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1. Introduction. In Art. 302 and Art. 304 of Disquisitiones Arithmeti-

cae, Gauss considered averages of the class number of primitive integral bi-
nary quadratic forms. In the first of them, he dealt with the case of negative
discriminants and claimed that he had found “by a theoretical investigation”
a mean value formula that in modern notation can be written as

∑

n≤N

h(−4n) ∼ 4π

21ζ(3)
N3/2 − 2

π2
N.

Most probably, Gauss proved this asymptotic formula using the lattice point
interpretation of class number ([Ga, Art. 172, Art. 174]). It seems that the
first published proof is due to Lipschitz [Li] and the best known bound for
the error term (see the note at the end of [Ch-Iw2]) is

(1)
∑

n≤N

h(−4n) ∼ 4π

21ζ(3)
N3/2 − 2

π2
N +O(Nα) for every α >

21

32
.

The case of positive discriminants has remained mysterious up to the
present day (see [Sa1] and [Sa2] for astonishing average formulas over spe-
cial sequences). Gauss mentioned in Art. 304 that the product of the class
number by the logarithm of the fundamental unit seems to behave in a reg-
ular way (this is natural by the class number formula). In fact, more than a
century later, Siegel [Si] proved

(2)
∑

n≤N

h(4n) log ε4n =
4π2

21ζ(3)
N3/2 +O(N logN).

(Here ε4n is the “fundamental unit” as explained below.)
It is interesting to recall that originally Art. 304 of Disquisitiones Arith-

meticae [Ga] reads: “[. . . ] the average value of that product is approximately
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expressed by a formula like m
√
D − n. However, we have not thus far been

able to determine the values of the constant quantities m, n theoretically. If

it is permissible to draw a conclusion from the comparison of some hundreds

of determinants, m seems to be very nearly 7/3”. This is not correct because
the value of m corresponds to 3/2 of the coefficient in Siegel approximation
(Gauss looked for m and n such that

∑
(m

√
D−n) ∼ ∑

h(4D) log ε4D, see
Corollary 1.3), hence the actual value of m is 2π2/(7ζ(3)) = 2.345 . . . , so
m − 7/3 ≈ 0.01. On the other hand, the work of Shintani [Sh] shows that
even the form of Gauss approximation is wrong because n should be re-
placed by n′ logD. It is impressive that Gauss could extend his calculations
to several hundreds, but it is not strange that in this range he could not
distinguish a logarithm from a constant in an approximated formula.

The right value of m was given by Gauss in one of his handwritten notes
(see [Ga, p. 462]). That note suggests he had a proof which “illustrates
brilliantly many parts of higher Arithmetic and Analysis”; it is likely that
he referred to a lattice point argument (cf. [Si]).

In this paper we are going to sharpen the results of Shintani [Sh], getting in
the analogue of (2) an error term as in (1). We have to face the same problem
as Gauss probably found when he guessed his formula for positive discrimi-
nants: there is no neat interpretation of h(n) or h(n) log εn as a lattice point
count when n > 0. This obstructs a direct approach. Besides that, “Poisson
summation” is technically more complicated in the positive discriminants
case (compare Propositions 2.3 and 2.4 with Lemma 3.1 of [Ch-Iw2]).

Before stating our main results we make some remarks about notation.
As usual, we denote by h(n) the class number of primitive quadratic forms
of discriminant n. We average over all discriminants (not only fundamental
ones, for that case see [Go-Ho]), hence n is an arbitrary positive integer.
Of course, if n 6≡ 0, 1 (mod4) we have h(n) = 0. If n is not a square, the
“fundamental unit” εn is (t+u

√
n)/2 with t, u ∈ Z

+ the smallest solution of
the Pell equation t2−nu2 = 4. If n is a square this equation has (t, u) = (2, 0)
as a unique non-negative solution and we write εn = 1, then log εk2 = 0 and
there is no contribution from square discriminants.

Gauss only considered quadratic forms ax2 + bxy + cy2 with b even,
which implies that his definition of class number for discriminant n coincides
with h(4n) in modern notation. With the current definition this factor 4 is
unnatural and we omit it in our first main result.

Theorem 1.1. For every α > 21/32,

∑

n≤N

h(n) log εn =
π2

18ζ(3)
N3/2 − 3

π2
(C + logN)N +O(Nα)

where C = log(2π) − ζ ′(2)/ζ(2) − 1.
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The factor 4 only modifies the value of the constants.

Theorem 1.2. For every α > 21/32,

∑

n≤N

h(4n) log ε4n =
4π2

21ζ(3)
N3/2 − 4

π2
(C ′ + logN)N +O(Nα)

where C ′ = log(2π) + 8(log 2)/3 − ζ ′(2)/ζ(2) − 1.

These theorems can be viewed as average results for real L-functions (cf.
[Go-Ho], [Pe]).

Just to compare with the original claim in Art. 304 we state the last
result in an equivalent form. Hereafter ε indicates a positive arbitrarily small
number (not always the same) and O constants may depend on it.

Corollary 1.3. The average order of h(4n) log ε4n is

f(n) =
2π2

7ζ(3)
n1/2 − 4

π2
logn− 4

π2
(C ′ + 1) +O(n−11/32+ε),

i.e.,
∑

n≤N h(4n) log ε4n =
∑

n≤N f(n).

As in the case of negative discriminants, it seems difficult to prove a
non-trivial Ω-result for the error term in Theorems 1.1 and 1.2, because it
would require studying the correlation of the arithmetical function N+(n),
introduced in the next section, with the Möbius function. On the other hand,
the arguments of [Ku] or alternatively of [Ts] should yield an optimal Ω-
result for the average of N+(n). We thank Professor Kühleitner for providing
us with his article.

2. Shintani’s functional equations and summation formulas. In
the 70’s Sato and Shintani developed the notion of zeta functions associ-
ated to prehomogeneous vector spaces. In this setting Shintani [Sh] proved
a vectorial functional equation for some zeta functions involving class num-
bers. His result and our summation formulas are better understood upon
introducing the quantities

N+(n) =
∑

k2|n
h(n/k2) log εn/k2 and N−(n) =

∑

k2|n
h(−n/k2)δ−1

−n/k2

where δ−n is half of the “number of units”: δ−4 = 2, δ−3 = 3 and δ−n = 1
otherwise. Note that N−(n) is, up to an additive constant appearing for
n = 3k2 or n = 4k2, the class number of primitive and imprimitive forms of
discriminant −n (the Hurwitz class number).



78 F. Chamizo and A. Ubis

We can recover the class number easily by applying Möbius inversion.

Lemma 2.1. For n ≥ 1,

h(n) log εn =
∑

k2|n
µ(k)N+(n/k2),

h(4n) log ε4n =
∑

k2|n
2 ∤ k

µ(k)(N+(4n/k2) −N+(n/k2)).

Proof. The first formula follows easily. For the second, we have

h(4n) log ε4n =
∑

k2|4n

µ(k)N+(4n/k2) =
∑

2 ∤ k

+
∑

2|k

=
∑

k2|n
2 ∤ k

µ(k)N+(4n/k2) +
∑

k2|n
µ(2k)N+(n/k2),

and µ(2k) = −µ(k) for k odd and vanishes for k even.

Shintani introduced four Dirichlet series ξ∗+, ξ+, ξ∗−, ξ− and proved that
they have meromorphic extensions and satisfy a functional equation relating
the pair ξ∗+(3/2 − s), ξ∗−(3/2 − s) to the pair ξ+(s), ξ−(s). He used this
functional equation (see Theorem 2.2) and a variant of Landau’s Lemma to
demonstrate Theorems 1.1 and 1.2 with α > 3/4.

Here we prefer to introduce two vectorial complex functions

~z1(s) =

(
̺1(s)

η1(s)

)
and ~z2(s) =

(
̺2(s)

η2(s)

)

where ̺j and ηj , j = 1, 2, are determined by ξ∗+(s) = ̺1(2s − 1), ξ+(s) =
̺2(2s− 1), ξ∗−(s) = η1(2s − 1) and ξ−(s) = η2(2s − 1). With this notation,
in the region of absolute convergence ℜs > 2, we have

η1(s) =
∞∑

n=1

N−(4n)√
4n

(
√

4n)−s, η2(s) =
∞∑

n=1

N−(n)√
n

(
√
n)−s,

̺1(s) =

∞∑

n=1

N+(4n)√
4n

(
√

4n)−s +
∑ βn

ns
,

̺2(s) =
∞∑

n=1

N+(n)√
n

(
√
n)−s +

∑ αn

ns

where
∑ αn

ns
= ζ(s)

(
ζ ′(s+ 1)

ζ(s+ 1)
− ζ ′(s)
ζ(s)

)
,

∑ βn

ns
=

∑ αn

(2n)s
+
ζ(s) log 2

2s+1 − 1
.



An average formula for the class number 79

We can write Theorem 2 of [Sh] as

Theorem 2.2. With the previous notation the coordinate functions of

~z1(s) −
1

s− 2

(
π2/12

π/12

)
+

1

(s− 1)2

(
1/2

0

)
+

1

s− 1

(
log(2π)/2

1/4

)

and

~z2(s) −
1

s− 2

(
π2/6

π/6

)
+

1

(s− 1)2

(
1

0

)
+

1

s− 1

(
log(2π)

1/2

)

have entire continuations of order one. Moreover ,

~z2(1 − s) = (2π)−sΓ (s)(A(s)~z1(s) − cos(πs/2)ζ(s) ~B(s))

where

A(s) = 2s+1

(
cos(πs/2) π

0 − sin(πs/2)

)
, ~B(s) =

(
ψ(s/2) − ψ((s+ 1)/2)

sec(πs/2)

)

with ψ(s) = Γ ′(s)/Γ (s).

Proof. Use the change of variable s 7→ (2− s)/2, Theorem 2 of [Sh] and
the duplication formula for Γ .

Now, we are ready to state and prove some summation formulas.

Proposition 2.3. Let g ∈ C∞
0 ((0,∞)). Then

∞∑

n=1

N+(n)√
n

g(
√
n) =

π2

6

∞\
0

tg(t) dt−
∞\
0

g(t) log(2πt) dt−
∞∑

n=1

g(n) logn

+

∞∑

d=1

Λ(d)

d

∞∑

n=1

g(dn) + 2

∞∑

n=1

N+(4n)√
4n

g̃(
√

4n) + 2

∞∑

n=1

βng̃(n)

+ 2π
∞∑

n=1

N−(4n)√
4n

∞\
0

g(t)e−π
√

4nt dt+ 2

1\
0

1

t(1 + t)

∞∑

n=1

g̃(2n/t) dt

where g̃ indicates the Fourier cosine transform
T∞
0 g(t) cos(πxt) dt.

Proof. After inserting the notation, the summation formula is equivalent
to

∞∑

n=1

b+2ng(
√
n) =

π2

6

∞\
0

tg(t) dt−
∞\
0

g(t) log(2πt) dt+ 2
∞∑

n=1

b+1ng̃(
√
n)

+ 2π
∞∑

n=1

b−1n

∞\
0

g(t)e−π
√

nt dt+ 2

1\
0

1

t(1 + t)

∞∑

n=1

g̃(2n/t) dt

where b+in and b−in are determined by ̺i(s) =
∑
b+in(

√
n)−s and ηi(s) =∑

b−in(
√
n)−s.
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By the Mellin inversion formula, we have
∞∑

n=1

b+2ng(
√
n) =

1

2πi

\
(σ)

G(s)̺2(s) ds

where G(s) is the Mellin transform of g, 2 < σ < 3 and (σ) indicates the
vertical line ℜs = σ. Theorem 2.2 gives

(3) ̺2(1 − s)

= π−sΓ (s)(2πη1(s) + 2 cos(πs/2)̺1(s) − 2−s cos(πs/2)B1(s)ζ(s))

where B1 is the first coordinate of ~B. This equation ensures (by convexity)
that ̺2(s) grows as a polynomial in vertical lines, so by the decay of G(s)
we can move the line of integration to −2 < σ′ < −1. Thus from the residue
theorem and the first part of Theorem 2.2 we get

∞∑

n=1

b+2ng(
√
n) =

1

2πi

\
(σ′)

G(s)̺2(s) ds+
π2

6
G(2) −G′(1) − log(2π)G(1).

Furthermore, by (3),

1

2πi

\
(σ′)

G(s)̺2(s) ds = I1 + I2 + I3

where

I1 = 2π
1

2πi

\
(σ)

G(1 − s)π−sΓ (s)η1(s) ds,

I2 = 2
1

2πi

\
(σ)

G(1 − s)π−sΓ (s) cos(πs/2)̺1(s) ds,

I3 = − 1

2πi

\
(σ)

G(1 − s)(2π)−sΓ (s) cos(πs/2)B1(s)ζ(s) ds.

Using the series expansion for ̺1(s) and moving the line of integration
to 0 < σ′′ < 1 gives

I2 = 2

∞∑

n=1

b+1n

1

2πi

\
(σ′′)

G(1 − s)(π
√
n)−sΓ (s) cos(πs/2) ds.

In this range we can write Γ (s) cos(πs/2) =
T∞
0 ts−1 cos t dt (see [Gr-Ry,

17.43.3]), hence

I2 = 2
∞∑

n=1

b+1n

∞\
0

1

2πi

\
(σ′′)

G(1 − s)ts−1 ds cos(π
√
nt) dt
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and by the Mellin inversion formula it follows that

I2 = 2
∞∑

n=1

b+1ng̃(
√
n).

In the same way, we get

I1 = 2π
∞∑

n=1

b−1n

∞\
0

g(t)e−πt
√

n dt.

Finally, by the formula

B1(s) = −2

1\
0

xs

1 + x

dx

x

in ℜs > 0 (see [Gr-Ry, 8.371.1]), we can write

I3 = 2

1\
0

1

2πi

\
(σ)

G(1 − s)(2πx−1)−sΓ (s) cos(πs/2)ζ(s) ds
1

1 + x

dx

x
.

Now, after expanding ζ into its Dirichlet series, we have

I3 = 2

1\
0

∞∑

n=1

g̃(2nx−1)
1

1 + x

dx

x
,

where we have proceeded as in I2.

An analogous result holds for weighted sums of N+(4n).

Proposition 2.4. Let g ∈ C∞
0 ((0,∞)). Then

∞∑

n=1

N+(4n)√
4n

g(
√

4n) =
π2

12

∞\
0

tg(t) dt− 1

2

∞\
0

g(t) log(2πt) dt−
∞∑

n=1

g(2n) logn

+

∞∑

d=1

Λ(d)

d

∞∑

n=1

g(2dn) − log 2

∞∑

k=1

2−k
∞∑

n=1

g(2kn) +

∞∑

n=1

N+(n)√
n

g̃(
√
n)

+
∞∑

n=1

αng̃(n) + π
∞∑

n=1

N−(n)√
n

∞\
0

g(t)e−π
√

nt dt−
1\
0

1

t(1 + t)

∞∑

n=1

g̃(n/t) dt.

Proof. We proceed as in the previous proposition, starting with the equa-
tion

̺1(1 − s) = π−sΓ (s)(πη2(s) + cos(πs/2)̺2(s) − 1
2 cos(πs/2)B1(s)ζ(s)),

which we deduce by applying

B1(1 − s) +B1(s) = −2π csc(πs)

in Theorem 2.2.
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3. An exponential sum. When applying Propositions 2.3 and 2.4 for
a suitably chosen function g, we shall have to deal with oscillatory sums of
the form ∑

N+(n)e(R
√
n) and

∑
N+(4n)e(R

√
n)

where, as usual, e(x) = e2πix.

A fundamental point is writing N+(n) as a sum over integral points.
Thanks to the action of the modular group on the set of quadratic forms,
this leads to a geometric discussion on the hyperbolic plane.

Consider Poincaré’s model for the hyperbolic plane, given by the up-
per half plane H = {x + iy : x ∈ R, y > 0} endowed with the metric
ds2 = y−2(dx2 + dy2), and assign to each indefinite binary quadratic form
ax2 + bxy + cy2 with a > 0 the geodesic gabc in H given by (the Euclidean
semicircle) a(x2 + y2) + bx+ c = 0, y > 0. Following [Si] we define µ(a, b, c)
to be the hyperbolic length of the intersection of this geodesic with the
standard fundamental domain:

µ(a, b, c) = ℓ(gabc ∩ F) with F = {x+ iy : x2 + y2 > 1, |x| < 1/2}.
The basic result that allowed Siegel to employ a lattice point approach

for the average of h(n) log εn is the following

Lemma 3.1. If n ∈ Z
+ is not a square then

N+(n) =
∑

b2−4ac=n
a>0

µ(a, b, c).

Proof. By Lemma 2.1, this is a consequence of [Si, (44)] if we write
a = a′k, b = b′k, c = c′k and sum over k2 |D (note that µ(−a,−b,−c) =
µ(a, b, c)).

It is easy to see that there are only a finite number of non-vanishing
terms in the sum. We shall quantify this situation:

Lemma 3.2. Let ax2 + bxy + cy2, a > 0, have non-square positive dis-

criminant n. Then µ(a, b, c) 6= 0 if and only if a + c < |b|/2. Moreover , if

µ(a, b, c) 6= 0 then a ≤
√
n/3, |b| ≤ 2

√
n/3 and a|c| ≤ n/4.

Proof. See [Si, §6].

Our objective is to bound
∑
N+(n)e(R

√
n) as in [Ch-Iw2] but several

differences arise: Firstly, the weight µ(a, b, c) involved does not appear in the
case of negative discriminants (and the geometrical interpretation of µ shows
that it can have large partial derivatives); secondly, M ≤ b2 − 4ac < 2M
does not imply any a priori lower bound for a, b and c because c need not be
positive; finally, the contribution of square discriminants has to be excluded.
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Proposition 3.3. For R > 1/2 and 1 ≤M < M ′ ≤ 2M ,
∑

M≤n<M ′

N+(n)e(R
√
n) ≪M5/4+ε +M εL

with

L = min(R3/8M15/16 +R1/8M17/16, R7/24M49/48 +R5/24M53/48),

and a similar result holds when N+(n) is replaced by N+(4n).

Proof. By Lemmas 3.2 and 3.1 we can write

(4)
∑

M≤n<M ′

N+(n)e(R
√
n) =

∑

a+c<|b|/2
b2−4ac6=�

µ(a, b, c)E(b2 − 4ac)

where

E(n) =

{
e(R

√
n) if M ≤ n < M ′,

0 otherwise.
Consider the set

M = M1 ∪M2 ∪M3

where the disjoint sets Mj are defined by

M1 = {(a, b, c) ∈ Z
3 : |a+ c| < −b/2, a > 0, c 6= 0},

M2 = {(a, b, c) ∈ Z
3 : a+ c ≤ b/2 ≤ −a− c, a > 0, c 6= 0},

M3 = {(a, b, c) ∈ Z
3 : |a+ c| < b/2, a > 0, c 6= 0}.

The vertices 1/2+i
√

3/2 and −1/2+i
√

3/2 of F both belong to the semicircle
determined by gabc if and only if (a, b, c) ∈ M2; in the same way, only the
first vertex or only the second vertex belongs to this semicircle if and only
if (a, b, c) ∈ M1 or (a, b, c) ∈ M3, respectively. Hence, M covers all the
geometrical possibilities with µ(a, b, c) 6= 0.

By [Si, (26)], on each Mi the function µ = µ(a, b, c) is the logarithm of an
algebraic function, moreover µ(a, b, c) = O(M ε) when M ≤ b2 − 4ac < 2M .

Note that µ(a, b, c) is also well defined as ℓ(gabc ∩ F) when b2 − 4ac is a
square (we shall impose later c 6= 0) and we still have µ(a, b, c) = O(M ε).
On the other hand, the quantity

#{(a, b, c) : b2 − 4ac = h2, M ≤ h2 < 2M, a+ c < |b|/2, a > 0, c 6= 0}
is O(M1+ε) because the number of divisors of b2−h2 is O(M ε) and there are
O(M1+ε) possibilities for the pair b, h (a sharp estimate is possible following
Art. 206 of [Ga]). Then from (4) we have, for some i ∈ {1, 2, 3},

∑

M≤n<M ′

N+(n)e(R
√
n) ≪M1+ε +

∑

(a,b,c)∈M
µ(a, b, c)E(b2 − 4ac)

≪M1+ε +
∑

(a,b,c)∈Mi

µ(a, b, c)E(b2 − 4ac).
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Fix a, c and consider µ(a, b, c) as a function of b. As eµ is algebraic and
non-constant in Mi, it has a uniformly bounded number of maxima and
minima. Hence given a, c we can write {b : (a, b, c) ∈ Mi} as a finite union
of intervals Ij in which µ(a, ·, c) is monotonic. The bound µ(a, b, c) ≪ M ε

and partial summation give
∑

(a,b,c)∈Mi

µ(a, b, c)E(b2 − 4ac) ≪M ε
∑

a,c

∣∣∣
∑

b∈I′j

E(b2 − 4ac)
∣∣∣.

The interval I ′j ⊂ Ij depends on a, c and, of course, will be empty if (a, b, c) 6∈
Mi for every b. Lemma 3.2 ensures a|c| ≤ M/2 and |b| ≤ 2

√
M ; then

Lemma 7.3 of [Gr-Ko] applied on [−2
√
M, 2

√
M ] and the change of variable

n = 4a|c| give

(5)
∑

a,c

∣∣∣
∑

b∈I′j

E(b2 − 4ac)
∣∣∣ ≪M ε

∑

n≤2M

∣∣∣
∑

|b|≤2
√

M

e(θb)E(b2 − n)
∣∣∣

for some θ ∈ R.

Now we follow the idea of Lemma 4.1 in [Ch-Iw2]. Let us divide the range
of b into M ε intervals of length O(M1/2−ε). If J is one of these intervals, by
Cauchy’s inequality we get

( ∑

n≤2M

∣∣∣
∑

b∈J

e(θb)E(b2 − n)
∣∣∣
)2

≪M
(
M3/2 +

∑

|b1|<|b2|

∣∣∣
∑

n

E(b21 − n)E(b22 − n)
∣∣∣
)
.

Write u = b21 − n. Then the last double sum is
∑

|b1|<|b2|

∣∣∣
∑

M≤u≤M ′+b2
1
−b2

2

e(R(
√
u−

√
u+ b22 − b21))

∣∣∣

≪M ε
∑

v≍D

∣∣∣
∑

u≍M

e(R(
√
u−

√
u+ v))

∣∣∣

for some D = o(M), where we have employed the fact that the number
of representations of v as b22 − b21 is O(M ε) and b22 − b21 = o(M) because
|J | = o(M1/2).

From all of these results, we finally obtain
∑

M≤n<M ′

N+(n)e(R
√
n)

≪M5/4+ε +M1/2+ε
( ∑

v≍D

∣∣∣
∑

u≍M

e(R(
√
u−

√
u+ v))

∣∣∣
)1/2

.

This was bounded in Lemma 3.1 of [Ch-Iw1], giving the desired result.
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The proof for N+(4n) is similar; note that 4 | b2 − 4ac is equivalent to
2 | b and 2

∑
2|b f(b) =

∑
b f(b) +

∑
b e(b/2)f(b), hence the phase b/2 can be

absorbed into θb in (5).

4. Proof of the main results. Now we proceed as in [Ch-Iw2] and
[Ch-Iw1] smoothing the summation and approximating, rather than bound-
ing, the contribution of the last terms.

A new technical difficulty in the positive discriminants case is that we
need more regularity than in the former cases to apply the summation for-
mulas.

For ∆ > 0, let g : R → R be given by

g(x) =





x\
0

η(u) du if x ≤ 1,

x if 1 ≤ x ≤ N1/2,

N1/2∆−1(N1/2 +∆− x) if N1/2 ≤ x ≤ N1/2 +∆,

0 if x ≥ N1/2 +∆,

where η ∈ C∞
0 ((1/2, 1)) with

T1
0 η = 1. Note that g ∈ C0((0,∞)) and is

piecewise differentiable.

Proposition 4.1. If N−1/2 < ∆ ≤ N−1/4 < 1, then
∞∑

n=1

N+(n)√
n

g(
√
n)

=
π2

18
N3/2 +

π2N∆

12
− N

2
logN +

(
1 − ζ ′(2)

ζ(2)
− log(2π)

)
N

2

+O(N21/32+ε +N1/2+ε∆−1/2 +N11/16+ε∆1/8)

and
∞∑

n=1

N+(4n)√
4n

g(
√

4n)

=
π2

36
N3/2 +

π2N∆

24
+

(
1 − ζ ′(2)

ζ(2)
+

log 2

3
− log(2π)

)
N

4

− N

4
logN +O(N21/32+ε +N1/2+ε∆−1/2 +N11/16+ε∆1/8).

Remark. This proposition by itself allows us to improve the result of
[Sh], because taking ∆ = N−1/3 we conclude that the error term in the
smoothed sum is O(N2/3+ε), and subtracting the same result after replacing
N1/2 by N1/2 − ∆ we see that the contribution of the terms with N1/2 ≤√
n ≤ N1/2 +∆ is absorbed by this error term.
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Proof. We prove the first formula and later indicate the changes neces-
sary to prove the second.

A calculation shows that for x > 0,

g̃(x) =
cos(πN1/2x) − cos(πx) − φ(x)

π2x2
(6)

+
2N1/2

π2x2∆
sin

(
π

2
∆x

)
sin

(
π

2
(2N1/2 +∆)x

)

where φ(x) = πx
T∞
0 η(t) sin(πxt) dt. Note that φ(x) = O(x−α) for every

α > 0.

Let τ ∈ C∞
0 ((−1/2, 1/2)) be even with

T
τ = 1, and τm(x) = mτ(mx)

for m ∈ N. Define gm = g ∗ τm. Then gm ∈ C∞
0 ((0,∞)) and g̃m(x) =

g̃(x)τ̂(x/2m) converge uniformly to g and g̃. Moreover, by Proposition 3.3
we deduce that the sum involving

∑
N+(n)g̃(

√
n)/

√
n converges, and then

by Abel’s Lemma the sums
∑

nN+(n)g̃m(
√
n)/

√
n converge uniformly in m.

This justifies the application of Proposition 2.3 for g.

In the assumed range of ∆ we have

π2

6

∞\
0

tg(t) dt =
π2

18
N3/2 +

π2N∆

12
+O(1).

It is obvious that

∞\
0

g(t) log(2πt) dt =
N

4
logN + (2 log(2π) − 1)

N

4
+O(N1/2+ε)

and by partial summation

∞∑

n=1

g(n) logn−
∞∑

d=1

Λ(d)

d

∞∑

n=1

g(dn)

=
N

4
logN − N

4
+
ζ ′(2)

2ζ(2)
N +O(N1/2+ε).

The terms involving sums of g̃(2n/t), βn and N−(4n) are negligible: their
contributions can be proved to be O(N1/2+ε) using

g̃(x) ≪ x−2 +N1/2 min(x−1, ∆−1x−2),

βn ≪ logn and N−(4n) = O(n1/2+ε).

By (6), the remaining sum
∑
N+(4n)g̃(

√
4n)/

√
n can be written, up to

a multiplicative constant, as
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∞∑

n=1

N+(4n)

n3/2
(cos(2π

√
Nn) − cos(2π

√
n) − φ(

√
4n))

+ 2
N1/2

∆

( ∑

n<N1/2

+
∑

N1/2≤n<∆−2

+
∑

n≥∆−2

)N+(4n)

n3/2
sin(π∆

√
n)

× sin(π(2N1/2 +∆)
√
n)

= S0 + S1 + S2 + S3.

Firstly, the decay of φ and Proposition 3.3 prove that S0 ≪ logN . For S1,
note that

√
n∆ ≪ 1 and the factor n−3/2 sin(π

√
n∆) can be extracted

by partial summation. Using Proposition 3.3 with the second value of the
minimum gives

S1 ≪ (N5/8 +N7/48N49/96 +N5/48N53/96)N ε ≪ N21/32+ε.

For S2 we proceed in the same way but using this time the first value of the
minimum to get

S2 ≪ N21/32+ε +N1/2+ε∆2(∆−5/2 +N3/16∆−15/8 +N1/16∆−17/8)

≪ N21/32+ε +N1/2+ε∆−1/2 +N11/16+ε∆1/8.

Finally, for S3 we do not use partial summation, but use directly Proposi-
tion 3.3 as in S2 to get the same bound.

(The first named author would like to take this opportunity to mention
that in the last two inequalities on p. 427 of [Ch-Iw1], analogous to the
bounds of S2 and S3, the terms R5/16 and R1/8H7/8 should be added to the
expression in parentheses. We thank Professor Kuba for pointing this out.
These terms are negligible, once H is chosen optimally, and do not affect
the rest of the arguments.)

Collecting these results we have
∞∑

n=1

N+(4n)

n3/2
g̃(
√

4n) ≪ N21/32+ε +N1/2+ε∆−1/2 +N11/16+ε∆1/8,

which gives the desired result.

For the second formula of the statement, note that
∞∑

n=1

g(2n) logn =
N

8
logN − N

8
− N

4
log 2 +O(N1/2+ε)

and that the next two terms in Proposition 2.4 contribute

N

4

∞∑

d=1

Λ(d)

d2
− log 2

∞∑

k=1

2−2k−1N +O(N1/2+ε).

If we take this into account, the proof is entirely similar.
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Now we use a strong character sum estimate due to Heath-Brown (see
[He]) to prove

Proposition 4.2. For g, N and ∆ as before,

∑

N1/2<
√

n<N1/2+∆

N+(n)√
n

g(
√
n) =

π2N∆

12
+O(E),

∑

N1/2<
√

4n<N1/2+∆

N+(4n)√
4n

g(
√

4n) =
π2N∆

24
+O(E),

where E = N11/12+ε∆5/6 +N7/12+ε∆−1/6 +N19/30+ε.

Proof. We have h(n) log εn 6= 0 if and only if n ∈ R, where R = {n ∈
Z

+ : n ≡ 0, 1 (mod4), n 6= �}. Moreover in this case we have Dirichlet’s
class number formula [La]

h(n) log εn =
√
nL(1, χn)

where χn(m) =
(

n
m

)
is Kronecker’s symbol. So we can write the left side of

the first identity in the proposition as

∑

N1/2<d
√

a<N1/2+∆

h(a) log εa
g(d

√
a)

d
√
a

=
∑

d<N1/2+∆

1

d

∑

Nd−2<a<(N1/2+∆)2d−2

a∈R

g(d
√
a)L(1, χa)

and by Abel’s summation formula this is

(7)
N1/2

2∆

∑

d<N1/2+∆

1

d

2∆N1/2+∆2\
0

C(Nd−2, xd−2)

(N + x)1/2
dx,

where

C(x,K) =
∑

x<n<x+K
n∈R

L(1, χn).

But from [He] we have the estimate

C(x,K) =
ζ(2)

ζ(3)

K

2
+ xεO(K5/6 + x2/15 + x1/6 min(1,K−1/4))

for any 0 < K ≪ x1/2. Now we substitute it in (7) and the first identity
follows. For the second, the proof is similar.
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Corollary 4.3. For N > 1,

∑

n≤N

N+(n) =
π2

18
N3/2 − N

2
logN +

(
1 − ζ ′(2)

ζ(2)
− log(2π)

)
N

2

+O(N21/32+ε),

∑

n≤N

N+(4n) =
2π2

9
N3/2 −N logN +

(
1 − ζ ′(2)

ζ(2)
− 5 log 2

3
− log(2π)

)
N

+O(N21/32+ε).

Proof. Subtract the last two results, use the fact that g(
√
n)/

√
n = 1

for 1 < n ≤ N and choose ∆ = N−5/16.

Proof of Theorem 1.1. By Lemma 2.1 we get the expression
∑

n≤N

h(n) log εn =
∑

k≤
√

N

µ(k)
∑

n≤N/k2

N+(n),

and the result follows from Corollary 4.3. Note that
∑
k−2 log k = −ζ ′(2).

Proof of Theorem 1.2. Similarly, by the second part of Lemma 2.1,
∑

n≤N

h(4n) log ε4n =
∑

k≤
√

N
2 ∤ k

µ(k)
( ∑

n≤N/k2

N+(4n) −
∑

n≤N/k2

N+(n)
)
,

and again the result is a consequence of Corollary 4.3, upon noting that
∑

2 ∤ k

µ(k)

k3
=

8

7ζ(3)
,

∑

2 ∤ k

µ(k)

k2
=

8

π2
,

∑

2 ∤ k

µ(k)
log k

k2
=

(
log 2

3
+
ζ ′(2)

ζ(2)

)
8

π2

(for the last equality, compute the derivative of ((2−s−1)ζ(s))−1 at s = 2).

References

[Ch-Iw1] F. Chamizo and H. Iwaniec, On the sphere problem, Rev. Mat. Iberoamer. 11
(1995), 417–429.

[Ch-Iw2] —, —, On the Gauss mean-value formula for class number, Nagoya Math. J.
151 (1998), 199–208.

[Ga] C. F. Gauss, Disquisitiones Arithmeticae, Springer, New York, 1986.
[Go-Ho] D. Goldfeld and J. Hoffstein, Eisenstein series of 1/2-integral weight and the

mean value of real Dirichlet L-series, Invent. Math. 80 (1985), 185–208.
[Gr-Ko] S. W. Graham and G. Kolesnik, Van der Corput’s Method of Exponential Sums,

London Math. Soc. Lecture Note Ser. 126, Cambridge Univ. Press, Cambridge,
1991.

[Gr-Ry] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products,
5th ed., Academic Press, Boston, MA, 1994.

[He] D. R. Heath-Brown, Lattice points in the sphere, in: Number Theory in Prog-
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