The real $3 x+1$ problem

by

Pavlos B. Konstadinidis (São Paulo)

1. Introduction. First of all, let us fix some notations. Put

$$
\begin{array}{ll}
\mathbb{R}_{1}=\{x \in \mathbb{R}: x \geq 1\}, & \mathbb{Q}_{1}=\mathbb{Q} \cap \mathbb{R}_{1}, \\
\mathbb{R}_{0}=\{x \in \mathbb{R}: x \geq 0\}, & \mathbb{Q}_{0}=\mathbb{Q} \cap \mathbb{R}_{1}=\{1,2,3, \ldots\} \\
\mathbb{R}_{0}, & \mathbb{N}_{0}=\mathbb{Z} \cap \mathbb{R}_{0}=\{0,1,2, \ldots\}
\end{array}
$$

For $x \in \mathbb{R},\lfloor x\rfloor$ will denote the floor or integer part of x, that is to say, $\lfloor x\rfloor=\max \{k \in \mathbb{Z}: k \leq x\}$.

The well known $3 n+1$ function (see, e.g., [8] and [10]) is the function $T: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ given by

$$
T(n)= \begin{cases}T_{0}(n)=n / 2 & \text { if } n \text { is even } \tag{1}\\ T_{1}(n)=(3 n+1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

In this work, we introduce an extension of T, namely the function U : $\mathbb{R}_{1} \rightarrow \mathbb{R}_{1}$ defined by

$$
U(x)= \begin{cases}U_{0}(x)=x / 2 & \text { if }\lfloor x\rfloor \text { is even } \tag{2}\\ U_{1}(x)=(3 x+1) / 2 & \text { if }\lfloor x\rfloor \text { is odd }\end{cases}
$$

Note that $\left.U\right|_{\mathbb{N}_{1}}$ is indeed T. We shall call U the real $3 x+1$ function (in contrast to the integer $3 n+1$ function T). In Section 2 , we propose a conjecture about the iterates of U that generalizes the famous $3 n+1$ conjecture. We then prove our main result about the iterates of U (Theorem 2.1), which is directly related to both of these conjectures. We also introduce the flipped $3 x+1$ function \widetilde{U} and prove an analogous result for its iterates. In Section 3, we show a couple of simple propositions about the iterates of U and \widetilde{U}, introduce other related functions and propose some questions and conjectures about their iterates.

We hope that the results, conjectures and questions stated here will be not only relevant to the $3 n+1$ conjecture itself, but also of interest in their own right. Some of the results presented here already appear in the literature. In those cases, we refer the reader to their proofs. However, for
the reader's benefit, we recall some well known definitions (in a form slightly better suited to our purposes).
2. The conjecture and the main results. Given a (nonempty) set X and a function $f: X \rightarrow X$, the iterates of f will be denoted by $f^{i}\left(i \in \mathbb{N}_{0}\right)$. They are defined by $f^{0}=\operatorname{id}_{X}$ (the identity function on X) and $f^{i}=f \circ f^{i-1}$ for $i>0$. For any given $x \in X$, the f-trajectory of x or starting at x is the sequence $\mathcal{T}_{f}(x)=\left(f^{i}(x)\right)_{i=0}^{\infty}$. An f-periodic trajectory or, simply, an f-cycle is the f-trajectory of some $z \in X$ such that $f^{n}(z)=z$ for some $n \in \mathbb{N}_{1}$ (in this case, the f-cycles starting at $f^{k}(z), k \in \mathbb{N}_{0}$, will sometimes be considered as being one and the same f-cycle). By an f-cycle of length $l \in \mathbb{N}_{1}$ we mean any sequence in the set $\left\{\left(x, f(x), \ldots, f^{l}(x)\right): x \in X, f^{l}(x)=x\right\}$.

Now, let $\mathbb{Q}[(2)]$ denote the set of all rational numbers having an odd denominator when written in lowest terms (see [5]). A number $a / b \in \mathbb{Q}[(2)]$ (with b odd) is even (resp. odd) if its numerator a is even (resp. odd). The rational Collatz sequence generated by $r_{0} \in \mathbb{Q}[(2)]$ is the g-trajectory of r_{0}, where $g: \mathbb{Q}[(2)] \rightarrow \mathbb{Q}[(2)]$ is given by $g(r)=g_{0}(r)=r / 2$ if r is even, and $g(r)=g_{1}(r)=(3 r+1) / 2$ if r is odd. A rational Collatz cycle (of length l) is simply a g-cycle (of length l). Given $l \in \mathbb{N}_{1}$ and $n \in \mathbb{N}_{0}$, let $S_{l, n}$ be the set of all 0-1 sequences of length l containing exactly $n 1$'s, and put $S_{l}=\bigcup_{n=0}^{l} S_{l, n}$ and $S=\bigcup_{l=1}^{\infty} S_{l}$. If $s \in S$, we denote the number of 1's in s by $n(s)$ and the length of s by $l(s)$. Given $s=\left(s_{1}, \ldots, s_{l}\right) \in S$, define $\phi_{s}: \mathbb{R} \rightarrow \mathbb{R}$ by $\phi_{s}=g_{s_{l}} \circ \cdots \circ g_{s_{1}}$. A sequence $\left(x_{0}, x_{1}, \ldots, x_{l}\right)$ of real numbers is called a pseudo-cycle of length l if there exists $s=\left(s_{1}, \ldots, s_{l}\right) \in S$ such that $x_{l}=x_{0}$ and $x_{i}=g_{s_{i}}\left(x_{i-1}\right)$ for $i=1, \ldots, l$ (note that $x_{l}=\phi_{s}\left(x_{0}\right)$). Finally, define $\varphi: S \rightarrow \mathbb{N}_{0}$ by

$$
\varphi(s)=\sum_{j=1}^{l(s)} s_{j} 2^{j-1} 3^{s_{j+1}+s_{j+2}+\cdots+s_{l(s)}}
$$

Let $x_{0} \in \mathbb{R}_{1}$ be given. If

$$
\left\{\lim _{k \rightarrow \infty} U^{2 k}\left(x_{0}\right), \lim _{k \rightarrow \infty} U^{2 k+1}\left(x_{0}\right)\right\}=\{1,2\}
$$

then we say that the U-trajectory $\mathcal{T}_{U}\left(x_{0}\right)$ tends to $\{1,2\}$ and write $\mathcal{T}_{U}\left(x_{0}\right)$ $\rightarrow\{1,2\}$. Our real $3 x+1$ conjecture is
$\mathbf{R U}:$ For all $x \in \mathbb{R}_{1}, \mathcal{T}_{U}(x) \rightarrow\{1,2\}$.
Note that, for all $n \in \mathbb{N}_{1}, \mathcal{T}_{T}(n)=\mathcal{T}_{U}(n)$. The famous (integer) $3 n+1$ conjecture may then be stated as
$\mathbf{N U}:$ For all $n \in \mathbb{N}_{1}, \mathcal{I}_{U}(n) \rightarrow\{1,2\}$.
One could also state both of these conjectures in terms of the U-parity sequence associated with $x \in \mathbb{R}_{1}$, which is simply the infinite $0-1$ sequence

$$
\mathcal{P}_{U}(x)=\left(\left\lfloor U^{i}(x)\right\rfloor \bmod 2\right)_{i=0}^{\infty}
$$

Note that this sequence encodes which branch of $U\left(U_{0}\right.$ or $\left.U_{1}\right)$ is used in each step of $\mathcal{T}_{U}(x)$. Now, an infinite $0-1$ sequence $\left(p_{i}\right)_{i=0}^{\infty}$ will be called eventually periodic with period $(0,1)$ if there exists $j \in \mathbb{N}_{0}$ such that $\left(p_{i}, p_{i+1}\right)=(0,1)$ for all $i=j+2 m, m \in \mathbb{N}_{0}$. It is a simple matter (see Proposition 3.1) to show that, for each $x \in \mathbb{R}_{1}, \mathcal{P}_{U}(x)$ is eventually periodic with period $(0,1)$ if, and only if, $\mathcal{T}_{U}(x) \rightarrow\{1,2\}$. In other words, the conjectures $\mathbf{R U}$ and $\mathbf{N U}$ above can be stated in the following alternative, equivalent forms:
$\mathbf{R U}^{\prime}$: For all $x \in \mathbb{R}_{1}, \mathcal{P}_{U}(x)$ is eventually periodic with period $(0,1)$.
$\mathbf{N U}^{\prime}$: For all $n \in \mathbb{N}_{1}, \mathcal{P}_{U}(n)$ is eventually periodic with period $(0,1)$.
Now, we observe that our $\mathbf{R U}$ conjecture clearly implies both of the following two conjectures.

OU: The only U-cycle is the T-cycle $(1,2,1,2,1, \ldots)$.
$\mathbf{B U}$: Every U-trajectory is bounded.
Of course, all T-cycles are U-cycles, and one would naturally expect to find (many) more U-cycles than T-cycles. However, our main result, which is directly related to the conjectures $\mathbf{R U}$ and $\mathbf{O U}$ above, tells us that in fact quite the opposite happens.

Theorem 2.1. The only U-cycles are the T-cycles.
Proof. Let us first state two lemmas that will be used in this and subsequent proofs. The reader may find their proofs in [5] and [7] (the basic idea of most of Lemma 2.2 below is due originally to Böhm and Sontacchi [1]).

Lemma 2.2 (Böhm and Sontacchi, Lagarias, Halbeisen and Hungerbühler). A sequence $\left(x_{0}, x_{1}, \ldots, x_{l}\right)$ is a rational Collatz cycle of length l if, and only if, it is a pseudo-cycle of length l. Moreover, if a rational Collatz cycle is not the cycle $(0,0, \ldots)$, then its elements are either all strictly positive or all strictly negative. -

Lemma 2.3 (Lagarias). For any $s \in S$ and any $x \in \mathbb{R}$, we have

$$
\begin{equation*}
\phi_{s}(x)=\frac{3^{n(s)} x+\varphi(s)}{2^{l(s)}} \tag{3}
\end{equation*}
$$

Therefore, given $s \in S$,

$$
\begin{equation*}
x_{0}(s)=\frac{\varphi(s)}{2^{l(s)}-3^{n(s)}} \in \mathbb{Q}[(2)] \tag{4}
\end{equation*}
$$

is the unique number that generates the rational Collatz cycle of length $l(s)$ that is also the pseudo-cycle of length $l(s)$ determined by s.

To begin with, we note that all U-cycles start at numbers in \mathbb{Q}_{1}, since, for each $k \in \mathbb{N}_{1}$, every solution of $x=U^{k}(x)$ is rational. Suppose then that there exist $x_{0} \in \mathbb{Q}_{1} \backslash \mathbb{N}_{1}$ and $l \in \mathbb{N}_{1}$ such that there is a U-cycle of length l starting at x_{0}, namely $\Omega\left(x_{0}\right)=\left(x_{0}, U\left(x_{0}\right), \ldots, U^{l}\left(x_{0}\right)=x_{0}\right)$. If we derive
a contradiction from this hypothesis, then we will be done. Note that it is immediate (by inspection) that the only U-cycle of length less than 4 is the T-cycle ($1,2,1$). Hence, without loss of generality, we may assume that $l \geq 4$, which avoids our having to consider some trivial cases separately in what follows. Now, since $U_{\iota} \equiv g_{\iota}(\iota=0,1), \Omega\left(x_{0}\right)$ is a pseudo-cycle of length l. Thus, by Lemma 2.2, $\Omega\left(x_{0}\right)$ is a rational Collatz cycle of length l as well. Therefore, by using Lemma 2.3 and the fact that $\left.U\right|_{\mathbb{N}_{1}}=T$, one deduces both that all $U^{i}\left(x_{0}\right)$ are in $\mathbb{Q}[(2)] \cap \mathbb{Q}_{1} \backslash \mathbb{N}_{1}$ and that

$$
\begin{equation*}
x_{0}=x_{0}(s)=\frac{\varphi(s)}{2^{l(s)}-3^{n(s)}} \tag{5}
\end{equation*}
$$

where $s=\left(s_{1}, \ldots, s_{l}\right) \in S$ is the $0-1$ sequence associated with (the pseudocycle) $\Omega\left(x_{0}\right)$, i.e., s consists of the first $l=l(s)$ terms in $\mathcal{P}_{U}\left(x_{0}\right)$. For convenience, put $n=n(s)$ and $d=2^{l}-3^{n}$. Now, given any a / b in $\mathbb{Q}[(2)]$ (with b odd), it is clear that every term in the rational Collatz sequence generated by a / b may be written with denominator b. As d happens to be odd, one may, for $i=0,1, \ldots, l$, write

$$
\begin{equation*}
x_{i}=U^{i}\left(x_{0}\right)=\frac{c_{i}}{d}=\frac{q_{i} d+r_{i}}{d}=q_{i}+\frac{r_{i}}{d}, \tag{6}
\end{equation*}
$$

where q_{i} is the quotient and r_{i} the remainder in the Euclidean division of c_{i} by d. Note that all c_{i}, q_{i} and r_{i} lie in \mathbb{N}_{1} and that $d \geq 5$ (for all $x_{i}=c_{i} / d$ are in $\mathbb{Q}_{1} \backslash \mathbb{N}_{1}, \varphi(s)>0$ and 3 does not divide $\left.d\right)$. In particular, no r_{i} is 0 , and so all r_{i} satisfy $0<r_{i}<d$. Moreover, because $d=2^{l}-3^{n}>0$, one has

$$
\begin{equation*}
n<l \log _{3} 2 \tag{7}
\end{equation*}
$$

Now, since $\Omega\left(x_{0}\right)=\left(x_{0}, x_{1}, \ldots, x_{l}=x_{0}\right)$ is both a U-cycle and a rational Collatz cycle (of length l), we infer, for $i=0,1, \ldots, l$, that $q_{i}=\left\lfloor x_{i}\right\rfloor$ is even (resp. odd) if, and only if, c_{i} is even (resp. odd). Thus, all $r_{i}=c_{i}-d q_{i}$ are even. Write $r_{i}=2^{e_{i}} o_{i}$, where $e_{i} \geq 1$ and o_{i} is odd, think of $r_{0}, r_{1}, \ldots, r_{l}=r_{0}$ as being arranged (in this order) in a circular manner and observe that, for $i=0,1, \ldots, l$,

$$
r_{i}= \begin{cases}\frac{1}{2} r_{i-1} & \text { if } q_{i-1} \text { is even } \tag{8}\\ \frac{3}{2} r_{i-1} & \text { if } q_{i-1} \text { is odd and } r_{i-1}<\frac{2}{3} d \\ \frac{3}{2} r_{i-1}-d & \text { if } q_{i-1} \text { is odd and } r_{i-1}>\frac{2}{3} d\end{cases}
$$

Note that, since 3 does not divide d, it is never the case that $r_{i-1}=2 d / 3$ in (8). As usual, indices are to be considered modulo l whenever necessary. Now, if r_{i} is such that $r_{i}=3 r_{i-1} / 2-d$, then we say that this r_{i} is new. Note that if r_{j+1} is not new, then either $r_{j+1}=2^{e_{j}-1} o_{j}$ or $r_{j+1}=2^{e_{j}-1}\left(3 o_{j}\right)$. This clearly means that at least one of $r_{0}, r_{1}, \ldots, r_{l-1}$ is new. By renaming the x_{i} 's if necessary, we can assume that $r_{0}\left(=r_{l}\right)$ is new. Now, let $0 \leq p<q \leq l$ be such that r_{p} and r_{q} are consecutive new, that is, both r_{p} and r_{q} are new
and, for all $p<k<q, r_{k}$ is not new (if r_{0} is the only new one, then put $p=0$ and $q=l$). Because there are no new r_{k} 's strictly between r_{p} and r_{q}, one has

$$
\begin{equation*}
r_{q-1}=2\left(3^{n(p, q-1)} o_{p}\right) \quad \text { and } \quad e_{p}=q-p \tag{9}
\end{equation*}
$$

where, for any $0 \leq i \leq j \leq l, n(i, j)$ is the number of times U_{1} is used from x_{i} to x_{j}, i.e., $n(i, j)$ is the number of 1 's in $\left\{s_{i+1}, s_{i+2}, \ldots, s_{j}\right\}$. Since r_{q} is new, we have both $n(p, q)=n(p, q-1)+1$ and $d<3 r_{q-1} / 2$. From this and (9), it follows that

$$
\begin{equation*}
d<3^{n(p, q-1)+1} o_{p}=\frac{3^{n(p, q-1)+1}}{2^{e_{p}}} r_{p}=\frac{3^{n(p, q)}}{2^{q-p}} r_{p} \tag{10}
\end{equation*}
$$

Now, because r_{p} is new, $r_{p}=3 r_{p-1} / 2-d$, and so, since $0<r_{p-1}<d$, we obtain $r_{p}<d / 2<2 d / 3$. From this and (10), one gets

$$
\begin{equation*}
d<\frac{3^{n(p, q)-1}}{2^{q-p-1}} d \Rightarrow 3^{n(p, q)-1}>2^{q-p-1} \Rightarrow n(p, q)>\log _{3} 2^{q-p-1}+1 \tag{11}
\end{equation*}
$$

Therefore, $n(p, q)>\log _{3} 2^{q-p-1}+\log _{3} 2=\log _{3} 2^{q-p}$, and so

$$
\begin{equation*}
n(p, q)>(q-p) \log _{3} 2 \tag{12}
\end{equation*}
$$

Now, let $0=i_{0}<i_{1}<\cdots<i_{m}=l, m \geq 1$, be such that $r_{i_{0}}, r_{i_{1}}, \ldots, r_{i_{m}}$ are all the new r_{i} 's in $\left\{r_{0}, r_{1}, \ldots, r_{l}\right\}$. Then we have $n=\sum_{k=1}^{m} n\left(i_{k-1}, i_{k}\right)$, $l=\sum_{k=1}^{m}\left(i_{k}-i_{k-1}\right)$ and $r_{i_{k-1}}$ and $r_{i_{k}}$ are consecutive new for all $k=$ $1, \ldots, m$. Consequently, inequality (12) gives us $n>l \log _{3} 2$, contrary to (7).

We note that some authors have already investigated a variety of interesting smooth extensions of T to the real (and even complex) numbers (see, e.g., [2]-[4], [6] and [9]). Unlike the conjectured case of U, however, the dynamics of these extensions outside the integers are always extraneous to the $3 x+1$ conjecture (i.e., there exist periodic and divergent trajectories).

Now, the previous theorem illustrated the relative ease one has in obtaining some results if one is allowed the freedom to work in \mathbb{R}_{1} (instead of having to concentrate on \mathbb{N}_{1}). For another example along these lines, consider the flipped $3 x+1$ function $\widetilde{U}: \mathbb{R}_{0} \rightarrow \mathbb{R}_{0}$ defined by

$$
\widetilde{U}(x)= \begin{cases}\widetilde{U}_{0}(x)=U_{1}(x) & \text { if }\lfloor x\rfloor \text { is even } \tag{13}\\ \widetilde{U}_{1}(x)=U_{0}(x) & \text { if }\lfloor x\rfloor \text { is odd }\end{cases}
$$

Clearly, $\left.\widetilde{U}\right|_{\mathbb{N}_{0}}$ is not a function from \mathbb{N}_{0} to \mathbb{N}_{0}. Naturally, one would like to know what happens to the \widetilde{U}-trajectories. In particular, one could try to obtain all \widetilde{U}-cycles. This is in fact done in our next theorem, which is a bonus result we obtain from the method used to prove Theorem 2.1.

Theorem 2.4. There are no \widetilde{U}-cycles.

Proof. The proof is almost entirely analogous to the proof of Theorem 2.1 above, and so we will be brief and point out only the required modifications. Clearly, no \widetilde{U}-cycles start at numbers in \mathbb{N}_{0}. Suppose then that there exist $x_{0} \in \mathbb{Q}_{0} \backslash \mathbb{N}_{0}$ and $l \in \mathbb{N}_{1}$ such that there is a \widetilde{U}-cycle of length l starting at x_{0}, namely $\widetilde{\Omega}\left(x_{0}\right)=\left(x_{0}, \widetilde{U}\left(x_{0}\right), \ldots, \widetilde{U}^{l}\left(x_{0}\right)=x_{0}\right)$. By inspection, there are no \widetilde{U}-cycles of length less than 4 , and so we may assume that $l \geq 4$ (again, this assumption is made to avoid trivialities). Now, with similar notations and the same arguments from the proof of Theorem 2.1, one finds, for $i=0,1, \ldots, l$, that

$$
\begin{equation*}
x_{i}=\widetilde{U}^{i}\left(x_{0}\right)=\frac{c_{i}}{d}=\frac{q_{i} d+r_{i}}{d}=q_{i}+\frac{r_{i}}{d}=\left(q_{i}+1\right)-\frac{d-r_{i}}{d} \tag{14}
\end{equation*}
$$

where q_{i} is the quotient and r_{i} the remainder in the Euclidean division of c_{i} by d. Since no x_{i} 's belong to \mathbb{N}_{0}, all r_{i} satisfy $0<d-r_{i}<d$. Moreover, because $d=2^{l}-3^{n}>0$, we have, as before,

$$
\begin{equation*}
n<l \log _{3} 2 \tag{15}
\end{equation*}
$$

Since $\widetilde{\Omega}\left(x_{0}\right)=\left(x_{0}, x_{1}, \ldots, x_{l}=x_{0}\right)$ is both a \widetilde{U}-cycle and a rational Collatz cycle (of length l), it follows, for $i=0,1, \ldots, l$, that $q_{i}=\left\lfloor x_{i}\right\rfloor$ is even (resp. odd) if, and only if, c_{i} is odd (resp. even). Thus, all $r_{i}=c_{i}-d q_{i}$ are odd, i.e., all $d-r_{i}$ are even. Now, think of $d-r_{0}, d-r_{1}, \ldots, d-r_{l}=d-r_{0}$ as being arranged (in this order) in a circular fashion and note that, for $i=0,1, \ldots, l$,

$$
d-r_{i}= \begin{cases}\frac{1}{2}\left(d-r_{i-1}\right) & \text { if } q_{i-1} \text { is odd } \tag{16}\\ \frac{3}{2}\left(d-r_{i-1}\right) & \text { if } q_{i-1} \text { is even and } d-r_{i-1}<\frac{2}{3} d \\ \frac{3}{2}\left(d-r_{i-1}\right)-d & \text { if } q_{i-1} \text { is even and } d-r_{i-1}>\frac{2}{3} d\end{cases}
$$

Arguing exactly in the same way as in the proof of Theorem 2.1, we conclude that $n>l \log _{3} 2$, which contradicts (15).

Note that yet another equivalent way of phrasing the conjecture RU is to say that, for every $x \in \mathbb{R}_{1}$, there exists $k \in \mathbb{N}_{0}$ such that $U^{k}(x) \in[1,3)$. Our corresponding conjecture for the iterates of \widetilde{U} is
$\mathbf{R} \widetilde{\mathbf{U}}$: For every $x \in \mathbb{R}_{0}$ there exists $k \in \mathbb{N}_{0}$ such that $\widetilde{U}^{k}(x) \in[0,2)$.
Of course, Theorem 2.4 is directly related to the conjecture $\mathbf{R} \widetilde{\mathbf{U}}$ above. Let us conclude this section by observing that our R $\widetilde{\mathbf{U}}$ conjecture clearly implies the following conjecture.

B $\widetilde{\mathbf{U}}$: Every \widetilde{U}-trajectory is bounded.
3. Other results, conjectures and questions. One way to find out if studying what happens to the iterates of U can shed some new light on the $3 n+1$ conjecture or not would be to try to answer our first question.

Q1: Does the $3 n+1$ conjecture imply our real $3 x+1$ conjecture RU?
On one hand, if the answer to this question is yes, then this would show that looking at the iterates of U amounts to essentially the same thing as looking at those of T (as far as the $3 n+1$ conjecture is concerned). On the other hand, we note that if the $3 n+1$ conjecture is true, then the answer to the question Q1 above could very well be no. To see why, suppose that, instead of T, one considered the original Collatz function, i.e., $f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ given by

$$
f(n)= \begin{cases}f_{0}(n)=n / 2 & \text { if } n \text { is even } \tag{17}\\ f_{1}(n)=3 n+1 & \text { if } n \text { is odd }\end{cases}
$$

Its extension to \mathbb{R}_{1} (in our sense) is the function $F: \mathbb{R}_{1} \rightarrow \mathbb{R}_{1}$ given by

$$
F(x)= \begin{cases}F_{0}(x)=x / 2 & \text { if }\lfloor x\rfloor \text { is even } \tag{18}\\ F_{1}(x)=3 x+1 & \text { if }\lfloor x\rfloor \text { is odd }\end{cases}
$$

The statement for the F-trajectories which corresponds to the conjecture $\mathbf{R U}$ would be that $\mathcal{T}_{F}(x) \rightarrow\{1,2\}$ for all $x \in \mathbb{R}_{1}$. However, this is readily seen to be false, since, for example, all F-trajectories starting at $2 m+3 / 2, m \in \mathbb{N}_{0}$, diverge (monotonically) to $+\infty$. Now, the $3 n+1$ conjecture for the iterates of T is equivalent to the (same) one for the iterates of f. Thus, if the $3 n+1$ conjecture turns out to be true, then the question for the F-trajectories that is the counterpart to question Q1 will have a negative answer. Moreover, if our real $3 x+1$ conjecture RU is true, then the U-trajectories and the F-trajectories will be seen to have quite different behaviors in \mathbb{R}_{1} (as opposed to what happens in \mathbb{N}_{1}). In our view, comparisons between the U-trajectories and the F-trajectories may play an important rôle in some future $3 x+1$-type investigations. Let our next question emphasize this point.

Q2: Are the F-trajectories starting at $2 m+3 / 2, m=0,1,2, \ldots$, the only F-trajectories that do not tend to $\{1,2\}$?

Of course, analogous questions on similar notions regarding the iterates of \widetilde{U} could be posed as well. We now show a simple result about the iterates of U. Its proof will suggest a new approach one might consider in trying to prove the conjecture OU (see Remark 3.3). A corresponding result for the iterates of \widetilde{U} will then be obtained as a corollary. Before we can state these results, a couple of definitions are needed.

Given $x_{0} \in \mathbb{R}_{1}$, we say that $\mathcal{P}_{U}\left(x_{0}\right)=\left(p_{i}\right)_{i=0}^{\infty}$ is eventually periodic with period $s=\left(s_{0}, s_{1}, \ldots, s_{l(s)-1}\right) \in S$ if there exists $j \in \mathbb{N}_{0}$ such that $\left(p_{i}, p_{i+1}, \ldots, p_{i+l(s)-1}\right)=\left(s_{0}, s_{1}, \ldots, s_{l(s)-1}\right)$ for all $i=j+m l(s), m \in \mathbb{N}_{0}$. Moreover, if $a \in \mathbb{N}_{1}$ is such that there is a U-cycle of length l starting at a, then we say that $\mathcal{T}_{U}\left(x_{0}\right)$ tends to $\left\{U^{t}(a)\right\}$ from above (in sym-
bols, $\left.\mathcal{T}_{U}\left(x_{0}\right) \xrightarrow{+}\left\{U^{t}(a)\right\}\right)$ whenever there is $j_{0} \in \mathbb{N}_{0}$ such that, for all $j \in\{0,1, \ldots, l-1\}, U^{k l}\left(U^{j+j_{0}}\left(x_{0}\right)\right) \rightarrow U^{j}(a)^{+}$as $k \rightarrow+\infty$.

Proposition 3.1. If $a \in \mathbb{N}_{1}$ is such that there is a U-cycle of length l starting at a, then, for all $x \in \mathbb{R}_{1}, \mathcal{P}_{U}(x)$ is eventually periodic with period $\left(a \bmod 2, U(a) \bmod 2, \ldots, U^{l-1}(a) \bmod 2\right)$ if, and only if, $\mathcal{T}_{U}(x)$ tends to $\left\{U^{t}(a)\right\}$ from above.

Proof. Suppose first that $x \in \mathbb{R}_{1}$ is such that $\mathcal{T}_{U}(x) \xrightarrow{+}\left\{U^{t}(a)\right\}$. Since there is a U-cycle of length l starting at a, it clearly follows that there is some $0<\theta \in \mathbb{R}$ such that, for all $y \in[a, a+\theta)$ and all $m \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\left(\left\lfloor U^{m l}(y)\right\rfloor,\left\lfloor U^{m l+1}(y)\right\rfloor, \ldots,\left\lfloor U^{m l+l-1}(y)\right\rfloor\right)=\left(a, U(a), \ldots, U^{l-1}(a)\right) \tag{19}
\end{equation*}
$$

For instance, any $0<\theta<(2 / 3)^{l}$ will do. Since $\mathcal{I}_{U}(x) \xrightarrow{+}\left\{U^{t}(a)\right\}$, there is some $k_{0} \in \mathbb{N}_{0}$ such that $U^{k_{0}}(x) \in[a, a+\theta)$. Hence, $\mathcal{P}_{U}(x)$ is eventually periodic with period $\left(a \bmod 2, U(a) \bmod 2, \ldots, U^{l-1}(a) \bmod 2\right)$.

For the other direction, suppose now that $x \in \mathbb{R}_{1}$ is such that $\mathcal{P}_{U}(x)$ is eventually periodic with period $s=\left(a \bmod 2, U(a) \bmod 2, \ldots, U^{l-1}(a)\right.$ $\bmod 2) \in S$. By using Lemma 2.3, one sees that there is some $j_{0} \in \mathbb{N}_{0}$ such that

$$
\begin{aligned}
U^{l(s)}\left(U^{j_{0}}(x)\right) & =\frac{3^{n(s)} U^{j_{0}}(x)+\varphi(s)}{2^{l(s)}}=\frac{3^{n(s)}\left(a+U^{j_{0}}(x)-a\right)+\varphi(s)}{2^{l(s)}} \\
& =\frac{3^{n(s)} a+\varphi(s)}{2^{l(s)}}+\frac{3^{n(s)}\left(U^{j_{0}}(x)-a\right)}{2^{l(s)}}=a+\frac{3^{n(s)}}{2^{l(s)}}\left(U^{j_{0}}(x)-a\right) .
\end{aligned}
$$

Analogously, for $j=0,1, \ldots, l-1$ we have

$$
U^{l(s)}\left(U^{j+j_{0}}(x)\right)=U^{j}(a)+\frac{3^{n(s)}}{2^{l(s)}}\left(U^{j+j_{0}}(x)-U^{j}(a)\right)
$$

Therefore, for all $m \in \mathbb{N}_{0}$ and all $j \in\{0,1, \ldots, l-1\}$,

$$
\begin{equation*}
U^{m l(s)}\left(U^{j+j_{0}}(x)\right)=U^{j}(a)+\left(\frac{3^{n(s)}}{2^{l(s)}}\right)^{m}\left(U^{j+j_{0}}(x)-U^{j}(a)\right) \tag{20}
\end{equation*}
$$

Since $3^{n(s)}<2^{l(s)}$, it is not hard to conclude now that $\mathcal{T}_{U}(x) \xrightarrow{+}\left\{U^{t}(a)\right\}$.
Now, with the appropriate analogous definitions for the iterates of \widetilde{U}, the same argument presented in the proof of Proposition 3.1 above gives us the following result as well.

Proposition 3.2. If $a \in \mathbb{N}_{1}$ is such that there is a U-cycle of length l starting at a, then, for all $x \in \mathbb{R}_{0}, \mathcal{P}_{\widetilde{U}}(x)$ is eventually periodic with period $\left(1-a \bmod 2,1-(U(a) \bmod 2), \ldots, 1-\left(U^{l-1}(a) \bmod 2\right)\right)$ if, and only if, $\mathcal{T}_{\widetilde{U}}(x)$ tends to $\left\{U^{t}(a)\right\}$ from below.

Note that if the $3 n+1$ conjecture is true and $x_{0} \in \mathbb{R}_{1}$ is such that $\mathcal{T}_{U}\left(x_{0}\right) \rightarrow a_{0}^{+}$for some $a_{0} \in \mathbb{N}_{1}$, then $\mathcal{T}_{U}\left(x_{0}\right) \rightarrow\{1,2\}$. This indicates one way in which one may try to give a positive answer to question Q1.

Now, consider $\mathcal{I}_{U}\left(\mathbb{N}_{1}\right)=\left\{x \in \mathbb{R}_{1}: \exists k \in \mathbb{N}_{0}\right.$ with $\left.U^{k}(x) \in \mathbb{N}_{1}\right\}$ and $\mathcal{N}_{U}\left(\mathbb{N}_{1}\right)=\mathbb{R}_{1} \backslash \mathcal{I}_{U}\left(\mathbb{N}_{1}\right)$. Of course, our $\mathbf{R U}$ conjecture implies the following conjecture.
$\mathcal{N} \mathbf{U}:$ For all $x \in \mathcal{N}_{U}\left(\mathbb{N}_{1}\right), \mathcal{T}_{U}(x) \rightarrow\{1,2\}$.
We may now pose our next question, which can also be thought of as being one of the possible (nontrivial) ways of turning question Q1 around.

Q3: Does the $\mathcal{N} \mathbf{U}$ conjecture above imply the $3 n+1$ conjecture?
Remark 3.3. Let us just note here an interesting corollary of the proof of Proposition 3.1: if one proves that, for all $n \in \mathbb{N}_{1}$ and all $0<\varrho \in \mathbb{R}$, there exists some $z \in(n, n+\varrho) \cap \mathcal{N}_{U}\left(\mathbb{N}_{1}\right)$ such that $\mathcal{T}_{U}(z) \rightarrow\{1,2\}$, then it will follow that the $\mathbf{O U}$ conjecture (which, in light of Theorem 2.1, states in fact that "there are no nontrivial T-cycles") is true.

To try to answer the question Q3 above might be an even better way of seeing whether there are some real advantages in shifting one's attention from T to U. Let us end this line of inquiry now by registering the following very broad (but also potentially very productive) question.

Q4: What kind of results for the iterates of U does one get by attempting to translate known results for the iterates of T ?

In conclusion, let us just remark that the apparent general project would be for one to study the dynamical system in \mathbb{R} generated by the iterates of (discontinuous) piecewise linear functions of the following "simple" kind.

Let $\alpha, \beta, \gamma, \delta, \tau \in \mathbb{R}$ be fixed, with $\tau \in[0,2)$, and consider the function $\Phi=\Phi(\alpha, \beta, \gamma, \delta, \tau): \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\Phi(x)= \begin{cases}\Phi_{0}(x)=\alpha x+\beta & \text { if }\lfloor x+\tau\rfloor \text { is even } \tag{21}\\ \Phi_{1}(x)=\gamma x+\delta & \text { if }\lfloor x+\tau\rfloor \text { is odd }\end{cases}
$$

Naturally, the crux of the matter here is to find out how the parameters $\alpha, \beta, \gamma, \delta$ and τ affect the behavior of the $\Phi=\Phi(\alpha, \beta, \gamma, \delta, \tau)$-trajectories. This brings us to our final (albeit seemingly intractable as of yet!) question.

Q5: How do the general properties of the dynamical system in \mathbb{R} generated by the iterates of the function $\Phi=\Phi(\alpha, \beta, \gamma, \delta, \tau)$ defined as in (21) depend on the values of the real parameters $\alpha, \beta, \gamma, \delta$ and τ ?

We have, e.g., $U=\left.\Phi(1 / 2,0,3 / 2,1 / 2,0)\right|_{\mathbb{R}_{1}}$ and $\widetilde{U}=\left.\Phi(1 / 2,0,3 / 2,1 / 2,1)\right|_{\mathbb{R}_{0}}$. Note also that the functions $\left.\Phi\left(1 / 2,0,3 / 2,1 / 2, \tau_{0}\right)\right|_{\mathbb{R}_{1}}$, with $0 \leq \tau_{0}<1$, are
all extensions of T. Finally, we bring into attention $V=\left.\Phi(1 / 2,0,3 / 2,0,0)\right|_{\mathbb{R}_{1}}$, i.e., the function $V: \mathbb{R}_{1} \rightarrow \mathbb{R}_{1}$ given by

$$
V(x)= \begin{cases}V_{0}(x)=\frac{1}{2} x & \text { if }\lfloor x\rfloor \text { is even } \tag{22}\\ V_{1}(x)=\frac{3}{2} x & \text { if }\lfloor x\rfloor \text { is odd }\end{cases}
$$

Of course, there are no V-cycles. It might be worthwhile for one to try to find out the status of the following two final conjectures, as well as their possible connections to the $3 n+1$ and RU conjectures, if any:
$\mathbf{R V}$: For every $x \in \mathbb{R}_{1}$ there exists $k \in \mathbb{N}_{0}$ such that $V^{k}(x) \in[1,3)$.
$\mathbf{B V}$: Every V-trajectory is bounded.
The author would like to thank the referee for suggestions that have led to an improvement in the presentation of this paper.

References

[1] C. Böhm and G. Sontacchi, On the existence of cycles of given length in integer sequences like $x_{n+1}=x_{n} / 2$ if x_{n} even, and $x_{n+1}=3 x_{n}+1$ otherwise, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64 (1978), 260-264.
[2] M. Chamberland, An update on the $3 x+1$ problem, Butl. Soc. Catalana Mat. 18 (2003), 19-45 (in Catalan); English version: http://www.math.grin.edu/~ chamberl.
[3] -, A continuous extension of the $3 x+1$ problem to the real line, Dyn. Contin. Discrete Impuls. Syst. 2 (1996), 495-509.
[4] J. P. Dumont and C. A. Reiter, Real dynamics of a 3-power extension of the $3 x+1$ function, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), 875893.
[5] L. Halbeisen and N. Hungerbühler, Optimal bounds for the length of rational Collatz cycles, Acta Arith. 78 (1997), 227-239.
[6] J. C. Lagarias, The $3 x+1$-problem: an annotated bibliography, eprint: arXiv math. NT/0309224 (2005).
[7] -, The set of rational cycles for the $3 x+1$ problem, Acta Arith. 56 (1990), 33-53.
[8] -, The $3 x+1$-problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23.
[9] S. Letherman, D. Schleicher and R. Wood, The $3 n+1$-problem and holomorphic dynamics, Experiment. Math. 8 (1999), 241-251.
[10] G. J. Wirsching, The Dynamical System Generated by the $3 n+1$ Function, Lecture Notes in Math. 1681, Springer, Berlin, 1998.

Departamento de Matemática
Instituto de Matemática e Estatística
Universidade de São Paulo
C.P.G. Sala B-23 Rua do Matão, 1010

São Paulo, S.P., Brazil 05508-090
E-mail: pavlos@ime.usp.br

