , there is a unique point ξv,j ∈ Xan
v mapping to the generic

point of Wv,j . See [Ber94, §1] for the construction of the reduction map and
an argument that shows its image is closed. We will now give an argument
to conclude that its image contains the generic points of Xv.

The fiber Xv is unchanged if we replace X by X ×B Spec OB,v. Let ηv,j
be the generic point of Wv,j , and let SpecA be an affine open subscheme
containing ηv,j . Set Â to be the mv-adic completion of A, where mv is the
maximal ideal of OB,v, and set A = Â ⊗K◦v Kv to be the corresponding
strict Kv-affinoid algebra. Define a multiplicative seminorm on A by

|a| =
{

exp(− ordWv,j (a)/m(v, j)), a 6= 0,
0, a = 0.

Extending | · | to Â by continuity and then to A by taking fractions gives
a bounded multiplicative Kv-seminorm on A ; it corresponds to a point
ξv,j ∈ M (A ) ⊂ Xan

v such that r(ξv,j) = ηv,j . Uniqueness follows from the
fact that any x ∈ r−1(ηv,j) induces a valuation on Frac(A) whose valuation
ring dominates OX ,ηv,j . But by normality, the two valuation rings must
coincide, and hence x = ξv,j .

Finally, note that if the rational section s of L corresponds to a rational
function σ ∈ Frac(A), then the definitions immediately imply that

(1) − log ‖1(ξv,j)‖L ,v = − log |σ(ξv,j)| =
ordWv,j (s)
m(v, j)

.

Compare with [CL06, 2.3].

Lemma 2.5. Let X be a B-model of X, and suppose L1, . . . ,Ld on X
are relatively semipositive models of line bundles L1, . . . , Ld on X. Let L0

be another line bundle on X and L0 and L ′
0 two models of L0. Then the

metrics on L0 induced by L0 and L ′
0 differ at only finitely many places v,
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and we have

|c1(L0 ⊗ (L ′
0)∨)c1(L1) · · · c1(Ld)|
≤ degL1,...,Ld

(X)
∑
v∈B

[k(v) : k] distv(‖ · ‖L0,v, ‖ · ‖L0,v′).

Proof. First note that since L0 and L ′
0 restrict to the same line bundle

on the generic fiber, they must be isomorphic over some nonempty open
subset U ⊂ B. The places corresponding to points of B r U are finite in
number, and these are the only places at which the metrics of L0 and L ′

0

can differ.
We may reduce to the case that X is normal. Indeed, let ϕ̃ : X̃ → X

be the normalization morphism. Endow X̃ with the structure of B-scheme
via composition of ϕ̃ with the structure morphism for X . Define ϕ = ϕ̃K .
Then ϕ and ϕ̃ have degree 1, so the projection formula for classical intersec-
tion products shows that intersection numbers in the above inequality are
unaffected by pullback to X̃ and (X̃ )K . To see that the distance between
the metrics is unaffected, we note that by Lemma 2.4, ‖ ·‖eϕ∗L ,v = ϕ∗‖ ·‖L ,v

for any line bundle L on X . Since the morphism ϕan : X̃ an
Kv
→ X an

Kv
is

surjective, we find

distv(ϕ∗‖ · ‖L0,v, ϕ
∗‖ · ‖L ′0,v) = distv(‖ · ‖L0,v, ‖ · ‖L ′0,v).

Thus we may replace X , X, and Li by X̃ , (X̃ )K , and ϕ̃∗Li, respectively.
Note that ϕ̃∗Li is relatively semipositive by the projection formula.

Finally, it suffices to prove that if L0 is any model of the trivial bundle
on X, then

|c1(L0) · · · c1(Ld)| ≤ degL1,...,Ld
(X)

∑
v

[k(v) : k]{ max
x∈Xan

v

|− log ‖1(x)‖L0,v|}.

Let s be a rational section of L0 that restricts to the section 1 on the generic
fiber. Write [div(s)] =

∑
v

∑
j ordWv,j (s)Wv,j and [Xv] =

∑
jm(v, j)Wv,j as

in the remarks preceding this lemma. The function x 7→ − log ‖1(x)‖L0,v

must assume its maximum value at one of the ξv,j [Ber90, 2.4.4]. Using (1),
we have
|c1(L0) · · · c1(Ld)| ≤

∑
v

∑
j

|ordWv,j (s)| |c1(L1) · · · c1(Ld) · [Wv,j ]|

=
∑
v

∑
j

|− log ‖1(ξv,j)‖L0,v|m(v, j)c1(L1) · · · c1(Ld) · [Wv,j ]

≤
∑
v

{ max
x∈Xan

v

|− log ‖1(x)‖L0,v|}c1(L1) · · · c1(Ld) · [Xv].

In the second inequality we dropped the absolute values on the intersection
with Wv,j by using the relative semipositivity of the line bundles L1, . . . ,Ld.
The result now follows immediately from Lemma 2.3.
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2.2.2. Existence of the intersection pairing. Now we define the intersec-
tion pairing. We will proceed in several steps. Unless stated otherwise, we
let X be a projective variety over K, and L0, . . . , Ld will be adelic metrized
line bundles on X. The idea is to take property (i) of Theorem 2.1 as the def-
inition when the metrics are induced by models, and then to use Lemma 2.5
to control the intersection number when passing to limits of model metrics.

Step 1 (Metrics induced by relatively semipositive models). Suppose
that (Xi,Li) is a B-model of (X,Leii ) that induces the given metric on
Li, and suppose further that each Li is relatively semipositive. Using the
Simultaneous Model Lemma (Lemma 2.2), we obtain a single B-model X
and models of the Leii that induce the given metric on Li. We abuse notation
and denote these models on X by Li. Then we define

ĉ1(L0) · · · ĉ1(Ld) =
c1(L0) · · · c1(Ld)

e0 · · · ed
.

To see that this is well-defined, it suffices to take X ′ to be another B-model
of X and L ′

i to be models of Le
′
i
i that also induce the given metrics. (Note

that the exponents e′i need not equal the ei.) In order to prove that this
data gives the same intersection number, it is enough to prove that

c1((L ′
0)e0) · · · c1((L ′

d)
ed) = c1(L e′0

0 ) · · · c1(L e′d
d ).

By another application of the Simultaneous Model Lemma, we can find
a single B-model Y of X, birational morphisms pr : Y → X and pr′ :
Y →X ′ that are isomorphisms on generic fibers over B, and models Mi =
pr∗L e′i

i and M ′
i = pr′∗(L ′

i )
ei of Leie

′
i

i that induce the given metrics on Li.
By the projection formula, we are reduced to showing

(2) c1(M0) · · · c1(Md) = c1(M ′
0) · · · c1(M ′

d).

Observe that Mi and M ′
i may be different line bundles on Y , but they are

models of the same line bundle on X and they induce the same metrics on it.
Proving (2) uses a telescoping sum argument. To set it up, note that since

the metrics on Li induced by Mi and M ′
i agree, Lemma 2.5 shows that

c1(M0) · · · c1(Mi−1)c1(Mi ⊗ (M ′
i )
∨)c1(M ′

i+1) · · · c1(M ′
d) = 0.

Therefore

|c1(M0) · · · c1(Md)− c1(M ′
0) · · · c1(M ′

d)|

=
∣∣∣ d∑
i=0

c1(M0) · · · c1(Mi−1)c1(Mi ⊗ (M ′
i )
∨)c1(M ′

i+1) · · · c1(M ′
d)
∣∣∣

≤
d∑
i=0

|c1(M0) · · · c1(Mi−1)c1(Mi ⊗ (M ′
i )
∨)c1(M ′

i+1) · · · c1(M ′
d)|.
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Every term of the final sum is zero by the previous displayed formula. This
completes the first step.

Step 2 (Arbitrary semipositive metrized line bundles). Let L0, . . . , Ld be
semipositive metrized line bundles on X with underlying algebraic bundles
L0, . . . , Ld, respectively. For each place v, denote the metric on Li,v by ‖·‖i,v.
By definition, there exists a sequence of B-models (Xi,m,Li,m) of the pairs
(X,Lei,mi ) such that

• Li,m is relatively semipositive on Xi,m for every i,m;
• there exists an open set U ⊂ B such that for each place v ∈ U , each

index i and all m, we have ‖ · ‖1/ei,mLi,m,v
= ‖ · ‖i,v;

• for each place v 6∈ U and each i, the sequence of metrics ‖ · ‖1/ei,mLi,m,v

converges uniformly to ‖ · ‖i,v.

Define Li,m to be the semipositive metrized line bundle having algebraic
bundle Li and the metrics induced by Li,m. Now we define the arithmetic
intersection number to be

(3) ĉ1(L0) · · · ĉ1(Ld) = lim
m0,...,md→∞

ĉ1(L0,m0) · · · ĉ1(Ld,md).

Each of the intersection numbers on the right is well-defined by Step 1, so we
have to show that the limit exists and that it is independent of the sequence
of models.

To prove that the limit in (3) exists, we take two (d+1)-tuples of positive
integers (m0, . . . ,md) and (m′0, . . . ,m

′
d) and set Li = L

ei,m′
i

i,mi
, L ′

i = L
ei,mi
i,m′i

,
and ei = ei,miei,m′i . Then on the generic fibers, we have

Li|X = L
ei,m′

i
i,mi
|X = Leii , L ′

i |X = L
ei,mi
i,m′i
|X = Leii .

Further, we may assume that for each i, Li and L ′
i are line bundles on a

single B-model X (Simultaneous Model Lemma). Then our definition of
the intersection pairing in Step 1 gives

(4) ĉ1(L0,m0) · · · ĉ1(Ld,md)− ĉ1(L0,m′0
) · · · ĉ1(Ld,m′d)

=
c1(L0,m0) · · · c1(Ld,md)

e0,m0 · · · ed,md
−
c1(L0,m′0

) · · · c1(Ld,m′d
)

e0,m′0 · · · ed,m′d

=
c1(L0) · · · c1(Ld)− c1(L ′

0) · · · c1(L ′
d)

e0 · · · ed
.

Now fix ε > 0. For all places v ∈ U , we have

‖ · ‖1/eiLi,v
= ‖ · ‖1/eiL ′i ,v

= ‖ · ‖i,v.
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For v 6∈ U and mi,m
′
i sufficiently large, uniform convergence gives

distv(‖ · ‖1/eiLi,v
, ‖ · ‖1/eiL ′i ,v

) < ε.

Just as in Step 1, we use a telescoping argument and apply Lemma 2.5:

(5) |c1(L0) · · · c1(Ld)− c1(L ′
0) · · · c1(L ′

d)|

=
∣∣∣ d∑
i=0

c1(L0) · · · c1(Li−1)c1(Li ⊗ (L ′
i )
∨)c1(L ′

i+1) · · · c1(L ′
d)
∣∣∣

≤
d∑
i=0

|c1(L0) · · · c1(Li−1)c1(Li ⊗ (L ′
i )
∨)c1(L ′

i+1) · · · c1(L ′
d)|

≤
d∑
i=0

deg
L
e0
0 ,...,dLeii ,...,Ledd (X)

∑
v

[k(v) : k] distv(‖ · ‖Li,v, ‖ · ‖L ′i ,v)

< ε
d∏
i=0

ei

(∑
i

deg
L0,...,bLi,...,Ld(X)

)(∑
v 6∈U

[k(v) : k]
)
.

Combining (4) and (5) shows that the sequence {ĉ1(L0,m0) · · · ĉ1(Ld,md)} is
Cauchy, which is tantamount to showing that the limit in (3) exists.

To see that the limit in (3) is independent of the sequence of models
chosen, for each i we let {(X ′

i,m,L
′
i,m)} be another sequence of models with

associated metrics converging to the given ones on Li. Then we obtain a
third sequence

{(X ′′
i,m,L

′′
i,m)} = {(Xi,1,Li,1), (X ′

i,1,L
′
i,1), (Xi,2,Li,2), (X ′

i,2,L
′
i,2), . . .}.

This sequence also induces metrics converging uniformly to Li, so by our
above work we know that the limit in (3) exists for this sequence. Therefore
the limits over odd and even terms must agree, which is precisely what we
wanted to prove.

Note that the symmetry and multilinearity of the pairing are guaranteed
immediately by virtue of the same properties for the classical intersection
pairing.

Step 3 (Integrable metrized line bundles). Now we extend the pair-
ing by linearity since any integrable metrized line bundle L can be written
L = L′⊗(L′′)∨ with L′ and L′′ semipositive. As there may be multiple ways of
decomposing L as a difference of semipositive metrized line bundles, a ques-
tion of uniqueness arises. This, however, is easily settled using Lemma 2.5
and we illustrate it only in the simplest case to avoid unnecessary notation.

Let L1, . . . , Ld be semipositive metrized line bundles and let L be an
integrable metrized line bundle with a decomposition L = L′ ⊗ (L′′)∨ as
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above. Then

(6) ĉ1(L)ĉ1(L1) · · · ĉ1(Ld)
= ĉ1(L′)ĉ1(L1) · · · ĉ1(Ld)− ĉ1(L′′)ĉ1(L1) · · · ĉ1(Ld).

If L has a second decomposition M ′⊗ (M ′′)∨ as a difference of semipositive
metrized line bundles, it follows that L′ ⊗M ′′ = L′′ ⊗M ′. Each side of this
last equality is semipositive with the same underlying algebraic bundle and
the same metrics, and so it follows from Lemma 2.5 that

ĉ1(L′ ⊗M ′′)ĉ1(L1) · · · ĉ1(Ld) = ĉ1(L′′ ⊗M ′)ĉ1(L1) · · · ĉ1(Ld).

Splitting each side into two terms using linearity and rearranging shows that
the expression in (6) is indeed well-defined.

2.2.3. Proof of Theorem 2.1. In the previous section we constructed an
intersection pairing on Pic(X)d+1, and it is straightforward to check that
the construction gives properties (i)–(iii) by using the symmetry and mul-
tilinearity of the classical intersection product, Lemma 2.5, and a limiting
argument. Conversely, since we used (i) as our definition, and since the
behavior under limits is governed by (ii), our construction gives the only
intersection product having these two properties.

Therefore, it only remains to prove property (iv). Intuitively, the idea is
that if Y and X are B-models of Y and X, respectively, then the morphism
ϕ : Y → X extends to a rational map ϕ̃ : Y 99K X that is generically finite
and has degree equal to the degree of ϕ.

By linearity, it suffices to prove (iv) when L0, . . . , Ld are semipositive
metrized line bundles. Let us also assume for the moment that the metrics
are induced by relatively semipositive models Li of Leii . As per usual, we
may use the Simultaneous Model Lemma to suppose all of these model line
bundles live on a single B-model X of X. By Lemma 2.4 there exists a
B-model Y of Y and a morphism ϕ̃ : Y → X such that ϕ̃K = ϕ. In this
case, we find that (Y , ϕ̃∗Li) is a B-model of the pair (Y, ϕ∗Leii ). By the
projection formula for classical intersection products, we get

ĉ1(ϕ∗L0) · · · ĉ1(ϕ∗Ld) =
c1(ϕ̃∗L0) · · · c1(ϕ̃∗Ld)

e0 · · · ed
= deg(ϕ̃)

c1(L0) · · · c1(Ld)
e0 · · · ed

= deg(ϕ̃) ĉ1(L0) · · · ĉ1(Ld).

Passing to the generic fibers of Y and X over B does not change their
function fields; hence, deg(ϕ̃) = deg(ϕ). This completes the proof when the
metrics are all induced by models.

Since ϕ : Y → X is surjective, so is the induced morphism of analytic
spaces ϕan : Y an

v → Xan
v [Ber90, Prop. 3.4.6]. Therefore, if Li is an arbitrary

semipositive metrized line bundle and (Xi,Li) is a model of (X,Leii ), we
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have
distv(ϕ∗‖ · ‖1/eiLi,v

, ϕ∗‖ · ‖Li,v) = distv(‖ · ‖1/eiLi,v
, ‖ · ‖Li,v),

where ‖ · ‖Li,v denotes the given metric on Li at the place v. This shows
that if {Li,m}m is a sequence of semipositive metrized line bundles induced
from models for which the metrics converge uniformly to those of Li, then
{ϕ∗Li,m}m is a sequence of semipositive metrized line bundles for which the
metrics converge uniformly to those of ϕ∗Li. This observation coupled with
the above work in the model case gives the desired conclusion.

2.3. Model functions. In this section we fix a projective variety X
over K and a place v of K. As always, we will identify v with a closed point
of the curve B.

A function f : Xan
v → R will be called a model function if it is of the

form
f(x) = − log ‖1(x)‖1/e

for some formal metric ‖ ·‖ on OXan
v

and some positive integer e. Every such
function is continuous on Xan

v . The set of model functions forms a Q-vector
space. (The tensor product and inverse of formal metrics is again a formal
metric.) The importance of model functions stems from the following result:

Lemma 2.6 (Gubler). The space of model functions is uniformly dense
in the space of real-valued continuous functions on Xan

v .

Proof. This is the content of Theorem 7.12 of [Gub98]. One should note
that, while the author assumes at the outset of Section 7 that the field
K is algebraically closed, he makes no use of this (nor is it needed for his
references to the papers of Bosch and Lütkebohmert).

As our intersection theory for adelic metrized line bundles is defined
via intersection theory on B-models, we need to be able to relate model
functions to global models in order to perform computations with them.
A result of Yuan provides this relation.

Lemma 2.7 (Yuan). Suppose ‖ · ‖v is a formal metric on the trivial
bundle over Xan

v , e ≥ 1 is an integer , and f(x) = − log ‖1(x)‖1/ev is a model
function. Then there exists a B-model (X ,O(f)) of (X,OeX) such that the
metrics on OX determined by O(f) are trivial at all places w 6= v, and at
the place v the metric is ‖ · ‖1/ev . The line bundle O(f) admits a rational
section s such that s|X = 1 and such that the support of the divisor of s
lies entirely in the fiber over the point v ∈ B.

Proof. When e = 1, this is precisely the content of the statement and
proof of [Yua08, Lemma 3.5]. The proof executed there in the case where
K is a number field applies equally well to the present situation. To extend
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to the case e > 1, we start with a model function f(x) = − log ‖1(x)‖1/ev .
Let g = ef . We may apply the case e = 1 to the model function g to get a
B-model (X ,O(g)) of (X,OX) with trivial metrics at all places w 6= v and
the metric ‖ · ‖v at v. Now view O(g) as a model of the bundle OeX via the
canonical isomorphism OX

∼→ OeX sending 1 to 1⊗e. This is precisely the
B-model we seek, as the metric at v is now ‖ · ‖1/ev .

Momentarily we will prove a fundamental formula for intersecting the
line bundle O(f) with the Zariski closure of a point of x in some model X .
First we need some notation. If x is any closed point of X, note that x
breaks up into finitely many closed points over Kv—one for each extension
of the valuation v to the residue field K(x) at x (cf. Proposition 6.1 below).
Let Ov(x) be the image of this set of points under the canonical inclusion of
|XKv | ↪→ Xan

v , where |XKv | is the set of closed points of XKv . Another way
to view Ov(x) is as the image of {x}an

v in Xan
v . Let degv(y) = [Kv(y) : Kv]

be the degree of the residue field of the closed point y ∈ XKv as an extension
over Kv. These degrees satisfy the relation deg(x) =

∑
y∈Ov(x) degv(y). (This

is a classical fact, proved in the appendix. It can also be deduced from
the discussion at the end of Section 2.4 by integrating a nonzero constant
function.)

Lemma 2.8. Suppose f is a model function on Xan
v induced by a formal

metric on OXan
v

. Let (X ,O(f)) be a B-model of (X,OX) as in Yuan’s
lemma. If x is a closed point of X, then

(7) c1(O(f)) · [x] = [k(v) : k]
∑

y∈Ov(x)

degv(y)f(y),

where x is the Zariski closure of x in X and k(v) is the residue field of the
point v ∈ B.

Proof. We begin the proof by interpreting the contribution of a point y ∈
Ov(x) to the sum in (7) in terms of lengths of modules over a neighborhood
in the formal completion of X along the closed fiber over the point v.
Then we interpret the intersection number c1(O(f)) ·x in terms of the same
quantities by working on the formal completion of x along its closed fiber
over v.

A point y ∈ Ov(x) corresponds to a finite extension of fields Kv(y)/Kv

and a Kv-morphism SpecKv(y) → XKv . Let R be the valuation ring of
Kv(y), i.e., the integral closure of K◦v in Kv(y). By properness, we obtain
a lift to a K◦v -morphism ỹ : SpecR → XK◦v . Now take an open affine W =
SpecA around the image of the closed point of SpecR via ỹ over which
O(f) ⊗ K◦v is trivial. For topological reasons, ỹ factors through W . Set
M = (O(f) ⊗K◦v )|W ; it is a free A-module of rank 1. Then there exists a
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section u ∈ M that generates M as an A-module and, by Yuan’s lemma,
a rational section s such that s|WKv

= 1. Write s = (γ1/γ2)u for some
γ1, γ2 ∈ A.

Let mv and mR be the maximal ideals of K◦v and R, respectively. Both
of the latter are discrete valuation rings; we denote the corresponding nor-
malized valuations by ordv and ordR, respectively. (Recall that this means a
uniformizer has valuation 1.) Extend these valuations to the fraction fields
Kv and Kv(y) in the usual way. The normalized absolute value on Kv is
given by |c| = exp(− ordv(c)) for any c ∈ Kv. If ey is the ramification index
of Kv(y) over Kv, then the absolute value extends uniquely to Kv(y), and
is given by the formula |c| = exp(− ordR(c)/ey).

Passing to the mv-adic completion of everything in sight gives a mor-
phism ŷ : Spf(R) → Spf(Â), and we denote by γ̂i the image of γi in Â.
Let αby : Â → R be the induced morphism of complete K◦v -algebras. By
definition, we now have

f(y) = − log ‖1(y)‖ = − log
∣∣∣∣ γ̂1

γ̂2
(y)
∣∣∣∣ = − log

∣∣∣∣αby(γ̂1)
αby(γ̂2)

∣∣∣∣
= e−1

y ordR(αby(γ̂1)/αby(γ̂2)).

Letting kR = R/mR and kv = K◦v/mv be the relevant residue fields, we
have [Kv(y) : Kv] = ey[kR : kv]. This follows, for example, from the degree
formula for extensions of Dedekind rings. Therefore

(8) degv(y)f(y) = [kR : kv] ordR(αby(γ̂1)/αby(γ̂2)).

Note that kv is canonically isomorphic to the residue field of OB,v because
the completion of this local ring is precisely K◦v , i.e., kv ∼= k(v).

Now we turn to the intersection number c1(O(f)) · [x]. Let π : X → B
be the structure morphism, and let j : x ↪→X be the closed immersion of x
with its reduced subscheme structure. There exists a rational section s such
that supp[div(s)] is contained entirely in π−1(v), and s|X = 1. This is the
same section s that was used above (prior to restriction and base change).
As x is proper and quasi-finite over B, it is finite over B. To compute the
intersection number c1(O(f)) · [x] we may restrict to an affine neighborhood
U = SpecC of v. Let xU = SpecT , where T is a finite domain over C. We
also denote by j the morphism SpecT ↪→ XU . Let N = j∗(O(f)|XU

) be
the corresponding T -module, and we will also write s for the image of our
rational section in N . By definition, we have

(9) c1(O(f)) · [x] =
∑

t∈SpecT
closed points

[k(t) : k] ordt(s).
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Here ordt(s) = lTmt
(Tmt/σ1Tmt) − lTmt

(Tmt/σ2Tmt), where mt is the maxi-
mal ideal of T corresponding to the point t, and s corresponds to σ1/σ2 for
some σ1, σ2 ∈ Tmt under an isomorphism N ⊗ Tmt

∼→ Tmt . It is indepen-
dent of the choice of isomorphism and of the choice of σi (cf. [Ful98, Ap-
pendix A.3]).

To say that supp[div(s)] lies in the fiber over v means that ordt(s) = 0
whenever the closed point t does not lie over v. Thus localizing on the
base U in (9) preserves all of the quantities in the sum, and so we may
replace T by T ⊗C OB,v. We continue to call this semilocal ring T . But
length is preserved by flat residually trivial base extension, so we may even
pass to the mv-adic completion without affecting the quantities in (9). Now
ÔB,v = K◦v , and T̂ = T ⊗OB,v

K◦v =
∏r
i=1 T̂i, where the maximal ideals

of T are m1, . . . ,mr and T̂i is the mv-adic completion of Tmi (cf. [Mat89,
Thm. 8.15]). Note also that the residue fields of OB,v and K◦v are canonically
isomorphic. Equation (9) now becomes

(10) c1(O(f)) · [x] = [k(v) : k]
r∑
i=1

[k(t̂i) : k(v)] ordbti(ŝ),
where t̂1, . . . , t̂r are the closed points of Spec T̂ , and ŝ is the image of s in
the mv-adic completion of N .

By construction, base changing x ↪→ X to K◦v gives a commutative
diagram

Spec T̂ xK◦v //

??
??

��?
??

?

����
��

��
��

��
XK◦v

������
��

��
��

��

x //

��?
??

??
??

??
? X

��

SpecK◦v

����
��

��
��

��

B

The horizontal maps are closed immersions. By virtue of this diagram,
we see that the points of Ov(x) are in bijective correspondence with the
generic points of Spec T̂ , which in turn are in bijective correspondence
with the generic points of the disjoint closed subschemes Spec T̂i. More-
over, given y ∈ Ov(x) corresponding to the generic point of Spec T̂i, the
K◦v -morphism ỹ : SpecR → XK◦v constructed above factors through the
closed immersion Spec T̂i ↪→ XK◦v . This gives the equality of residue fields
[kR : kv] = [kR : k(t̂i)][k(t̂i) : k(v)].
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Comparing (8) and (10), we see the proof will be complete once we show
that

ordbti(ŝ) = [kR : k(t̂i)] ordR(αby(γ̂1)/αby(γ̂2)).

Again for topological reasons, SpecR→ Spec Â factors through Spec T̂i, so
we find that the composition Â→ T̂i → R equals the above homomorphism
αby : Â → R. Furthermore, the definitions are such that the elements σ̂j
used to compute ordbti(ŝ) may be chosen to correspond to αby(γ̂j) under the
homomorphism T̂i → R. As R is the integral closure of T̂i in Kv(y), the
desired equality is easily deduced from the well-known formula given below
upon setting S = T̂i and a = σ̂i.

Lemma 2.9 ([Ful98, Example A.3.1]). Let S be a one-dimensional local
noetherian domain. For any a ∈ S, we have

lS(S/aS) =
∑
R

lR(R/aR)[R/mR : S/mS ],

where the sum is over all discrete valuation rings of the fraction field of S
that dominate S.

2.4. Associated measures. As before, let X be a projective variety
of dimension d over the function field K, and fix a place v for the entirety
of this section. For semipositive metrized line bundles L1, . . . , Ld on X, we
will define a bounded Borel measure c1(L1) · · · c1(Ld) on Xan

v . In order to
avoid extra notation, we do not indicate the dependence of the measure on
the place v as it will be apparent from the context. Any model function
f : Xan

v → R induces an integrable metrized line bundle OX(f) on X, and
the measure is defined by�

Xan
v

fc1(L1) · · · c1(Ld) = ĉ1(OX(f))ĉ1(L1) · · · ĉ1(Ld).

This approach through global intersection theory has the advantage of being
technically easy to define. However, it obscures the fact (which we shall
prove) that the measure depends only on the metrics of the Li at the place v.
One could also develop local intersection theory on formal schemes over K◦v
and define the associated measures purely in terms of local intersection
products. This is the viewpoint taken by Gubler; for a nice synopsis of the
properties of local intersection theory, see [Gub07, §2]. These measures were
originally defined by Chambert-Loir [CL06] in the number field case using
the formula of Theorem 2.12(i) below, and then by passing to the limit using
the local intersection theory of Gubler [Gub98].

For f a continuous function on Xan
v , define OX(f) to be the adelic

metrized line bundle with underlying bundle OX , the trivial metric at all
places w 6= v and the metric ‖1(x)‖v = e−f(x) at v.
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Lemma 2.10. If f is a model function on Xan
v , then the adelic metrized

line bundle OX(f) is integrable.

Proof. If f = − log ‖ · ‖1/ev , then Yuan’s lemma (Lemma 2.7) allows one
to construct a B-model (X ,O(f)) of (X,OeX) such that the associated
adelic metrized line bundle is OX(f). As X is projective, we can write
O(f) = L1 ⊗ L ∨

2 for some ample line bundles L1, L2 on X . They are
a fortiori relatively semipositive, and so they induce semipositive metrized
line bundles L1, L2 such that OX(f) = L1⊗L∨2 . Thus OX(f) is integrable.

Lemma 2.11. Let X be a projective variety of dimension d over the
function field K and v a place of K. For any choice of semipositive metrized
line bundles L1, . . . , Ld, the association

f 7→ ĉ1(OX(f))ĉ1(L1) · · · ĉ1(Ld)

defines a bounded linear functional on the Q-vector space of model functions
on Xan

v with the uniform norm.

Proof. It is apparent from the definition that if f and g are two model
functions, then OX(f) ⊗ OX(g) = OX(f + g). Thus the map in question is
additive. Next note that 1

nf is a model function for any n ≥ 1 whenever
f is a model function (view OX as OnX via the isomorphism 1 7→ 1⊗n). It
is therefore an easy consequence of additivity that the map in question is
Q-linear as desired.

The map is bounded by Theorem 2.1(ii).

The space of model functions on Xan
v is dense in the linear space

C (Xan
v ,R) of real-valued continuous functions endowed with the uniform

norm by Lemma 2.6, so the association in the previous lemma extends to a
bounded linear functional on C (Xan

v ,R). By the Riesz representation theo-
rem, we may identify it with a Borel measure on Xan

v . Denote this measure
by c1(L1) · · · c1(Ld). Evidently, we require d = dimX ≥ 1 for this notation
to be sensible, an annoyance we will remedy at the end of this section.

Theorem 2.12. Let X be a projective variety of dimension d over the
function field K and v a place of K. If L1, . . . , Ld denote semipositive
metrized line bundles on X, then the following properties hold for the mea-
sures c1(L1) · · · c1(Ld):

(i) Suppose that X is normal , that X is a normal B-model of X, and
that L1, . . . ,Ld are models on X of Le11 , . . . , L

ed
d , respectively , that

induce the metrized line bundles L1, . . . , Ld. Let [Xv] =
∑
m(j)[Wj ]

with each Wj irreducible, and let δξj denote the Dirac measure at
the unique point ξj ∈ Xan

v that reduces to the generic point of Wj.
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(See the remarks preceding Lemma 2.5.) Then

c1(L1) · · · c1(Ld) =
∑
j

m(j)
c1(L1) · · · c1(Ld) · [Wj ]

e1 · · · ed
δξj .

(ii) c1(L1) · · · c1(Ld) is symmetric and multilinear in L1, . . . , Ld.
(iii) c1(L1) · · · c1(Ld) is a nonnegative measure (4).
(iv) If L1 and L′1 have the same underlying algebraic bundle and iden-

tical metrics at the place v, then

c1(L1) · · · c1(Ld) = c1(L′1) · · · c1(Ld)

as measures on Xan
v .

(v) The measure c1(L1) · · · c1(Ld) has total mass

[k(v) : k] degL1,...,Ld
(X).

(vi) If Y is another projective K-variety and ϕ : Y → X is a generically
finite surjective morphism, then

ϕ∗{c1(ϕ∗L1) · · · c1(ϕ∗Ld)} = deg(ϕ)c1(L1) · · · c1(Ld).

Proof. (i) It suffices to prove that both measures integrate the same way
against a model function of the form f = − log ‖1‖v. Use Yuan’s lemma to
choose a model (X ,O(f)) of (X,OX) and a rational section s of O(f) such
that the support of [div(s)] is contained in the fiber Xv. Then we have

�

Xan
v

fc1(L1) · · · c1(Ld) =
c1(O(f))c1(L1) · · · c1(Ld)

e1 · · · ed

=
∑
j

ordWj (s)
c1(L1) · · · c1(Ld) · [Wj ]

e1 · · · ed
.

Applying (1) of Section 2.2 shows us that ordWj (s) = m(j)f(ξj), which
implies the result.

(ii) This follows immediately from Theorem 2.1(iii).
(iii) It suffices to show that if f = − log ‖1‖v is a nonnegative model

function, then
	
Xan
v
fc1(L1) · · · c1(Ld) ≥ 0. We may also assume that all of

our metrized line bundles are induced by models L1, . . . ,Ld by using a limit
argument. Apply Yuan’s lemma to get a line bundle O(f) that induces the
metrized line bundle OX(f), and let s be a rational section of O(f) whose
associated divisor is supported in Xv. As f ≥ 0, we deduce that [div(s)] is
effective (cf. (1)). Then�

Xan
v

fc1(L1) · · · c1(Ld) = c1(L1) · · · c1(Ld) · [div(s)] ≥ 0

(4) Measure theory texts would call this a positive measure.
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because the intersection of relatively semipositive line bundles on compo-
nents of the fiber Xv is nonnegative.

(iv) It suffices to show that
�

Xan
v

gc1(L1) · · · c1(Ld) =
�

Xan
v

gc1(L′1) · · · c1(Ld)

for any model function g : Xan
v → R. In terms of intersection numbers, we

must show

ĉ1(OX(g))ĉ1(L1) · · · ĉ1(Ld) = ĉ1(OX(g))ĉ1(L′1) · · · ĉ1(Ld).

By linearity, this reduces to proving that if L1 is an integrable metrized
line bundle with underlying bundle OX and the trivial metric at v, and if
L2, . . . , Ld are arbitrary semipositive metrized line bundles, then

ĉ1(OX(g))ĉ1(L1) · · · ĉ1(Ld) = 0.

We know L1 must have the trivial metric at almost all places, so there
exist finitely many places w1, . . . , wn of K and corresponding continuous
functions fwi : Xan

wi → R such that

L1 = OX(fw1)⊗ · · · ⊗OX(fwn).

We may assume that no wi equals v. Again by linearity, we may reduce to
the case L1 = OX(fw) for some continuous function fw with w 6= v. By a
limit argument, we may further suppose that fw is a model function and
that L2, . . . , Ld are induced by models L2, . . . ,Ld on some B-model X .
Using Yuan’s lemma (and the Simultaneous Model Lemma), we can find a
line bundle O(fw) on X that induces OX(fw) and a rational section s of
O(fw) with associated divisor supported entirely in the fiber Xw. Finally,
use Yuan’s lemma again to get a line bundle O(g) on X (perhaps after
replacing X with a dominating model) equipped with a rational section t
whose divisor is supported in Xv. Then

ĉ1(OX(g))ĉ1(L1) · · · ĉ1(Ld) = c1(O(g))c1(O(fw))c1(L2) · · · c1(Ld) = 0,

since the section t is regular and invertible when restricted to Xw. Thus (iv)
is proved.

(v) Take any B-model X of X. The cycle [Xv] is a Cartier divisor,
and we can use it to define the constant model function 1. Indeed, if π is
a uniformizer of OB,v, then π is a local equation for Xv on X . Consider
the line bundle OX ([Xv]); it induces the metrized line bundle OX(f), where
f(x) = − log ‖1(x)‖v = − log |π|v = 1.

By a limiting argument we may assume that the metrized line bundles
L1, . . . , Ld are induced by models L1, . . . ,Ld of Le11 , . . . , L

ed
d , respectively.
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Now Lemma 2.3 shows
�

Xan
v

1 c1(L1) · · · c1(Ld) =
c1(L1) · · · c1(Ld) · [Xv]

e1 · · · ed

=
[k(v) : k] degLe11 ,...,L

ed
d

(X)

e1 · · · ed
.

(vi) This is an easy consequence of Theorem 2.1(iv) and the fact that
OY (f ◦ ϕ) = ϕ∗OX(f) for any continuous function f .

Parts (iii) and (v) of the above theorem indicate a natural normalization
for these measures. For a semipositive metrized line bundle L with ample
underlying bundle L and a place v of K, define a probability measure by

µL,v =
c1(L)d

[k(v) : k] degL(X)
.

Given any subvariety Y ⊂ X, we can similarly define a probability measure
supported on Y an

v since L|Y is also semipositive. If j : Y an
v ↪→ Xan

v is the
canonical inclusion, then we set

µY,L,v =
j∗{c1(L|Y )dimY }
[k(v) : k] degL(Y )

.

When Y = X, we see immediately that µY,L,v = µL,v.
Finally, we want to define µ{x},L,v for a closed point x ∈ X. For any

model function f on Xan
v , define
�

Xan
v

f dµ{x},L,v =
ĉ1(OX(f)|{x})

[k(v) : k] deg(x)
.

The proofs of Lemma 2.11 and Theorem 2.12 apply here to show that µ{x},L,v
extends to a Borel probability measure on Xan

v . Evidently, it is independent
of the semipositive line bundle L, but we have chosen to retain it in the
notation to preserve symmetry with µY,L,v when Y is a higher-dimensional
subvariety. By Lemma 2.8, we have the appealing formula

µ{x},L,v =
1

deg(x)

∑
y∈Ov(x)

degv(y)δy,

where δy is the point measure supported at y.

2.5. Global height functions. In this section we will define normal-
ized height functions associated to semipositive metrized line bundles. One
of the most useful properties of height functions with regard to arithmetic
intersection theory is the transformation law that they satisfy when one
changes some of the metrics by a constant. For example, this property will



372 X. W. C. Faber

allow us to define canonical height functions and invariant measures associ-
ated to a dynamical system.

Suppose L is an ample line bundle on X and L is a semipositive metrized
line bundle with underlying bundle L. Then L|Y is semipositive for any
subvariety Y ⊂ X. We define the height of such a subvariety by

hL(Y ) =
ĉ1(L|Y )dimY+1

(dimY + 1) degL(Y )
.

Recall that OX(b) is defined to be the adelic metrized line bundle with
underlying bundle OX , the trivial metric at all places w 6= v and the metric
‖1(x)‖v = e−b at v.

Theorem 2.13. Suppose X is a projective variety over K, L is an ample
line bundle on X, and L is any semipositive metrized line bundle with un-
derlying bundle L.

(i) If L′ is another semipositive metrized line bundle with the same
underlying algebraic bundle L, then there exists a positive constant
C such that for any subvariety Y of X,

|hL(Y )− hL′(Y )| ≤ C.
In fact , we may take

(11) C =
∑
v

[k(v) : k] distv(‖ · ‖L,v, ‖ · ‖L′,v).

(ii) Fix a real number b and a place v of K. Then the adelic metrized
line bundle L ⊗ OX(b) is semipositive, and for any subvariety Y ,
we have

h
L⊗OX(b)

(Y ) = hL(Y ) + b[k(v) : k].

(iii) Given any closed point x and rational section s of L such that
x 6∈ supp(div(s)), we have the following local decomposition:

hL(x) =
−1

deg(x)

∑
v∈B

[k(v) : k]
∑

y∈Ov(x)

degv(y) log ‖s(y)‖L,v.

Proof. To prove (i), we use the telescoping sum trick from (5), and The-
orem 2.1(ii). Set r = dimY . Then

|ĉ1(L|Y )r+1− ĉ1(L′|Y )r+1| ≤
r∑
j=0

|ĉ1(L|Y )j ĉ1((L⊗ (L′)∨)|Y )ĉ1(L′|Y )r−j |

≤
r∑
j=0

degL(Y )
∑
v

[k(v) : k] distv(‖·‖L,v, ‖·‖L′,v)

= C(r + 1) degL(Y ),
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where C is the constant in (11). Dividing both sides by (r+ 1) degL(Y ) and
using the definition of height gives the result.

For (ii), we note that arithmetic intersection numbers are continuous
with respect to change of metric (Theorem 2.1(ii)). Therefore it suffices to
assume that L is induced by a relatively semipositive B-model (X ,L )
of (X,Le). Let us also assume that b = m/n ∈ Q. As in the proof of
Theorem 2.12, we can construct a B-model of OX that induces the metrized
line bundle OX(b) by taking the line bundle M = OX (m[Xv]) associated to
the Cartier divisor m[Xv] on X . It is a B-model of the trivial bundle OX ,
and we may view it as a B-model of OnX via the isomorphism OX

∼→ OnX
carrying 1 to 1⊗n. If π is a local equation for Xv on X , then we see that the
metric on OX at v induced by M is given by ‖1(x)‖M ,v = |πm|1/nv = e−m/n.
The metrics at all of the other places are evidently trivial.

The line bundle M is relatively semipositive on X . Indeed, take any
curve C supported in the fiber over a point w ∈ B. If w 6= v, then C and
[Xv] are disjoint and [Xv] ·C = 0. If w = v, then we note that [Xv] = π∗[v],
where π : X → B is the structure morphism. Let D be a divisor on B
linearly equivalent to [v] such that v 6∈ supp(D). Then π∗D is a divisor with
support disjoint from C, and so [Xv] · C = π∗D · C = 0.

Notice that, as an operator on codimension-two cycles, c1(M )2 = 0
by a linear equivalence argument similar to the one at the end of the last
paragraph. Hence, for any subvariety Y ⊂ X of dimension r, we have

ĉ1((L⊗OX(b))|Y )r+1 =
r+1∑
j=0

(
r + 1
j

)
ĉ1(L|Y )j ĉ1(OX(b)|Y )r+1−j

=
r+1∑
j=0

(
r + 1
j

)
c1(L )jc1(M )r+1−j · [Y ]

ejnr+1−j

=
c1(L )r+1 · [Y ]

er+1
+ (r + 1)

c1(L )rc1(M ) · [Y ]
ern

= ĉ1(L|Y )r+1 +
m

n
(r + 1)

c1(L )r · [Y ] · [Xv]
er

= ĉ1(L|Y )r+1 +
m

n
(r + 1)

c1(L |Y )r · [(Y )v]
er

= ĉ1(L|Y )r+1 +
m

n
(r + 1)[k(v) : k] degL(Y ).

The last equality follows from Lemma 2.3. Applying the definition of height
immediately gives the result in the case b = m/n. The general case follows
by continuity of arithmetic intersection numbers when we take a limit over
rational approximations of b.

The proof of (iii) is similar to the proof of Lemma 2.8, so we omit it.
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3. ALGEBRAIC DYNAMICAL SYSTEMS

In this section we review the facts necessary to work with algebraic
dynamical systems defined over a function field, including the construction of
the invariant metrics on the polarization of a dynamical system, the theory of
(canonical) dynamical heights, and the invariant measures for the dynamical
system.

3.1. Invariant metrics. Here we are concerned with the existence and
uniqueness properties of invariant metrics on the polarization of an algebraic
dynamical system. This will give us a natural semipositive metrized line
bundle with which to define heights related to a dynamical system.

Let (X,ϕ,L) be an algebraic dynamical system over K as in the intro-
duction. Suppose θ : ϕ∗L ∼→ Lq is an isomorphism with q > 1. For a place v
of K, choose any initial metric ‖ · ‖1,v on Lv. For example, it could be the
metric induced by a B-model of L. We can construct an invariant metric
on Lv by Tate’s limit process: by induction, define

‖ · ‖n+1,v = (ϕ∗‖ · ‖n,v ◦ θ−1)1/q.

Here ϕ∗‖ · ‖n,v denotes the metric on ϕ∗Lv induced by pullback. It is well-
known (cf. [BG06, §9.5] or [Zha95b, §2]) that this sequence of metrics con-
verges uniformly to a continuous metric ‖ · ‖0,v on Lv with the following
properties:

(i) The pullback by ϕ agrees with the qth tensor power (up to the
isomorphism θ):

‖ · ‖⊗q0,v ◦ θ = ϕ∗‖ · ‖0,v.

(ii) If θ is replaced by θ′ = aθ for some a ∈ K×, then the corresponding
metric constructed by Tate’s limit process satisfies

‖ · ‖′0,v = |a|1/(q−1)
v ‖ · ‖0,v.

Property (i) uniquely determines the metric. In the literature this metric
is sometimes called the “canonical metric” or an “admissible metric”. We
adhere to the term invariant metric because it is only canonical up to a
choice of isomorphism θ by property (ii), and we feel the term “admissible”
is already overused in nonarchimedean geometry. We can interpret property
(i) by saying that the family {‖ · ‖0,v}v of invariant metrics provides the
unique adelic metric structure on L such that the isomorphism θ : ϕ∗L ∼→ Lq

becomes an isometry.
The above discussion settles the existence of invariant metrics at each

place v ∈ B, but we still need to show that they fit together to give a
semipositive adelic metrized line bundle:
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(iii) There exists a sequence of B-models (Xn,Ln) of (X,Len) such that
each Ln is nef, ‖ · ‖1/enLn,v

= ‖ · ‖0,v for almost all v, and ‖ · ‖1/enLn,v
→

‖·‖0,v uniformly for every other place v. In particular, the metrized
line bundle L with underlying bundle L and the family of metrics
{‖ · ‖0,v}v is semipositive.

The first step in this direction is to construct a sequence of B-models
that determine metrics on L according to Tate’s limit process.

Lemma 3.1. Let X be a projective variety over K and L an ample line
bundle on X. Then there exists a positive integer e and a B-model (X ,L )
of (X,Le) such that L is nef.

Proof. This proof was adapted from a remark in the Notation and Con-
ventions section of [Yua08, §2.1]. Choose e so that Le is very ample. Let

X ↪→ PNK ↪→ PNB = PN ×B

be an embedding induced by Le followed by identifying PNK with the generic
fiber of PNB, and set X to be the Zariski closure of X in PNB with the reduced
structure. Let π : X → B be the restriction of the second projection.
Choose a collection of basepoint free global sections s0, . . . , sN of Le, and
let s̃i be the section si viewed as a rational section of OX (1). Let D be
an ample Cartier divisor B such that [π∗D] + [div(s̃i)] is effective for all i.
Finally, define L = OX (1)⊗ π∗OB(D).

We claim that L is nef. Indeed, suppose Y is an irreducible curve on X .
If Y is vertical—i.e., π(Y ) = {v} for some closed point v ∈ B—then

c1(L ) · [Y ] = deg(OX (1)|Y ) > 0,

since OX (1) is relatively ample. If Y is horizontal, then choose one of the
sections si of Le such that YK 6∈ supp[div(si)]. Then Y is not contained in
the support of [div(s̃i)], and it intersects properly with any subvariety of a
vertical fiber. Hence,

c1(L ) · [Y ] = [div(s̃i)]h · [Y ] + ([div(s̃i)]f + c1(π∗D)) · [Y ] ≥ 0,

where [div(s̃i)] = [div(s̃i)]h + [div(s̃i)]f is the decomposition of this cycle
into its horizontal and vertical parts.

Returning to our construction, choose an initial B-model (X1,L1) of
(X,Le1) such that L1 is nef on X1. The above lemma guarantees the exis-
tence of such a B-model. Define the metric on Lv to be ‖ · ‖1,v = ‖ · ‖1/e1L1,v

.
We proceed by induction. Suppose (Xn,Ln) is a B-model of (X,Len),

where en = qn−1e1 and Ln is nef. Let jn : X ↪→ Xn be the inclusion of the
generic fiber (always implicitly precomposed with the preferred isomorphism
ιn : X ∼→ (Xn)K). Let Γϕ : X → X×KX be the graph morphism. Consider
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the commutative diagram

X jn◦ϕ

$$

eΓϕ
%%KKKKKKKKKK

jn

%%

Xn ×B Xn pr2
//

pr1
��

Xn

��
Xn

// B

where Γ̃ϕ = (jn×jn)◦Γϕ. Define Xn+1 to be the Zariski closure of Γ̃ϕ(X) in
Xn×BXn with the reduced subscheme structure. Take Ln+1 = pr∗2 Ln|Xn+1 .
The graph morphism Γϕ and the tensor power θ⊗en give the preferred iso-
morphisms between X and the generic fiber of Xn+1 and between ϕ∗Len

and Lqen , respectively. As always, we will make these identifications with-
out comment in what follows. Set en+1 = qen, and define a metric on Lv by
‖ · ‖n+1,v = ‖ · ‖1/en+1

Ln+1,v
. Observe that Ln+1 is nef since it is the pullback of

a nef line bundle.
The metrics on Lv are, by construction, exactly as given by Tate’s limit

process. This follows from the fact that formation of formal metrics com-
mutes with formal pullback (Lemma 2.4), and a small computation:

‖ · ‖n+1,v = ‖ · ‖1/en+1

Ln+1,v
= (‖ · ‖1/enpr∗2 Ln|Xn+1

,v)
1/q = (ϕ∗‖ · ‖1/enLn,v

◦ θ−1)1/q

= (ϕ∗‖ · ‖n,v ◦ θ−1)1/q.

Moreover, we now show that almost all of the metrics constructed are
stable under this pullback procedure. As X is of finite type over K, there
exists an open subset U ⊂ B such that the endomorphism ϕ extends to a
U -morphism ϕU : (X1)U → (X1)U , and the isomorphism θ : ϕ∗L ∼→ Lq

extends to an isomorphism θU : ϕ∗U L1|π−1(U )
∼→ L q

1 |π−1(U ). The graph
morphism Γ̃ϕ extends over U to give a closed immersion

(X1)U ↪→ (X1)U ×U (X1)U .

Consequently, its (scheme-theoretic) image is exactly (X2)U , so that X1

and X2 are isomorphic when restricted over U . Pulling back L2 via this
isomorphism and applying θU shows Γ ∗ϕU

L2 = ϕ∗U L1
∼= L q

1 over U . As
L2 is a model of Le2 via the graph morphism and the isomorphism θ, we
conclude that for each place v corresponding to a closed point of U , we have

‖ · ‖2,v = ‖ · ‖1/e2L2
= ‖ · ‖1/qe1

L q
1

= ‖ · ‖1/e1L1
= ‖ · ‖1,v.

The isomorphism between (X1)U and (X2)U allows us to extend the
work in the previous paragraph by induction to conclude that for each place
v of U , the metrics ‖ · ‖n,v on Lv are equal for all n.
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3.2. Dynamical heights. Let the data (X,ϕ,L), θ : ϕ∗L ∼→ Lq, and
L be as in the previous section. For a subvariety Y ⊂ X, we can define
its dynamical height with respect to the dynamical system (X,ϕ,L) by the
formula

hϕ(Y ) = hL(Y ) =
ĉ1(L|Y )dimY+1

(dimY + 1) degL(Y )
.

Theorem 3.2. Let (X,ϕ,L) be a dynamical system over K, θ :ϕ∗L ∼→Lq

an isomorphism, and L the line bundle L equipped with the corresponding
invariant metrics {‖ · ‖0,v}v.

(i) The height hϕ is independent of the choice of isomorphism θ.
(ii) For any subvariety Y ⊂ X, hϕ(Y ) ≥ 0.
(iii) For any subvariety Y ⊂ X, hϕ(ϕ(Y )) = qhϕ(Y ).
(iv) If Y is preperiodic for the map ϕ, then hϕ(Y ) = 0. (Recall that

preperiodic means the forward orbit {ϕn(Y ) : n = 1, 2, . . .} is finite.)

Before turning to the proof, we will need the following

Lemma 3.3. Let (X,ϕ,L) be a dynamical system defined over K, and
let ϕ∗L ∼= Lq for some integer q > 1. Then for any subvariety Y ⊂ X, the
induced morphism Y → ϕ(Y ) is finite of degree qdimY .

Proof. Let ψ : Y → ϕ(Y ) be the morphism induced by ϕ. First note
that ψ∗(L|ϕ(Y )) is ample on Y since the restriction of an ample bundle to a
subvariety is still ample, and

ψ∗(L|ϕ(Y )) = (ϕ∗L)|Y ∼= Lq|Y = (L|Y )q.

If ψ(Z) = {p} for some subvariety Z ⊂ Y and some point p, then we find
ψ∗(L|ϕ(Z)) ∼= OZ , which can only be ample if Z is reduced to a point. Hence
ψ : Y → ϕ(Y ) has finite fibers. As X is projective, we see ψ is a projective
quasi-finite morphism, and so it must be finite.

If r = dimY , the projection formula gives

c1(L)r · [Y ] = q−rc1(ϕ∗L)r · [Y ] = q−rc1(L)r · ϕ∗([Y ]) =
deg(ψ)
qr

c1(L)r · [Y ].

As L is ample, we may divide by c1(L)r · [Y ] to conclude deg(ψ) = qr.

Proof of Theorem 3.2. (i) Let θ′ = aθ for some a ∈ K×. If M is the
metrized line bundle with underlying bundle OX and metric at the place
v given by ‖1(x)‖v = |a|1/(q−1)

v , then the invariant metrized line bundle
corresponding to θ′ is L′ = L ⊗M (property (ii) in Section 3.1). Take any
model X of X and consider the line bundle O(div(a)) associated to the
principal divisor div(a) on X . We can view it as a model of Oq−1

X on the
generic fiber via isomorphisms OX(div(a)) ∼= OX ∼= Oq−1

X . It is easy to check
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that the metric on OX at v given by O(div(a)) coincides with that of M .
Letting r = dimY , we find that

ĉ1(L′|Y )r+1 − ĉ1(L|Y )r+1 = ĉ1(L|Y ⊗M |Y )r+1 − ĉ1(L|Y )r+1

=
r∑
i=0

(
r + 1
i

)
ĉ1(L|Y )i ĉ1(M |Y )r+1−i.

All of the terms in this sum involve an intersection with ĉ1(M), and if we
compute this intersection on a model, we are forced to intersect with the
principal divisor div(a). Thus each term in the sum vanishes.

(ii) Arithmetic intersection numbers are continuous with respect to
change of metric, so it suffices to prove c1(L )dimY+1 · [Y ] ≥ 0, whenever
(X ,L ) is a B-model of (X,Le), L is nef and Y is the Zariski closure of
Y in X . Kleiman’s theorem on intersections with nef divisors implies the
desired inequality [Laz04, Thm. 1.4.9].

(iii) Let r = dimY . By Lemma 3.3, the morphism ϕ restricts to a finite
morphism Y → ϕ(Y ) of degree qr. Theorem 2.1(iv) implies

hϕ(ϕ(Y )) =
ĉ1(L|ϕ(Y ))r+1

(r + 1) degL(ϕ(Y ))
=

ĉ1(ϕ∗L|Y )r+1

(r + 1) degϕ∗L(Y )

= q
ĉ1(L|Y )r+1

(r + 1) degL(Y )
= qhϕ(Y ).

(iv) If the set {ϕn(Y ) : n = 1, 2, . . .} is finite, then ϕn(Y ) = ϕm(Y ) for
some m > n ≥ 1. By the previous part, we have

qnhϕ(Y ) = hϕ(ϕn(Y )) = hϕ(ϕm(Y )) = qmhϕ(Y ).

As q > 1, we are forced to conclude that hϕ(Y ) = 0.

As a special case of part (iv) of the previous theorem, we note that

hϕ(X) =
ĉ1(L)d+1

(d+ 1) degL(X)
= 0.

3.3. The invariant measure µϕ,v. Let us choose an isomorphism θ :
ϕ∗L

∼→ Lq, and let L be the line bundle L equipped with the invariant
metrics constructed as above. Fix a place v of K. Define a Borel probability
measure on Xan

v by the formula

µϕ,v = µL,v =
c1(L)d

[k(v) : k] degL(X)
.

Here µL,v and c1(L)d are the measures constructed in Section 2.4. An ar-
gument similar to the one that proved Theorem 3.2(i) shows that µϕ,v is
independent of the choice of isomorphism θ. Although it is not logically
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necessary for what follows, we give some further commentary on these mea-
sures.

Since ϕ is finite of degree qd (Lemma 3.3), we see that the measure µϕ,v
has the following invariance property:

ϕ∗µϕ,v = µϕ,v.

Indeed, this follows immediately from Theorem 2.12 and the fact that ϕ∗L
is isometric to Lq.

Given any subvariety Y ⊂ X, we can also define the measure µY,ϕ,v =
µY,L,v as in Section 2.4. Theorem 2.12(vi) can be used to show

ϕ∗µY,ϕ,v = µϕ(Y ),ϕ,v.

An important example is the case when X is a smooth geometrically
connected projective variety over K and v is a place of good reduction
for (X,ϕ,L), i.e., there exists an open subvariety U ⊂ B containing the
point v, a smooth U -model (X ,L ) of (X,L), a U -morphism ϕU : X →X
whose restriction to the generic fiber is precisely ϕ, and an isomorphism
ϕ∗U L

∼→ L q. Roughly, the dynamical system can be reduced (mod v). One
can see from Theorem 2.12(i) and our description of Tate’s limit process
that there exists a point ζ ∈ Xan

v such that µϕ,v = δζ . The point ζ is the
unique point mapping to the generic point of the special fiber Xv under the
reduction map Xan

v →Xv. Moreover, the forward invariance of the measure
µϕ,v implies that ζ is a fixed point of the analytification of ϕ: ϕan

v (ζ) = ζ.
As a final remark, we mention a backward invariance property the mea-

sure µϕ,v presumably has based on the work of Chambert-Loir [CL06, §2.8]
and others, although we do not provide any proof in the present article.
There is a way to define a trace map ϕ∗ on the space of continuous func-
tions on Xan

v , and by duality a pullback measure ϕ∗µϕ,v. It should then be
true that ϕ∗µϕ,v = qdµϕ,v. As a consequence of this backward invariance
property, if (X,ϕ,L) has good reduction at a place v, then (ϕan

v )−1(ζ) = ζ,
where µϕ,v = δζ as in the previous paragraph. That is, ζ is a totally invariant
point for the morphism ϕan

v . By analogy with the case of complex dynam-
ical systems, we expect that the invariant measure µϕ,v can be completely
characterized as the unique Borel probability measure on Xan

v such that

• ϕ∗µϕ,v = qdµϕ,v, and
• µϕ,v does not charge any proper subvariety of X: µϕ,v(Y an

v ) = 0 for
any proper subvariety Y ⊂ X.

See the articles of Chambert-Loir [CL06] and Chambert-Loir/Thuillier
[CLT08] for proofs that the above properties hold for the measure µϕ,v.
It is not yet known if they determine the measure. See the article of Briend
and Duval [BD01] for a discussion of such a characterization in the setting
of complex dynamics.
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4. PROOF OF THE EQUIDISTRIBUTION THEOREM

Our goal for this section is to prove Theorem 1.1. We will deduce it
from a stronger result that is more flexible for applications and also gives
equidistribution of small subvarieties. As always, we let X be a variety over
the function field K. Let L be a semipositive metrized line bundle on X
with ample underlying bundle L satisfying the following two conditions:

(S1) There exists a sequence of B-models (Xn,Ln) of (X,Len) such that
each Ln is nef, ‖·‖1/enLn,v

= ‖·‖0,v for almost all v, and ‖·‖1/enLn,v
→ ‖·‖0,v

uniformly for every other place v.
(S2) The height of X is zero: hL(X) = 0.

A net of subvarieties of X consists of an infinite directed set A and a
subvariety Yα ⊂ X for each α ∈ A. A net of subvarieties (Yα)α∈A is called
generic if for any proper closed subset V ⊂ X, there exists α0 ∈ A so
that Yα 6⊂ V whenever α ≥ α0. Equivalently, there does not exist a cofinal
subset A′ ⊂ A such that Yα ⊂ V for all α ∈ A′. The net is called small if
limα∈A hL(Yα) = 0.

Theorem 4.1. Let X be a projective variety over the function field K
equipped with a semipositive metrized line bundle L with ample underlying
bundle L satisfying conditions (S1) and (S2). Let (Yα)α∈A be a generic small
net of subvarieties of X. Then for any place v of K, and for any continuous
function f : Xan

v → R, we have

lim
α∈A

�

Xan
v

f dµYα,L,v =
�

Xan
v

f dµL,v.

That is, the net of measures (µYα,L,v)α∈A converges weakly to µL,v.

Before turning to the proof, let us indicate why Theorem 1.1 follows from
Theorem 4.1. Let (X,ϕ,L) be a dynamical system defined over the function
field K. Choose an isomorphism θ : ϕ∗L ∼→ Lq. Let L be the semipositive
metrized line bundle with underlying bundle L and the associated invariant
metrics at all places as defined in Section 3.1. Then property (iii) of the
same section is precisely condition (S1). As hϕ = hL (by definition), the dis-
cussion at the end of Section 3.2 shows condition (S2). Thus the hypotheses
of Theorem 4.1 on L are satisfied. Upon unraveling all of the definitions,
the conclusion of Theorem 1.1 follows immediately from that of the above
theorem.

In order to see why the above theorem is more useful in practice, con-
sider a dynamical system (X,ϕ,L), and let Y be any subvariety of X such
that hϕ(Y ) = 0. If ϕ(Y ) 6= Y , then Y cannot be considered as a dynamical
system on its own. Nevertheless, we find that L|Y is a semipositive metrized
line bundle satisfying conditions (S1) and (S2), and so we can use the above
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theorem to deduce equidistribution statements for generic small nets of sub-
varieties of Y .

Proof of Theorem 4.1. Fix a place v of K. By Lemma 2.6 and a limiting
argument, it suffices to prove the theorem when f = − log ‖1‖1/nv is a model
function. By linearity of the integral, we may take n = 1. Lemma 2.7 allows
us to assume that f is induced by a B-model (X ,O(f)) of (X,OX). We
also choose ample line bundles M1 and M2 on X so that O(f) = M1⊗M ∨

2 .
Let M i be the metrized line bundle on X determined by Mi. Finally, we
assume that

	
Xan
v
f dµL,v > 0 for the moment and remove this hypothesis at

the end of the proof.
For any N ≥ 1, we define LN (f) := LN ⊗ OX(f). We wish to compute

the degree of this metrized line bundle in two ways. For the first, we have

(12) ĉ1(LN (f))d+1 = (Nĉ1(L) + ĉ1(OX(f)))d+1

= Nd+1ĉ1(L)d+1 +Nd(d+ 1) degL(X)[k(v) : k]
�

Xan
v

f dµL,v +O(Nd−1)

= Nd(d+ 1) degL(X)[k(v) : k]
�

Xan
v

f dµL,v +O(Nd−1).

The integral appears by the definition of the measure µL,v. The term
ĉ1(L)d+1 vanishes because it is the numerator of hL(X) (condition (S2)).
The constant in the error term depends on L and f .

On the other hand, we see that

(13) ĉ1(LN (f))d+1 = ĉ1(LN ⊗M1 ⊗M∨2 )d+1

=
d+1∑
i=0

(
d+ 1
i

)
(−1)d+1−iĉ1(LN ⊗M1)i ĉ1(M2)d+1−i

= ĉ1(LN ⊗M1)d+1 − (d+ 1)ĉ1(LN ⊗M1)d ĉ1(M2) +O(Nd−1).

Recall that we assumed
	
Xan
v
f dµL,v > 0. Comparing (12) and (13) shows

that for N sufficiently large,

ĉ1(LN ⊗M1)d+1 − (d+ 1)ĉ1(LN ⊗M1)d ĉ1(M2) > 0.

We may fix such an N for the remainder of the argument, and as it will
have no effect on the proof, we will replace LN by L.

Choose ε > 0. By condition (S1) we may select a B-model (X ′,L ) of
(X,Le) such that L is nef, the metrics on the associated adelic metrized
line bundle L′ with underlying bundle L are equal to those of L at almost all
places, and the sum of the weighted distances [k(v) : k] distv(‖ ·‖L,v, ‖ ·‖L′,v)
at the other places is bounded by ε. By the Simultaneous Model Lemma,
we may assume that X ′ = X so that O(f) and L are line bundles on X .
Furthermore, continuity of intersection numbers with respect to changes in
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the metric allows us to assume that

c1(L ⊗M e
1 )d+1 − (d+ 1)c1(L ⊗M e

1 )dc1(M e
2 ) > 0.

The necessary tool from algebraic geometry needed to move forward at
this point is

Siu’s Theorem ([Laz04, Theorem 2.2.15]). Let Y be a projective va-
riety of dimension n over the field k and suppose N1 and N2 are nef line
bundles on Y . If

c1(N1)n − nc1(N1)n−1c1(N2) > 0,

then (N1 ⊗N ∨
2 )r has nonzero global sections for r � 0.

We are in a position to apply Siu’s theorem with Y = X , n = d + 1,
N1 = L ⊗M e

1 and N2 = M e
2 . It follows that the line bundle

(L ⊗M e
1 ⊗M

(−e)
2 )r = (L ⊗ O(f)e)r

admits global sections for all r sufficiently large. Fix such an r and a nonzero
global section s. As (Yα)α∈A is a generic net in X, there exists α0 such
that Y α does not lie in the support of div(s) for any α ≥ α0. This means
c1((L ⊗O(f)e)r) · [Y α] is an effective cycle. As L is nef, Kleiman’s theorem
[Laz04, Thm. 1.4.9] shows

c1(L )dimYαc1((L ⊗ O(f)e)r) · [Y α] ≥ 0,

or equivalently,

(14) ĉ1(L′|Yα)dimYα ĉ1((L′ ⊗OX(f))|Yα) ≥ 0.

Our precision in picking the metrics on L′ and Theorem 2.1(ii) show that

(15) |ĉ1(L′|Yα)dimYα ĉ1((L′ ⊗OX(f))|Yα)

− ĉ1(L|Yα)dimYα ĉ1((L⊗OX(f))|Yα)|

≤ ε(dimYα + 1) degL(Yα).

From (14) and (15) we now get

hL(Yα) + [k(v) : k](dimYα + 1)−1
�

Xan
v

f dµYα,L,v

=
ĉ1(L|Yα)dimYα ĉ1((L⊗OX(f))|Yα)

(dimYα + 1) degL(Yα)
≥ −ε

for all α ≥ α0. Taking the limit over α ∈ A in this last expression and
recalling hL(Yα)→ 0 proves that

lim inf
α∈A

�

Xan
v

f dµYα,L,v ≥ −
ε(d+ 1)
[k(v) : k]

.
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Finally, ε is independent of f , so we conclude that

(16) lim inf
α∈A

�

Xan
v

f dµYα,L,v ≥ 0.

This last inequality holds for any model function f with the added hy-
pothesis

	
Xan
v
f dµL,v > 0. In order to lift this restriction, we take an ar-

bitrary model function f and consider the function f1 = f − %, where
% ∈ log

√
|K×v | = Q is such that

	
Xan
v
f1 dµL,v > 0. Constant functions of this

form are model functions, and so nf1 satisfies all of the necessary hypotheses
to make the above argument go through for some positive integer n. (We
need nf1 to be the model function associated to a formal metric—not just
the root of a formal metric.) Applying (16) to nf1 shows that

lim inf
α∈A

�

Xan
v

f dµYα,L,v ≥ %.

Letting %→
	
Xan
v
f dµL,v from below preserves the positivity of the integral

of f1 and shows
lim inf
α∈A

�

Xan
v

f dµYα,L,v ≥
�

Xan
v

f dµL,v.

Finally, we may replace f with −f in this argument to obtain the opposite
inequality. The proof is now complete.

5. COROLLARIES OF THE EQUIDISTRIBUTION THEOREM

Our first corollary of the equidistribution theorem shows that for a dy-
namical system (X,ϕ,L), the invariant measures µϕ,v reflect the v-adic
distribution of the preperiodic points of the morphism ϕ. Recall that a
closed point x ∈ X is called preperiodic if its (topological) forward orbit
{ϕn(x) : n = 1, 2, . . .} is a finite set.

Corollary 5.1. Let (X,ϕ,L) be an algebraic dynamical system over
the function field K. For any generic net of preperiodic closed points (xα)α∈A
in X and any place v, we have the following weak convergence of measures
on Xan

v :

lim
α∈A

1
deg(xα)

∑
y∈Ov(xα)

degv(y)δy = µϕ,v.

Proof. This is immediate from Theorem 1.1 upon noting that preperiodic
points have dynamical height zero (Theorem 3.2(iv)).

The preceding corollary is meaningless unless we can find generic nets of
preperiodic points. However, it is not difficult to show that preperiodic points
in X(K) are Zariski dense in X. Once Zariski density is established, it is not
hard to construct a generic net of preperiodic points by a diagonalization
argument; for example, see the beginning of the proof of Corollary 5.2.
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If E is a finite extension of K, we let [E : K]s be the separable degree
of E over K. Write |X| for the set of closed points of a variety X.

Corollary 5.2. Let (X,ϕ,L) be an algebraic dynamical system defined
over the function field K, let Y be any subvariety of X, and let n be a
positive integer. Suppose there exists a place v of K such that the support of
the probability measure µY,ϕ,v on Xan

v contains at least n + 1 points. Then
there exists a positive number ε such that the set

Yn(ε) := {y ∈ |Y | : hϕ(y) ≤ ε and [K(y) : K]s ≤ n}
is not Zariski dense in Y .

Proof. If the theorem fails, then Yn(ε) is Zariski dense for each ε > 0.
We begin by constructing a generic small net. Let A be the collection of all
ordered pairs (F, ε) consisting of a proper Zariski closed subset F of Y and
a positive real number ε. Then A becomes a directed set when we endow it
with the partial ordering

(F, ε) ≤ (F ′, ε′) ⇔ F ⊆ F ′ and ε ≥ ε′.
For each pair (F, ε) ∈ A, select a point yF,ε ∈ Yn(ε) ∩ (Y r F ), a feat that
is possible because Yn(ε) is Zariski dense. One checks easily that the net
of points (yF,ε) is generic and hϕ(yF,ε) → 0. For ease of notation, we now
relabel this net as (yα)α∈A.

Let p0, . . . , pn be distinct points of Y an
v in the support of µY,ϕ,v. By topo-

logical normality of analytic spaces associated to proper varieties [Ber90,
Thm. 3.5.3], we can choose an open neighborhood Ui of pi for each i with
pairwise disjoint closures. Fix an index i0. Inside Ui0 , choose a compact
neighborhood W of pi0 . By Urysohn’s lemma we may find a continuous
function f : Xan

v → [0, 1] such that f |W ≡ 1 and f |Xan
v rUi0 ≡ 0. Then

Theorem 4.1 shows

lim
α∈A

1
deg(yα)

∑
z∈Ov(yα)

degv(z)f(z) =
�

Xan
v

f dµY,ϕ,v ≥ µY,ϕ,v(W ) > 0.

Hence there exists α0 ∈ A such that Ov(yα) ∩ Ui0 6= ∅ for all α ≥ α0.
Repeating this argument for each index i, we can find α1 ∈ A so that for
any i = 0, . . . , n and α ≥ α1, we have Ov(yα) ∩ Ui 6= ∅.

For each point yα, the set Ov(yα) consists of at most n points by Corol-
lary 6.2 in the appendix. But the n+ 1 sets Ui are disjoint by construction,
so we have a contradiction.

When hϕ(Y ) > 0, the last corollary can be proved using the Theorem
of Successive Minima with ε = hϕ(Y )/2. We recall the statement of the
theorem and indicate how this works. Let Y be a variety defined over the
function field K, and let L be a semipositive metrized line bundle on Y with
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ample underlying bundle L. Define the quantity

e1(Y,L) = sup
V⊂Y

codim(V,Y )=1

{ inf
y∈|YrV |

hL(y)},

where the supremum is over all closed subsets V of Y of pure codimension 1,
and the infimum is over closed points of Y r V . The Theorem of Successive
Minima tells us that

e1(Y,L) ≥ hL(Y ).

This inequality was originally discovered by Zhang when K is replaced by
a number field [Zha95a, Thm. 5.2], and it was proved by Gubler when K is
a function field [Gub07, Lem. 4.1].

Now let L be the semipositive metrized line bundle associated to a dy-
namical system (X,ϕ,L) and an isomorphism θ : ϕ∗L ∼→ Lq. By the The-
orem of Successive Minima, given any δ > 0 there exists a closed codimen-
sion-1 subset V ⊂ Y so that

inf{hϕ(y) : y ∈ |Y r V |} > hϕ(Y )− δ.
If hϕ(Y ) > 0, then we may take δ = hϕ(Y )/2. Corollary 5.2 follows immedi-
ately with ε = hϕ(Y )/2 since Yn(ε) ⊂ V . In fact, this shows that

⋃
n≥1 Yn(ε)

is not Zariski dense in Y when hϕ(Y ) > 0.

Corollary 5.3. Let (X,ϕ,L) be an algebraic dynamical system over
the function field K, let Y be any subvariety , and let n be a positive integer.
Suppose there exists a place v of K such that the support of the probability
measure µY,ϕ,v on Xan

v contains at least n+ 1 points. Then the set of prepe-
riodic closed points contained in Y of separable degree at most n over K is
not Zariski dense in Y .

The problem with these last two results is that one must have some
knowledge of the support of the measure µY,ϕ,v in order to utilize them. As
we indicated at the end of Section 3.3, the support of the measure µϕ,v is
precisely one point if X is smooth and the dynamical system (X,ϕ,L) has
good reduction at the place v. So we cannot apply the corollaries in the case
of good reduction.

We expect a converse to be true. Suppose that X is geometrically con-
nected and smooth over K (e.g., the projective space PdK). If E is a finite
extension of K and v is a place of K, we say that the dynamical system
(X,ϕ,L) has potential good reduction at v if there exists a place w of E
lying over v so that the base-changed dynamical system (XE , ϕE , L ⊗ E)
has good reduction at w. If (X,ϕ,L) does not have potential good reduc-
tion at v, then it has genuinely bad reduction at v. With these definitions in
mind, we present the following folk conjecture which, when combined with
Corollaries 5.2 and 5.3, would yield very pleasing arithmetic results:
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Conjecture 5.4. Let (X,ϕ,L) be a dynamical system defined over the
function field K, and suppose X is smooth and geometrically connected.
Then the support of the measure µϕ,v is either a single point or a Zariski
dense set according to whether (X,ϕ,L) has potential good reduction or gen-
uinely bad reduction.

The conjecture is true when X is a curve. See for example the manuscript
of Baker and Rumely [BR08, §10.4] for the case X = P1

K . (Compare the
article [Bak09] of Baker for a similar statement and arithmetic consequence.)
In [Gub07] Gubler’s work shows that if X is an abelian variety with totally
degenerate reduction at a place v, then µϕ,v has Zariski dense support.
For an elliptic curve, totally degenerate reduction is the same as genuinely
bad reduction. In fact, in this case there is a topological subspace of Xan

v

homeomorphic to a circle in such a way that µϕ,v is a Haar measure on this
circle.

6. APPENDIX

Proposition 6.1. Let K be a field that is finitely generated over its
prime field. Let E be a finite extension of K, v a discrete valuation of K,
and Kv the completion of K with respect to v. Then there are at most
[E : K]s valuations w extending v to E, and if Ew is the completion of E
with respect to the valuation w, then there exists an isomorphism of Kv-
algebras

Kv ⊗K E ∼=
∏
w|v

Ew.

Proof. If E is a separable extension ofK, this is proved in [CF67, II.9-10].
Any algebraic extension can be decomposed as K ⊂ Es ⊂ E, where Es is
the separable closure of K in E, and E/Es is a purely inseparable extension.
By tensoring first up to the separable closure, we may apply the result in the
separable case and reduce to the situation where E/K is a purely inseparable
extension. Thus we may suppose K has positive characteristic p. It now
suffices to show that the valuation v extends in exactly one way to E, and
that Kv ⊗K E ∼= Ew holds. To that end, we may even reduce to the case
where E is a simple nontrivial extension of K, i.e., there is γ ∈ E rK such
that E = K(γ).

We first argue Kv⊗K E is a field. The valuation ring Ov ⊂ K, being the
localization of an algebra of finite type over Fp, is a G-ring [Mat89, §32].
Hence Ov → O∧v = K◦v is a regular homomorphism, which implies Kv =
Frac(K◦v ) is geometrically regular over K = Frac(Ov). In particular, Kv⊗KE
is a reduced ring.
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On the other hand, as E is a simple purely inseparable extension of K,
we may write E = K[x]/(f(x)) for some irreducible polynomial

f(x) = xp
n − a = (x− γ)p

n
,

some positive integer n, a ∈ K and γ ∈ E r K. Evidently, Kv ⊗K E =
Kv[x]/(f(x)) is reduced if and only if γ 6∈ Kv. Thus f(x) is irreducible over
Kv and Kv ⊗K E is a field. Note that it is the (unique) minimal extension
of Kv containing E.

If F is any finite extension of Kv, then F inherits the unique extension
of the valuation v and is complete with respect to the extended valuation.
Therefore Kv⊗KE is a complete field under the unique extension of v. Let w
be the restriction of the extended valuation to E ⊂ Kv⊗K E. By continuity
the completion Ew injects canonically into Kv ⊗K E, and since Kv ⊗K E is
the minimal extension of Kv containing E, we must have Ew = Kv ⊗K E.
We have already mentioned that v extends uniquely to Kv ⊗K E, so the
proof is complete.

Corollary 6.2. Let X be a variety over the function field K as in
previous sections. If x ∈ |X| is a closed point , v is a place of K and ψ :
XKv → X is the base change morphism, then there are at most [K(x) : K]s
points in ψ−1(x), and

[K(x) : K] =
∑

y∈ψ−1(x)

[Kv(y) : Kv].

Proof. The ring of functions on the scheme-theoretic fiber ψ−1(x) is
Kv ⊗K K(x). Use Proposition 6.1 and compute dimensions over Kv.
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[CF67] J. W. S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory , Academic
Press, London, 1967.
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