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Cohomology sets inside arithmetic groups

by
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0. Introduction. In [O1], T. Ono calculates the cohomology set
H1(〈θ〉, Γ (N)), where θ =

(0 −1
1 0

)
∈ PSL2(Z) and Γ (N) is the principal

congruence subgroup of some level N ≥ 3 in Γ := PSL2(Z). The cardinality
of this set is 1

2# SO2(Z/N) if N is no multiple of 4, and half of this other-
wise. Here, of course, SO2(Z/N) = {A ∈ SL2(Z/N) | A>A = 1}, where A>

is the transpose of A.
In Ono’s paper, everything comes down to using the fact that conjugation

with
(0 −1

1 0

)
is the same as inversion + transposition in Γ , and the whole

result seems to be without a more general perspective.
In this paper we will give another proof of Ono’s result and show that

in general we will not have to look at orthogonal groups, but rather at the
centralizer of θ in the quotient Γ/Γ (N). In Ono’s two-dimensional situation
these two groups by accident almost coincide.

Moreover, there is a link between the cardinality of the cohomology set
under consideration and ray class groups of cyclotomic fields. This is even
more interesting, as the more recent papers [O2] and [O3] of Ono give a
similar description of the cohomology sets coming from the action of the
Atkin–Lehner involution on Γ0(N) ⊂ SL2(Z).

1. Algebraic aspects. Let Γ be a group, ∆ a normal subgroup of Γ ,
and Θ ⊂ Γ a subgroup. We want to study the set H1(Θ,∆), where Θ acts
on ∆ by conjugation. By definition, H1(Θ,∆) is the quotient of Z1(Θ,∆)
by the relation ∼, where

Z1(Θ,∆) := {f : Θ → ∆ | f(st) = f(s)sf(t)s−1}, and

f ∼ f ′ :⇔ ∃k ∈ ∆ : ∀s ∈ Θ : f ′(s) = k−1f(s)sks−1.

Denote by HomΓ/∆(Θ,Γ ) the set of group homomorphisms η from Θ to
Γ over Γ/∆ (i.e. ∀θ ∈ Θ : η(θ) ∈ θ∆). In our situation, this leads to an
“intrinsic” way to describe the torseurs from [S, §5]. We get the following.
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1.0. Lemma. There is a natural bijection between H1(Θ,∆) and the set
of ∆-conjugacy classes in HomΓ/∆(Θ,Γ ), induced by

Z1(Θ,∆) 3 f 7→ η ∈ HomΓ/∆(Θ,Γ ), where η(h) := f(h)h.

Proof. For given f ∈ Z1(Θ,∆), the corresponding map η commutes with
the projection to Γ/∆; furthermore, it is a homomorphism, as we find

η(h1h2) = f(h1h2)h1h2 = f(h1)h1f(h2)h−1
1 h1h2 = η(h1)η(h2).

The rest of the assertion is clear.

From now on we will be interested in the case when Θ = 〈θ〉 is a finite
cyclic group of order e inside Γ . We then write H1(θ,∆) := H1(Θ,∆). Using
Lemma 1.0 we find:

1.1. Lemma. Let θ ∈ Γ be an element of finite order e, ∆ a normal
subgroup of Γ . Then there is a bijection between H1(θ,∆) and the set of
∆-conjugacy classes of elements of order dividing e in the coset ∆θ.

Proof. This follows from 1.0 and the fact that a homomorphism from 〈θ〉
to Γ is given by its value at θ. It lies in ∆θ if and only if the homomorphism
is one over Γ/∆.

1.2. An interpretation of the cohomology sets can in some situations be
given as follows.

If κ(Γ, d) denotes the number of conjugacy classes in Γ of order d, then

#H1(θ, Γ ) =
∑

d|e
κ(Γ, d).

If Γ acts properly discontinuously and faithfully on a simply connected
space X, then H1(θ,∆) carries important information on the geometry of
the orbifold Γ\X which has Γ as its (orbifold-)fundamental group, namely
information concerning the fixed points of the action.

Therefore, in contrast to the title of Ono’s paper, I would like to associate
the cohomology set not to the Riemann surface S = Γ (N)\H itself (where H
is the upper half-plane), but rather to the covering S → S̃ := 〈Γ (N), θ〉\H.
In Ono’s situation, the size of H1(θ,∆) says how many ramified points for
this covering exist.

We get the same information in the following even more classical situa-
tion. Let Λ ⊂ C be a full lattice and let % = −1. Then the semidirect product
Γ := 〈%〉nΛ acts by affine isometries on the euclidean space C. The elliptic
curve Λ\C covers the quotient Γ\C which has genus zero. The degree of this
covering is 2, and so by Riemann–Hurwitz we get 4 ramified points. These
correspond to the conjugacy classes of elements of order 2 in Γ, and so there
are four of these. In fact, they are given by H1(〈%〉, Λ) = Λ/2Λ, and the
ramified points are the 2-division points of the elliptic curve.
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Denote the centralizer of an element h in Γ by CΓ (h). We now study an
abstract situation which is very close to the one from Ono’s example.

1.3. Lemma. Let Γ be a group, ∆ a normal subgroup of Γ and θ an
element in Γ of order e. Suppose further that the order of ∆θ in Γ/∆ also
is e, that all elements of order e in ∆θ are conjugate under Γ , and that
C∆(θ) := CΓ (θ) ∩∆ has finite index , say i, in CΓ (θ). Then

#H1(θ,∆) =
1
i
#CΓ/∆(∆θ).

Proof. An element of order dividing e in ∆θ does have order e, as by
the assumption on θ modulo K the order has to be a multiple of e as well.
This element can be written as γθγ−1 for some γ ∈ Γ. The element γ is only
defined modulo CΓ (θ). This leads to H1(θ,∆) = (CΓ (θ)∆)\CΓ/∆(∆θ). As
(CΓ (θ)∆)/∆ ∼= CΓ (θ)/C∆(θ), we get the desired assertion.

NB: The assumption on the order of θ modulo ∆ holds if ∆ is without
torsion. It also holds if θ 6∈ ∆ has prime order.

1.4. We apply this and treat the case Γ = PSL2(Z), ∆ = Γ (N) with
N ≥ 3 and θ of order p ∈ {2, 3}. The elements of order p in Γ all are
conjugate. We therefore get

H1(θ,∆) = #CΓ/∆(∆θ)/p,

using the fact that CΓ (θ) = 〈θ〉.
In case p = 2 and 4 -N , the centralizer of θ in Γ/∆ turns out to have

the same number of elements as SO2(Z/NZ), because it is covered by a
subgroup of SL2(Z/NZ) which contains SO2(Z/NZ) with index 2. This is
Ono’s result. Note that for prime N = ` half of the centralizer of θ∆ is rather
the unit group F×` /{±1} in case ` ≡ 1 mod 4 and the group of norm-1-units
in F`2 modulo ±1 otherwise. This gives formula (1.2) in [O1]:

#H1(θ, Γ (`)) =
1
2

(`− (−1)(`−1)/2).

In case p = 3, (6, N) = 1, we get something similar: #H1(θ,∆) =
# SO

((2 1
1 2

)
,Z/NZ

)
/3, and, using the same calculation of the centralizer

as above, for prime numbers ` different from 2 or 3:

#H1(θ, Γ (`)) =
1
3

(
`−

(
3
`

)
(−1)(`−1)/2

)
,

where
(

3
`

)
is the Legendre symbol.

In both examples, orthogonal groups play a part. This is explained by
the following well known lemma.

1.5. Lemma. If Γ acts on some set X, and if the action of ∆ is trivial ,
then CΓ/∆(∆θ) acts on Xθ, the set of fixpoints of θ on X.
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In particular we find in 1.4 for p = 2 that the centralizer of θ =(0 −1
1 0

)
in PSL2(Z/NZ) acts on the space of θ-invariant quadratic forms of

the type A>A for A ∈ SL2(Z/NZ), which turns out to be a subset of{
±
(1 0

0 1

)}
, depending on N mod 4. In particular, the centralizer is contained

in GSO2(Z/NZ) :=
{
A ∈ SL2(Z/NZ) | A>A = ±

(1 0
0 1

)}
, and in fact the

centralizer here is the whole GSO2, which either contains SO2 with index 2
(if 4 does not divide N) or just is SO2.

Similar calculations hold in the other example in 1.4. It therefore is fair
to say that Ono exploits an exceptional isomorphism between orthogonal
groups and unit groups in the two-dimensional situation.

In the general situation, however, the link with quadratic forms is not
really essential, as we will see immediately.

2. A more general arithmetic situation. In this section we want to
analyse the situation where the finite group Θ ⊂ GLn(Z) is cyclic and acts
irreducibly on Qn. More concretely, this means the following.

Let e be a natural number, n = ϕ(e) (Euler’s ϕ-function), and θ an
element of order e in Γ := GLn(Z). The matrix θ is a zero of the eth
cyclotomic polynomial Φe. Let N ≥ 3 be a natural number and ∆ = Γ (N) ⊂
Γ the principal congruence subgroup of level N. It is known that ∆ is torsion
free.

NB: In principle, this is Ono’s situation, despite the fact that he works
in PSL2. In his paper, θ is represented by an element of order 4 in GL2,
which acts irreducibly on Q2, and 2 = φ(4).

It is well known from [B] that in Γ there are only finitely many conjugacy
classes of elements of finite order; therefore, by 1.2, H1(θ, Γ ) is finite. See
also the proof of Corollary 2.4 for this finiteness.

2.1. Let us first of all get rid of the suspicion that H1(θ,∆) could have
something to do with orthogonal groups when n ≥ 3. Namely, if p ≡ 1 mod e
is a prime number, then the image of θ in GLn(Fp) is conjugate to the diag-
onal matrix A := diag(λ1, . . . , λn), where the entries run through the primi-
tive eth roots of unity in Fp. We sort these in such a way that λiλn+1−i = 1
for all i, and then the quadratic forms on Fnp which are A-invariant are the
forms given by matrices of the type




0 . . . 0 d1

0 0 d2 0
0 . .

.
0 0

dn 0 . . . 0


 .

The centralizer of A consists of all diagonal matrices, but a general di-
agonal matrix B will not be in the generalized orthogonal group of any
(non-degenerate) quadratic form under consideration. Namely, this holds if
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and only if any pair of diagonal entries of B gives the same product, and for
this to hold, B must be a multiple of the identity, as n ≥ 3.

2.2. The centralizer of θ in general will be infinite, as θ generates the
ring Z[θ] inside the matrix ring Mn(Z), and this is isomorphic to the integer
ring Z[ζe] for a primitive eth root of unity. It intersects Γ in its group of units
which (by Dirichlet’s unit theorem) is finitely generated of rank n/2− 1. As
the characteristic polynomial of θ is irreducible, it is well known that the
centralizer of θ inside the matrix ring Mn(Q) is Q[θ]. Therefore, CΓ (θ) =
Z[θ]×. As the index of C∆(θ) in CΓ (θ) tends to vary very unregularly (cf.
[K, Prop. 3.1]), it will not be possible to find a polynomial formula for
the cardinality of H1(θ,∆). To be more concrete, let e = 5, n = 4. Then
Z[ζ]× = 〈±ζ, 1 + ζ〉, and this contains the unitgroup Z[(1 +

√
5)/2]× =

〈±1, (1 +
√

5)/2〉. The index of this subgroup is finite (namely 5), and every
nice behaviour of the size of CΓ (θ)/C∆(θ) would convert into the same
kind of behaviour of the order of (1 +

√
5)/2 modulo p for varying prime

numbers p. Now we really are in the situation of loc. cit., where any kind of
polynomial regularity of growth was excluded.

On the other hand, if we fix a prime p not dividing e, the Leopoldt
conjecture, which holds for abelian extensions of Q (cf. [W, Cor. 5.32]), says
that for large f we will have

#(Z[θ]×/Γ (pf )) = pn/2−1#(Z[θ]×/Γ (pf−1)),

so that for fixed p we have some kind of stabilization for #H1(θ, Γ (pf )) as
f goes to infinity.

2.3. Theorem. Let e ≥ 3 be a natural number , n = φ(e), θ ∈ Γ :=
GLn(Z) an element of order e and ∆ := Γ (p) the principal congruence
subgroup of level p for some prime number p ≥ 3 not dividing e. Let further
ζ be a primitive eth root of unity in C and i the index of ∆∩Z[θ]× in Z[θ]×.
Then

#H1(θ,∆) = hK
#CΓ/∆(θ)

i
,

where hK is the class number of the cyclotomic field K = Q(ζ). For the
centralizer CΓ/∆(θ) we find

#CΓ/∆(θ) =
2

p− 1
(po − 1)n/o,

where o is the (multiplicative) order of p modulo e.

Proof. First of all, the number of conjugacy classes of elements of order
e in Γ is the class number hK , as a given matrix of order e makes Zn into a
projective O = Z[ζ]-module of rank one, and so it is isomorphic to an ideal



32 S. Kühnlein

in O. Two matrices are conjugate if and only if the ideals are isomorphic as
O-modules, which is equivalent to lying in the same ideal class.

All elements of order e in Γ/∆ which come from elements of order e in
Γ are conjugate under GLn(Fp), as they share the characteristic polynomial
which splits as a product of pairwise distinct irreducible factors over Fp. As
the determinant map on CGL2(Fp)(θ) is still surjective (being the norm on a
product of finite fields), the elements are even conjugate under Γ/∆. This
means that every Γ -conjugacy class in Γ of order e has a representative in
∆θ. For every Γ -conjugacy class in ∆θ we get the same decomposition as
in Lemma 1.3, and the index i is independent of the conjugacy class, as for
any θ̃ ∈ Γ of order e we get

Z[θ̃]×/(Γ (p) ∩ Z[θ̃]×) ∼= Z[ζe]×/((1 + pZ[ζe]) ∩ Z[ζe]×).

Now use 1.1.
The assertion on the centralizer is obvious, as Fp[θ] is a product of n/o

fields of order po and we want elements of determinant ±1.

2.4. Corollary. Under the conditions of Theorem 2.3 let h̃K,p be the
cardinality of the ray class group ClpK of K with modulus pO. Then

h̃K,p =
p− 1

2
#H1(θ,∆).

Proof. The cardinality of the centralizer of θ is (2/(p − 1))#(O/pO)×.
This gives the assertion, due to [N, Kap. VI.2, Aufgabe 13], as the field is
totally imaginary.

In view of this corollary it might be interesting to get a somewhat more
quantitative idea of the sizes of the cohomology sets. We therefore study an
example.

2.5. Example. We go back to the example from 2.2, namely the ele-
ment θ of order 5 in GL4(Z) (there is just one conjugacy class). We get the
following table, using the fact that the centralizer of θ in Γ is generated by
θ and 1+θ and that—in all cases I did calculate—for every prime number p
not dividing 10 the order of 1 + θ modulo p is divisible by 10, whence 1 + θ
generates CΓ (θ)/C∆(θ) and the order is the index i.

p i o #CΓ/∆(θ) #H1(θ,∆)

3 40 4 80 2
7 80 4 800 10

11 10 1 2000 200
13 140 4 4760 34
17 180 4 10440 58
19 90 2 14400 160
23 240 4 25440 106
29 70 2 50400 720
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For p ≡ 1 mod 10 the index i has to divide p − 1, and o = 1, hence
2(p − 1)2 ≤ #H1(θ,∆) ≤ 2(p − 1)3. In reality, the index i seems to be a
“large” divisor of p − 1: for p < 1000 there are 26 (out of 40) with index
p− 1, seven with index (p− 1)/2, five with index (p− 1)/3, one with index
(p− 1)/4, and one with index (p− 1)/13 (namely 911). The question we are
discussing here is the same as the following: let z1, . . . , z4 be the roots of Φ5

in Fp. How large is the group generated by z1 + 1, . . . , z4 + 1?
For p ≡ 9 mod 10 the index i has to divide p2 − 1 and turns out to be a

large divisor of 10(p− 1)/2. Namely, if z ∈ Fp2 is a fifth root of unity, then

(z + 1)5(p−1) = ((zp + 1)/(z + 1))5 = ((z4 + 1)/(z + 1))5 = z4·5 = 1.

For p ≡ 2 or 3 mod 5 the index i is a divisor of 10(p+ 1) (similar calcu-
lation as above). Apart from the proof by calculation, this comes from the
fact that a subgroup of finite index in the unit group already lies in Q(

√
5).

Questions/Remarks. (a) Is there anything nice to say about the size
of the image of CΓ (θ) in Γ/∆? Is there any kind of density result?

(b) Can one use the group generated by θ and ∆ (via automorphic forms
or Hecke operators on cohomology) in order to construct the corresponding
ray class field?

(c) Similar questions may be asked if we replace GLn(Z) by GLn(O) for
some S-arithmetic ring of integers O, and also in the function field situation.
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