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A sum analogous to Dedekind sums
and its hybrid mean value formula

by

WENPENG ZHANG (Xi’an)

1. Introduction. For a positive integer £ and an arbitrary integer h,
the classical Dedekind sum S(h, k) is defined by

wn=5 (D))

a=1
where
(2)) = x — [z] —1/2 if x is not an integer,
10 if x is an integer.

The various properties of S(h, k) were investigated by many authors. For
example, T. M. Apostol [2] and L. Carlitz [3] obtained a reciprocity theorem
of S(h,k). J. B. Conrey et al. [5] studied the mean value distribution of
S(h, k), and first got an important asymptotic formula. The author [4] and
[8] also studied some sums analogous to Dedekind sums, and proved several
mean value theorems. In October, 2000, during his visit in Xi’an, Professor
Todd Cochrane introduced a sum analogous to the Dedekind sum as follows:

b a ah
chk)=S "= —
nn =2 (()(F))
where @ is defined by aa = 1 mod k£ and Z;kzl denotes the summation
over all 1 < a < k such that (a,k) = 1. Then he suggested studying the
arithmetical properties and mean value distribution properties of C(h, k).
Concerning these problems, we have not made any progress yet. But for a
square-full number k (i.e. p| k if and only if p? | k), the author [7] found that
there are some close relations between C'(h, k) and the classical Kloosterman
sum
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k —
b b
K(m’n7k) = Z,e(%>7

b=1

where e(y) = 2™ and proved the following asymptotic formula:

i -1 3Ink
/
E K(h,1;k)C(h,k) = — ko(k) + O| kex
=1 . ) 2m? " ( p(hllllk))

where exp(y) =
In this paper, we shall discuss the hybrid mean value problem involving
C(h, k) and the general Kloosterman sum

k =T
b" b
K(m,n,r; k) = Z%ﬂ(%),

b=1

where r is any fixed positive integer. We shall use estimates for character
sums and the mean value theorem of Dirichlet L-functions to prove the
following:

THEOREM 1. Let p be an odd prime. Then we have the asymptotic for-

mula
p—1
-1 3lnp
> K(h,1;p)C(h,p) = ﬁPQ +O<peXp (1 1 >>
2 T nlnp

THEOREM 2. Letp be an odd prime. Then for any positive integer r > 2,

1
p? + O(rp*? In? p).

ZK(hala’F?p)C(hvp) m 5.9
=1

From Theorem 2 we may immediately deduce the following:

COROLLARY. Let p be an odd prime. Then for any fized ¢ > 0, the
asymptotic formula

p—1

1
ZKh,l,rp)C(hp) 2—2 as p — o0
h=1

holds for all integer 2 < r < pl/2—¢.

For general integer k > 2, it is an unsolved problem whether there exists
an asymptotic formula for Z/hk_l K(h,1,7;,k)C(h, k). We conjecture that

k
-1
> K (h, 1,1 k)C(h, k) ~ = k(k)  as k — oo
— 27

for all integer k > 2 and any fixed positive integer r.
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2. Some lemmas. We need the following lemmas:

LEMMA 1 (see [7]). Let a, k be integers with k > 3 and (a,k) = 1. Then

-1 _ = Gx,n)\>
ek = X CIONESE
x(=1)=-1

where x runs through the Dirichlet characters modulo k with x(—1) = —1,

and
Glx.m) = ;X(b)e<%>

denotes the Gauss sum corresponding to x.

LEMMA 2 (see [7]). Let k > 2 be any integer. Then

S 1) = %qb(/-c) + O(eXp (iﬁ’;))

x mod k
x(—1)=-1

LEMMA 3. Let k > 2 be any integer. Then

Z‘ > X(a)LQ(l,%)(<<kln2k;.

1<a<k x mod k
(ak)=1 x(-1)=—1

Proof. Let 7(n) be the Dirichlet divisor function. Then for any N > k
and non-principal character y modulo k, applying Abel’s identity we obtain

1) I2(Ly) - i x(n:(n) _ ¥ x(n)nT(n) +°S°A(y, Y g

2
1<n<N N Y

where

Ay, x) = Y. x(n)r(n).

N<n<ly
From (1) we have

@ > | > @)

1<a<k x mod k
(ak)=1 x(~1)=—1

< Z Z Z T(”)XS)Y(”)

1<a<k xmodk 1<n<N
(k=1 x(-1)=—1

i Z Z X(a)SA(y’Y)

y2
1<a<k x mod k
(a,k)=1 x(-1)=-1

dy‘ = M1 + Mg.
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Now we estimate M7 and M» in (2) respectively. Note that for (a, k) = 1,
from the orthogonality relation for characters we have

x mod k x mod k
x(—1)=-1
1 1
=2 Y @5 Y x-a)
x mod k x mod k

1o(k) ifa=1 (modk),
—3¢(k) ifa=—1 (modk),
0 otherwise.

Applying (3) we can get the estimate

@ = e Y T tem W

n n
1<a<k 1<n<N 1<n<N
(a,k)=1 n=a (mod k) n=—a (mod k)
/ T(n) 1 / T(n)
< D D s L L DD D
1<a<k 1<n<N 1<a<k  1<n<N
(a,k)=1 n=a (mod k) (a,k)=1 n=—a (mod k)
r 7(n) 2
< Y
<plk) > = < (k) In* N.
1<n<N

Applying Cauchy’s inequality and estimates for character sums,

SIY =] Y o

x#xo N<n<M x#x0 N<n<M<N+d
2
—od) Y. -] Y )
N<n<M<N-+d N<n<M<N-+d
2
_ ).
- 4
we have
2\ 1/2
G) > 1AWl < Vom(vi > oY xm))
x mod k n<,/y xmodk m<y/n
x(=1)=-1 x(—1)=-1
DD SR SR D SR}
x mod k VY XmOdk n<Vv'N

< VYV (k).
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From (5) we can also get the estimate

(©) wm= Y | ¥ x<a>§A<yf)dy'

1<a<k x mod k
(a,k)=1 x(-1)=-1

IN
g
Z
w|"
g
=
=
=
&

1<a<k Yy x mod k
(a,k)=1 x(=1)=-
¢°2 (k)

Taking N = k3, combining (4), (5) and (6) we immediately get the estimate

> ‘ > x(@I*(1L,X)| < kI,

1<a<k x mod k
(a,k)=1 x(-1)=-1

This proves Lemma 3.

3. Proof of Theorems 1 and 2. In this section, we complete the proof
of Theorems 1 and 2. Let p be an odd prime. Then from Lemma 1 and the
properties of Gauss sums (see Theorem 8.19 of [1]) we can get the identity

™) Clar) = ¥ wa 3 )

x mod p n=1
x(=1)=-1
-1 . _
=— Y X(@)T* ()L (LX)
mo(p) i
x(—1)=-1

For any fixed positive integer r, applying (7) we deduce

p—1
(8) D> K(h173p)Clhsp)
h=1
s X (R L))

For any primitive character xy modulo p, from the properties of Gauss sums
we have

T)T(X) =-p if x(~1)=-1



Noting G(1,x,1;p) = 7(x), from

obtain
p—1
-1
K(h,1;p)C(h,p) = 22 ()L (1, %
;?1 (h, 1;p)C(h, p) Zo0p) XmEOdp ()7 (x)L*(1,X)
x(=1)=-1
-1 p2 2 —
= . L*(1
= a2 M

x(—1)=-1

-1, 3lnp
= — @) .
o2V <pexp (lnlnp))

This completes the proof of Theorem 1.

Now we prove Theorem 2. Note that

G T () = 3 x(or 0“0

a=1b=1

and

p—1 r
Ze<nb >‘ <ryp for all integer n with (p,n) = 1.
p

b=1

(This result follows from Weil’s general upper bound on exponential sums,
see [6].)
From (8), (9), Lemma 2 and Lemma 3 we have

iK(h,l,r;p)C(h,p)Z 2_1 > r®GLX )T ()L (1,X)
ot LRl

x(=1)=-1



Sum analogous to Dedekind sums 7

=7 2 0TI
x(=1)=-
B » p—1 P*le (a—i—l)br . ) _
e (Ze(5) T werew
x(-1)=-1
—p(p—l) 24 —
729 (p) X%p L%
x(—1)=—
P RSN (lat Db N1~
7T2¢(P)z:1<b:16< ) 2, X@E)
x(—1)=-1

p—2,p—1
a—+1)b" .
= ()] ¥ wrax))
a=1"'b=1 p x mod p
x(=1)=-1

-1
= ﬁPQ +O(rp*? In® p).
This proves Theorem 2.
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