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1. Introduction. First of all, let us fix some notations. Put

R1 = {x ∈ R : x ≥ 1}, Q1= Q ∩ R1, N1 = Z ∩ R1 = {1, 2, 3, . . .},

R0 = {x ∈ R : x ≥ 0}, Q0= Q ∩ R0, N0 = Z ∩ R0 = {0, 1, 2, . . .}.

For x ∈ R, ⌊x⌋ will denote the floor or integer part of x, that is to say,
⌊x⌋ =max {k ∈ Z : k ≤ x}.

The well known 3n + 1 function (see, e.g., [8] and [10]) is the function
T : N1 → N1 given by

(1) T (n) =

{
T0(n) = n/2 if n is even,

T1(n) = (3n + 1)/2 if n is odd.

In this work, we introduce an extension of T , namely the function U :
R1 → R1 defined by

(2) U(x) =

{
U0(x) = x/2 if ⌊x⌋ is even,

U1(x) = (3x + 1)/2 if ⌊x⌋ is odd.

Note that U |N1 is indeed T . We shall call U the real 3x + 1 function
(in contrast to the integer 3n + 1 function T ). In Section 2, we propose a
conjecture about the iterates of U that generalizes the famous 3n+1 conjec-
ture. We then prove our main result about the iterates of U (Theorem 2.1),
which is directly related to both of these conjectures. We also introduce the
flipped 3x + 1 function Ũ and prove an analogous result for its iterates. In
Section 3, we show a couple of simple propositions about the iterates of U
and Ũ , introduce other related functions and propose some questions and
conjectures about their iterates.

We hope that the results, conjectures and questions stated here will be
not only relevant to the 3n + 1 conjecture itself, but also of interest in
their own right. Some of the results presented here already appear in the
literature. In those cases, we refer the reader to their proofs. However, for

2000 Mathematics Subject Classification: 11B37, 26A18, 37E05.
The author was supported by CNPq-Brazil.

[35]



36 P. B. Konstadinidis

the reader’s benefit, we recall some well known definitions (in a form slightly
better suited to our purposes).

2. The conjecture and the main results. Given a (nonempty) set X
and a function f : X → X, the iterates of f will be denoted by f i (i ∈ N0).
They are defined by f0 = idX (the identity function on X) and f i = f ◦f i−1

for i > 0. For any given x ∈ X, the f -trajectory of x or starting at x is the
sequence Tf (x) = (f i(x))∞i=0. An f -periodic trajectory or, simply, an f -cycle
is the f -trajectory of some z ∈ X such that fn(z) = z for some n ∈ N1 (in
this case, the f -cycles starting at fk(z), k ∈ N0, will sometimes be considered
as being one and the same f -cycle). By an f -cycle of length l ∈ N1 we mean
any sequence in the set {(x, f(x), . . . , f l(x)) : x ∈ X, f l(x) = x}.

Now, let Q[(2)] denote the set of all rational numbers having an odd
denominator when written in lowest terms (see [5]). A number a/b ∈ Q[(2)]
(with b odd) is even (resp. odd ) if its numerator a is even (resp. odd). The
rational Collatz sequence generated by r0 ∈ Q[(2)] is the g-trajectory of r0,
where g : Q[(2)] → Q[(2)] is given by g(r) = g0(r) = r/2 if r is even, and
g(r) = g1(r) = (3r+1)/2 if r is odd. A rational Collatz cycle (of length l ) is
simply a g-cycle (of length l). Given l ∈ N1 and n ∈ N0, let Sl,n be the set of

all 0-1 sequences of length l containing exactly n 1’s, and put Sl =
⋃l

n=0 Sl,n

and S =
⋃

∞

l=1 Sl. If s ∈ S, we denote the number of 1’s in s by n(s) and
the length of s by l(s). Given s = (s1, . . . , sl) ∈ S, define φs : R → R by
φs = gsl

◦ · · · ◦ gs1 . A sequence (x0, x1, . . . , xl) of real numbers is called a
pseudo-cycle of length l if there exists s = (s1, . . . , sl) ∈ S such that xl = x0

and xi = gsi
(xi−1) for i = 1, . . . , l (note that xl = φs(x0)). Finally, define

ϕ : S → N0 by

ϕ(s) =

l(s)∑

j=1

sj2
j−13sj+1+sj+2+···+sl(s) .

Let x0 ∈ R1 be given. If

{ lim
k→∞

U2k(x0), lim
k→∞

U2k+1(x0)} = {1, 2},

then we say that the U -trajectory TU (x0) tends to {1, 2} and write TU (x0)
→ {1, 2}. Our real 3x + 1 conjecture is

RU: For all x ∈ R1, TU (x) → {1, 2}.

Note that, for all n ∈ N1, TT (n) = TU (n). The famous (integer) 3n + 1
conjecture may then be stated as

NU: For all n ∈ N1, TU (n) → {1, 2}.

One could also state both of these conjectures in terms of the U -parity
sequence associated with x ∈ R1, which is simply the infinite 0-1 sequence

PU (x) = (⌊U i(x)⌋ mod 2)∞i=0.
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Note that this sequence encodes which branch of U (U0 or U1) is used in each
step of TU (x). Now, an infinite 0-1 sequence (pi)

∞

i=0 will be called eventually

periodic with period (0, 1) if there exists j ∈ N0 such that (pi, pi+1) = (0, 1)
for all i = j + 2m, m ∈ N0. It is a simple matter (see Proposition 3.1) to
show that, for each x ∈ R1, PU (x) is eventually periodic with period (0, 1)
if, and only if, TU (x) → {1, 2}. In other words, the conjectures RU and NU

above can be stated in the following alternative, equivalent forms:

RU′: For all x ∈ R1, PU (x) is eventually periodic with period (0, 1).
NU′: For all n ∈ N1, PU (n) is eventually periodic with period (0, 1).

Now, we observe that our RU conjecture clearly implies both of the
following two conjectures.

OU: The only U -cycle is the T -cycle (1, 2, 1, 2, 1, . . .).
BU: Every U -trajectory is bounded.

Of course, all T -cycles are U -cycles, and one would naturally expect to
find (many) more U -cycles than T -cycles. However, our main result, which
is directly related to the conjectures RU and OU above, tells us that in
fact quite the opposite happens.

Theorem 2.1. The only U -cycles are the T -cycles.

Proof. Let us first state two lemmas that will be used in this and subse-
quent proofs. The reader may find their proofs in [5] and [7] (the basic idea
of most of Lemma 2.2 below is due originally to Böhm and Sontacchi [1]).

Lemma 2.2 (Böhm and Sontacchi, Lagarias, Halbeisen and Hunger-
bühler). A sequence (x0, x1, . . . , xl) is a rational Collatz cycle of length l
if , and only if , it is a pseudo-cycle of length l. Moreover , if a rational Col-

latz cycle is not the cycle (0, 0, . . .), then its elements are either all strictly

positive or all strictly negative.

Lemma 2.3 (Lagarias). For any s ∈ S and any x ∈ R, we have

(3) φs(x) =
3n(s)x + ϕ(s)

2l(s)
.

Therefore, given s ∈ S,

(4) x0(s) =
ϕ(s)

2l(s) − 3n(s)
∈ Q[(2)]

is the unique number that generates the rational Collatz cycle of length l(s)
that is also the pseudo-cycle of length l(s) determined by s.

To begin with, we note that all U -cycles start at numbers in Q1, since,
for each k ∈ N1, every solution of x = Uk(x) is rational. Suppose then that
there exist x0 ∈ Q1 \ N1 and l ∈ N1 such that there is a U -cycle of length
l starting at x0, namely Ω(x0) = (x0, U(x0), . . . , U

l(x0) = x0). If we derive
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a contradiction from this hypothesis, then we will be done. Note that it is
immediate (by inspection) that the only U -cycle of length less than 4 is the
T -cycle (1, 2, 1). Hence, without loss of generality, we may assume that l ≥ 4,
which avoids our having to consider some trivial cases separately in what
follows. Now, since Uι ≡ gι (ι = 0, 1), Ω(x0) is a pseudo-cycle of length l.
Thus, by Lemma 2.2, Ω(x0) is a rational Collatz cycle of length l as well.
Therefore, by using Lemma 2.3 and the fact that U |N1

= T , one deduces

both that all U i(x0) are in Q[(2)] ∩ Q1 \ N1 and that

(5) x0 = x0(s) =
ϕ(s)

2l(s) − 3n(s)
,

where s = (s1, . . . , sl) ∈ S is the 0-1 sequence associated with (the pseudo-
cycle) Ω(x0), i.e., s consists of the first l = l(s) terms in PU (x0). For conve-
nience, put n = n(s) and d = 2l − 3n. Now, given any a/b in Q[(2)] (with b
odd), it is clear that every term in the rational Collatz sequence generated
by a/b may be written with denominator b. As d happens to be odd, one
may, for i = 0, 1, . . . , l, write

(6) xi = U i(x0) =
ci

d
=

qid + ri

d
= qi +

ri

d
,

where qi is the quotient and ri the remainder in the Euclidean division of ci

by d. Note that all ci, qi and ri lie in N1 and that d ≥ 5 (for all xi = ci/d
are in Q1 \ N1, ϕ(s) > 0 and 3 does not divide d). In particular, no ri is 0,
and so all ri satisfy 0 < ri < d. Moreover, because d = 2l − 3n > 0, one has

(7) n < l log3 2.

Now, since Ω(x0) = (x0, x1, . . . , xl = x0) is both a U -cycle and a rational
Collatz cycle (of length l), we infer, for i = 0, 1, . . . , l, that qi = ⌊xi⌋ is even
(resp. odd) if, and only if, ci is even (resp. odd). Thus, all ri = ci − dqi are
even. Write ri = 2eioi, where ei ≥ 1 and oi is odd, think of r0, r1, . . . , rl = r0

as being arranged (in this order) in a circular manner and observe that, for
i = 0, 1, . . . , l,

(8) ri =





1
2 ri−1 if qi−1 is even,

3
2 ri−1 if qi−1 is odd and ri−1 < 2

3 d,

3
2 ri−1 − d if qi−1 is odd and ri−1 > 2

3 d.

Note that, since 3 does not divide d, it is never the case that ri−1 = 2d/3
in (8). As usual, indices are to be considered modulo l whenever necessary.
Now, if ri is such that ri = 3ri−1/2−d, then we say that this ri is new . Note
that if rj+1 is not new, then either rj+1 = 2ej−1oj or rj+1 = 2ej−1(3oj). This
clearly means that at least one of r0, r1, . . . , rl−1 is new. By renaming the
xi’s if necessary, we can assume that r0 (= rl) is new. Now, let 0 ≤ p < q ≤ l
be such that rp and rq are consecutive new , that is, both rp and rq are new
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and, for all p < k < q, rk is not new (if r0 is the only new one, then put
p = 0 and q = l). Because there are no new rk’s strictly between rp and rq,
one has

(9) rq−1 = 2(3n(p,q−1)op) and ep = q − p,

where, for any 0 ≤ i ≤ j ≤ l, n(i, j) is the number of times U1 is used from
xi to xj , i.e., n(i, j) is the number of 1’s in {si+1, si+2, . . . , sj}. Since rq is
new, we have both n(p, q) = n(p, q − 1) + 1 and d < 3rq−1/2. From this and
(9), it follows that

(10) d < 3n(p, q−1)+1op =
3n(p, q−1)+1

2ep
rp =

3n(p, q)

2q−p
rp.

Now, because rp is new, rp = 3rp−1/2 − d, and so, since 0 < rp−1 < d,
we obtain rp < d/2 < 2d/3. From this and (10), one gets

(11) d <
3n(p, q)−1

2q−p−1
d ⇒ 3n(p, q)−1 > 2q−p−1 ⇒ n(p, q) > log3 2q−p−1 + 1.

Therefore, n(p, q) > log3 2q−p−1 + log3 2 = log3 2q−p, and so

(12) n(p, q) > (q − p) log3 2.

Now, let 0 = i0 < i1 < · · · < im = l, m ≥ 1, be such that ri0 , ri1 , . . . , rim

are all the new ri’s in {r0, r1, . . . , rl}. Then we have n =
∑m

k=1 n(ik−1, ik),
l =

∑m
k=1(ik − ik−1) and rik−1

and rik are consecutive new for all k =
1, . . . , m. Consequently, inequality (12) gives us n>l log3 2, contrary to (7).

We note that some authors have already investigated a variety of in-
teresting smooth extensions of T to the real (and even complex) numbers
(see, e.g., [2]–[4], [6] and [9]). Unlike the conjectured case of U , however, the
dynamics of these extensions outside the integers are always extraneous to
the 3x + 1 conjecture (i.e., there exist periodic and divergent trajectories).

Now, the previous theorem illustrated the relative ease one has in ob-
taining some results if one is allowed the freedom to work in R1 (instead
of having to concentrate on N1). For another example along these lines,

consider the flipped 3x + 1 function Ũ : R0 → R0 defined by

(13) Ũ(x) =

{
Ũ0(x) = U1(x) if ⌊x⌋ is even,

Ũ1(x) = U0(x) if ⌊x⌋ is odd.

Clearly, Ũ |N0
is not a function from N0 to N0. Naturally, one would like

to know what happens to the Ũ -trajectories. In particular, one could try
to obtain all Ũ -cycles. This is in fact done in our next theorem, which is a
bonus result we obtain from the method used to prove Theorem 2.1.

Theorem 2.4. There are no Ũ -cycles.
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Proof. The proof is almost entirely analogous to the proof of Theorem 2.1
above, and so we will be brief and point out only the required modifications.
Clearly, no Ũ -cycles start at numbers in N0. Suppose then that there exist

x0 ∈ Q0 \ N0 and l ∈ N1 such that there is a Ũ -cycle of length l starting

at x0, namely Ω̃(x0) = (x0, Ũ(x0), . . . , Ũ
l(x0) = x0). By inspection, there

are no Ũ -cycles of length less than 4, and so we may assume that l ≥ 4
(again, this assumption is made to avoid trivialities). Now, with similar
notations and the same arguments from the proof of Theorem 2.1, one finds,
for i = 0, 1, . . . , l, that

(14) xi = Ũ i(x0) =
ci

d
=

qid + ri

d
= qi +

ri

d
= (qi + 1) −

d − ri

d
,

where qi is the quotient and ri the remainder in the Euclidean division of
ci by d. Since no xi’s belong to N0, all ri satisfy 0 < d − ri < d. Moreover,
because d = 2l − 3n > 0, we have, as before,

(15) n < l log3 2.

Since Ω̃(x0) = (x0, x1, . . . , xl = x0) is both a Ũ -cycle and a rational
Collatz cycle (of length l), it follows, for i = 0, 1, . . . , l, that qi = ⌊xi⌋ is even
(resp. odd) if, and only if, ci is odd (resp. even). Thus, all ri = ci − dqi are
odd, i.e., all d− ri are even. Now, think of d− r0, d− r1, . . . , d− rl = d− r0

as being arranged (in this order) in a circular fashion and note that, for
i = 0, 1, . . . , l,

(16) d − ri =





1
2(d − ri−1) if qi−1 is odd,

3
2(d − ri−1) if qi−1 is even and d − ri−1 < 2

3d,

3
2(d − ri−1) − d if qi−1 is even and d − ri−1 > 2

3d.

Arguing exactly in the same way as in the proof of Theorem 2.1, we conclude
that n > l log3 2, which contradicts (15).

Note that yet another equivalent way of phrasing the conjecture RU is
to say that, for every x ∈ R1, there exists k ∈ N0 such that Uk(x) ∈ [1, 3).

Our corresponding conjecture for the iterates of Ũ is

RŨ: For every x ∈ R0 there exists k ∈ N0 such that Ũk(x) ∈ [0, 2).

Of course, Theorem 2.4 is directly related to the conjecture RŨ above.
Let us conclude this section by observing that our RŨ conjecture clearly
implies the following conjecture.

BŨ: Every Ũ -trajectory is bounded.

3. Other results, conjectures and questions. One way to find out
if studying what happens to the iterates of U can shed some new light on
the 3n + 1 conjecture or not would be to try to answer our first question.
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Q1: Does the 3n + 1 conjecture imply our real 3x + 1 conjecture RU?

On one hand, if the answer to this question is yes, then this would show
that looking at the iterates of U amounts to essentially the same thing as
looking at those of T (as far as the 3n + 1 conjecture is concerned). On the
other hand, we note that if the 3n + 1 conjecture is true, then the answer
to the question Q1 above could very well be no. To see why, suppose that,
instead of T , one considered the original Collatz function, i.e., f : N1 → N1

given by

(17) f(n) =

{
f0(n) = n/2 if n is even,

f1(n) = 3n + 1 if n is odd.

Its extension to R1 (in our sense) is the function F : R1 → R1 given by

(18) F (x) =

{
F0(x) = x/2 if ⌊x⌋ is even,

F1(x) = 3x + 1 if ⌊x⌋ is odd.

The statement for the F -trajectories which corresponds to the conjec-
ture RU would be that TF (x) → {1, 2} for all x ∈ R1. However, this is
readily seen to be false, since, for example, all F -trajectories starting at
2m+3/2, m ∈ N0, diverge (monotonically) to +∞. Now, the 3n+1 conjec-
ture for the iterates of T is equivalent to the (same) one for the iterates of f .
Thus, if the 3n + 1 conjecture turns out to be true, then the question for
the F -trajectories that is the counterpart to question Q1 will have a neg-
ative answer. Moreover, if our real 3x + 1 conjecture RU is true, then the
U -trajectories and the F -trajectories will be seen to have quite different be-
haviors in R1 (as opposed to what happens in N1). In our view, comparisons
between the U -trajectories and the F -trajectories may play an important
rôle in some future 3x+1-type investigations. Let our next question empha-
size this point.

Q2: Are the F -trajectories starting at 2m + 3/2, m = 0, 1, 2, . . . , the
only F -trajectories that do not tend to {1, 2}?

Of course, analogous questions on similar notions regarding the iterates
of Ũ could be posed as well. We now show a simple result about the iterates
of U . Its proof will suggest a new approach one might consider in trying to
prove the conjecture OU (see Remark 3.3). A corresponding result for the

iterates of Ũ will then be obtained as a corollary. Before we can state these
results, a couple of definitions are needed.

Given x0 ∈ R1, we say that PU (x0) = (pi)
∞

i=0 is eventually periodic

with period s = (s0, s1, . . . , sl(s)−1) ∈ S if there exists j ∈ N0 such that
(pi, pi+1, . . . , pi+l(s)−1) = (s0, s1, . . . , sl(s)−1) for all i = j + ml(s), m ∈ N0.
Moreover, if a ∈ N1 is such that there is a U -cycle of length l start-
ing at a, then we say that TU (x0) tends to {U t(a)} from above (in sym-
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bols, TU (x0)
+
−→ {U t(a)}) whenever there is j0 ∈ N0 such that, for all

j ∈ {0, 1, . . . , l − 1}, Ukl(U j+j0(x0)) → U j(a)+ as k → +∞.

Proposition 3.1. If a ∈ N1 is such that there is a U -cycle of length l
starting at a, then, for all x ∈ R1, PU (x) is eventually periodic with period

(a mod 2, U(a) mod 2, . . . , U l−1(a) mod 2) if , and only if , TU (x) tends to

{U t(a)} from above.

Proof. Suppose first that x ∈ R1 is such that TU (x)
+
−→ {U t(a)}. Since

there is a U -cycle of length l starting at a, it clearly follows that there is
some 0 < θ ∈ R such that, for all y ∈ [a, a + θ) and all m ∈ N0,

(19) (⌊Uml(y)⌋, ⌊Uml+1(y)⌋, . . . , ⌊Uml+l−1(y)⌋) = (a, U(a), . . . , U l−1(a)).

For instance, any 0 < θ < (2/3)l will do. Since TU (x)
+
−→ {U t(a)}, there

is some k0 ∈ N0 such that Uk0(x) ∈ [a, a + θ). Hence, PU (x) is eventually
periodic with period (a mod 2, U(a) mod 2, . . . , U l−1(a) mod 2).

For the other direction, suppose now that x ∈ R1 is such that PU (x)
is eventually periodic with period s = (a mod 2, U(a) mod 2, . . . , U l−1(a)
mod 2) ∈ S. By using Lemma 2.3, one sees that there is some j0 ∈ N0 such
that

U l(s)(U j0(x)) =
3n(s)U j0(x) + ϕ(s)

2l(s)
=

3n(s)(a + U j0(x) − a) + ϕ(s)

2l(s)

=
3n(s)a+ϕ(s)

2l(s)
+

3n(s)(U j0(x)−a)

2l(s)
= a+

3n(s)

2l(s)
(U j0(x)−a).

Analogously, for j = 0, 1, . . . , l − 1 we have

U l(s)(U j+j0(x)) = U j(a) +
3n(s)

2l(s)
(U j+j0(x) − U j(a)).

Therefore, for all m ∈ N0 and all j ∈ {0, 1, . . . , l − 1},

(20) Uml(s)(U j+j0(x)) = U j(a) +

(
3n(s)

2l(s)

)m

(U j+j0(x) − U j(a)).

Since 3n(s) < 2l(s), it is not hard to conclude now that TU (x)
+
−→ {U t(a)}.

Now, with the appropriate analogous definitions for the iterates of Ũ ,
the same argument presented in the proof of Proposition 3.1 above gives us
the following result as well.

Proposition 3.2. If a ∈ N1 is such that there is a U -cycle of length l
starting at a, then, for all x ∈ R0, PŨ

(x) is eventually periodic with period

(1 − a mod 2, 1 − (U(a) mod 2), . . . , 1 − (U l−1(a) mod 2)) if , and only if ,
T

Ũ
(x) tends to {U t(a)} from below.
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Note that if the 3n + 1 conjecture is true and x0 ∈ R1 is such that
TU (x0) → a+

0 for some a0 ∈ N1, then TU (x0) → {1, 2}. This indicates one
way in which one may try to give a positive answer to question Q1.

Now, consider IU (N1) = {x ∈ R1 : ∃ k ∈ N0 with Uk(x) ∈ N1} and
NU (N1) = R1 \ IU (N1). Of course, our RU conjecture implies the following
conjecture.

NU: For all x ∈ NU (N1), TU (x) → {1, 2}.

We may now pose our next question, which can also be thought of as
being one of the possible (nontrivial) ways of turning question Q1 around.

Q3: Does the NU conjecture above imply the 3n + 1 conjecture?

Remark 3.3. Let us just note here an interesting corollary of the proof
of Proposition 3.1: if one proves that, for all n ∈ N1 and all 0 < ̺ ∈ R, there
exists some z ∈ (n, n + ̺) ∩ NU (N1) such that TU (z) → {1, 2}, then it will
follow that the OU conjecture (which, in light of Theorem 2.1, states in fact
that “there are no nontrivial T -cycles”) is true.

To try to answer the question Q3 above might be an even better way
of seeing whether there are some real advantages in shifting one’s attention
from T to U . Let us end this line of inquiry now by registering the following
very broad (but also potentially very productive) question.

Q4: What kind of results for the iterates of U does one get by attempting
to translate known results for the iterates of T?

In conclusion, let us just remark that the apparent general project would
be for one to study the dynamical system in R generated by the iterates of
(discontinuous) piecewise linear functions of the following “simple” kind.

Let α, β, γ, δ, τ ∈ R be fixed, with τ ∈ [0, 2), and consider the function
Φ = Φ(α, β, γ, δ, τ) : R → R defined by

(21) Φ(x) =

{
Φ0(x) = αx + β if ⌊x + τ⌋ is even,

Φ1(x) = γx + δ if ⌊x + τ⌋ is odd.

Naturally, the crux of the matter here is to find out how the parameters
α, β, γ, δ and τ affect the behavior of the Φ = Φ(α, β, γ, δ, τ)-trajectories.
This brings us to our final (albeit seemingly intractable as of yet!) question.

Q5: How do the general properties of the dynamical system in R gen-
erated by the iterates of the function Φ = Φ(α, β, γ, δ, τ) defined as
in (21) depend on the values of the real parameters α, β, γ, δ
and τ?

We have, e.g., U = Φ(1/2, 0, 3/2, 1/2, 0)|R1
and Ũ = Φ(1/2, 0, 3/2, 1/2, 1)|R0

.
Note also that the functions Φ(1/2, 0, 3/2, 1/2, τ0)|R1

, with 0 ≤ τ0 < 1, are
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all extensions of T . Finally, we bring into attention V =Φ(1/2, 0, 3/2, 0, 0)|R1
,

i.e., the function V : R1 → R1 given by

(22) V (x) =

{
V0(x) = 1

2x if ⌊x⌋ is even,

V1(x) = 3
2x if ⌊x⌋ is odd.

Of course, there are no V -cycles. It might be worthwhile for one to try
to find out the status of the following two final conjectures, as well as their
possible connections to the 3n + 1 and RU conjectures, if any:

RV: For every x ∈ R1 there exists k ∈ N0 such that V k(x) ∈ [1, 3).
BV: Every V -trajectory is bounded.

The author would like to thank the referee for suggestions that have led
to an improvement in the presentation of this paper.
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