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1. Introduction. As usual, we let
(

x
0

)

= 1 and
(

x

k

)

=
x(x− 1) · · · (x− k + 1)

k!
for every k = 1, 2, . . . .

For convenience, we also set
(

x
k

)

= 0 for any negative integer k.
Let p be a prime and r be an integer. In 1913, A. Fleck (cf. Dickson

[D, p. 274]) discovered that

(1.1)
∑

k≡r (mod p)

(

n

k

)

(−1)k ≡ 0 (mod p⌊(n−1)/(p−1)⌋)

for all n ∈ Z+ = {1, 2, . . .}, where ⌊·⌋ is the well-known floor function. Sums
of the form

∑

k≡r (modm)

(

n
k

)

or
∑

k≡r (modm)

(

n
k

)

(−1)k (with m ∈ Z+) have

various applications in number theory and combinatorics (see, e.g., [SS], [H]
and [S02]).
In 1977, by a very complicated method, C. S. Weisman [W] extended

Fleck’s congruence to prime power moduli in the following way:

(1.2)
∑

k≡r (mod pα)

(

n

k

)

(−1)k ≡ 0 (mod p⌊(n−p
α−1)/ϕ(pα)⌋),

where α, n ∈ N = {0, 1, 2, . . .} and n ≥ pα−1, and ϕ denotes Euler’s totient
function. Unaware of Fleck’s previous work, Weisman was motivated by
studying the relation between two different ways (Mahler’s and van der
Put’s) to express a p-adically continuous function.
Quite recently, in his lecture notes on Fontaine’s rings and p-adic L-

functions given at Irvine (Spring, 2005), D. Wan got the following new ex-
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tension of Fleck’s congruence:

(1.3)
∑

k≡r (mod p)

(

n

k

)

(−1)k
(

(k − r)/p

l

)

≡ 0 (mod p⌊(n−lp−1)/(p−1)⌋),

where l, n ∈ N and n > lp. Wan was led to this when trying to understand
a sharp estimate for the ψ-operator in Fontaine’s theory of (φ, Γ )-modules.

For a prime p, we let Qp and Zp denote the field of p-adic numbers
and the ring of p-adic integers respectively; the p-adic order of ω ∈ Qp is
defined by ordp(ω) = sup{a ∈ Z : ω/pa ∈ Zp} (whence ordp(0) = +∞).
Throughout this paper, the Kronecker symbol δm,n with m,n ∈ N equals 1
or 0 according as m = n or not.

Clearly both Weisman’s and Wan’s extensions of Fleck’s congruence fol-
low from the special case α = β of the following theorem, which we will
establish by a combinatorial approach.

Theorem 1.1. Let p be a prime, and let f(x) ∈ Qp[x], deg f ≤ l ∈ N
and f(a) ∈ Zp for all a ∈ Z. Provided that α, β ∈ N and α ≥ β, we have

(1.4)
∑

k≡r (mod pβ)

(

n

k

)

(−1)kf

(⌊

k−r

pα

⌋)

∈ p⌊(n−p
α−1−l)/ϕ(pα)⌋−(l−1)α−βZp

for all integers n ≥ pα−1 and r; moreover , we can substitute δβ,0 for the
first l in (1.4) if α is greater than one.

By Theorem 1.1 in the case α = β = r = 0, if f(x) ∈ Z[x] and f(x) 6= 0,
then for any integer n > deg f + 1 we have

∑n
k=0

(

n
k

)

(−1)kf(k) = 0 since
the sum is divisible by all primes. In fact, a known identity due to L. Euler
(cf. [LW, pp. 90–91]) states that

n
∑

k=0

(

n

k

)

(−1)kkl =

{

(−1)nn! if l = n ∈ N,

0 if 0 ≤ l < n.

Now we derive more consequences of Theorem 1.1.

Corollary 1.1. Let p be a prime, m ∈ Z+ and α = ordp(m). Let
l, n ∈ N and r ∈ Z. Then

(1.5) ordp

(

∑

k≡r (mod pα)

(

n

k

)

(−1)kBl

(

k − r

m

))

≥

⌊

n− pα−1 − l(δα,0 + δα,1)

ϕ(pα)

⌋

− lα,

where Bl(x) is the Bernoulli polynomial of degree l.
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Proof. (1.5) holds trivially if n < pα−1. Below we suppose n ≥ pα−1.

When l = 0, (1.5) reduces to Weisman’s congruence (1.2). In the case
α = 0, if the lower bound in (1.5) is nonnegative (i.e., l < n) then the
summation in (1.5) vanishes by Euler’s identity.

Now we assume lα 6= 0, and let Bl = Bl(0) be the lth Bernoulli number.
Note that m0 = m/pα is relatively prime to p. For any a ∈ Z we have
Bl(a/m0)−Bl ∈ Zp, because

ml0

(

Bl

(

a

m0

)

−Bl

)

=

(

ml0Bl

(

a

m0

)

−Bl

)

− (ml0Bl(0)−Bl) ∈ Zp

by [S03, Corollary 1.3]. Applying Theorem 1.1 with f(x) = Bl(x/m0)− Bl
and β = α, we get

ordp

(

∑

k≡r (mod pα)

(

n

k

)

(−1)kBl

(

k − r

m

)

−BlΣ

)

≥

⌊

n− pα−1 − lδα,1
ϕ(pα)

⌋

−lα,

where Σ =
∑

k≡r (mod pα)

(

n
k

)

(−1)k. Recall that pBl ∈ Zp by the von Staudt–

Clausen theorem (cf. [IR, pp. 233–236]). This, together with (1.2), shows
that

ordp(BlΣ) ≥ ordp(Σ)− 1 ≥

⌊

n− pα−1

ϕ(pα)

⌋

− 1 ≥

⌊

n− pα−1 − lδα,1
ϕ(pα)

⌋

− lα.

So the desired (1.5) follows.

Corollary 1.2. Let p be a prime, and let f(x) ∈ Qp[x], deg f = l ≥ 0
and f(a) ∈ Zp for all a ∈ Z. Let α ∈ N and r ∈ Z. Then, for any integer
n ≥ pα−1, we have

(1.6) ordp

( n
∑

k=0

(

n

k

)

(−1)k(k − r, pα)f

(⌊

k − r

pα

⌋))

≥

⌊

n− pα−1 − l(δα,0 + δα,1)

ϕ(pα)

⌋

− (l − 1)α− 1,

where (k − r, pα) is the greatest common divisor of k − r and pα.

Proof. Let g(1) = p and g(pβ) = p − 1 if 0 < β ≤ α. By Theorem 1.1,
the p-adic order of

α
∑

β=0

g(pβ)pβ
∑

k≡r (mod pβ)

(

n

k

)

(−1)kf

(⌊

k − r

pα

⌋)

=

n
∑

k=0

(

n

k

)

(−1)kf

(⌊

k − r

pα

⌋)

∑

d|(k−r,pα)

g(d)d
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is at least

ν =

⌊

n− pα−1 − l(δα,0 + δα,1)

ϕ(pα)

⌋

− (l − 1)α.

We note in passing that in the case α > 1,

ordp(g(p
0)) +

⌊

n− pα−1 − δ0,0
ϕ(pα)

⌋

≥

⌊

n− pα−1

ϕ(pα)

⌋

.

Now, since
∑

d|(k−r,pα)

g(d)d = p+
∑

1<d|(k−r,pα)

(p− 1)d =
∑

d|(k−r,pα)

ϕ(d)p = (k − r, pα)p,

by the above the sum in (1.6) has p-adic order at least ν − 1.

Corollary 1.3. Let p be a prime, and let α, β, a, n, r be integers for
which

α > 1, α ≥ β ≥ 0, a ≡ 1 (mod pα), n ≥ pα−1, r < pβ .

Then

(1.7)
∑

k≡r (mod pβ)

(

n

k

)

(−1)ka⌊(k−r)/p
α⌋

≡ 0 (mod p⌊(n−p
α−1−δβ,0)/ϕ(p

α)⌋+α−β).

Proof. When a = 1, (1.7) holds by Theorem 1.1 in the case l = 0. So it
suffices to show that

D :=
∑

k≡r (mod pβ)

(

n

k

)

(−1)k(a⌊(k−r)/p
α⌋ − 1)

is divisible by pλ where

λ =

⌊

n− pα−1 − δβ,0
ϕ(pα)

⌋

+ α− β.

Write a = 1 + pαb with b ∈ Z. Then

D =
∑

k≡r (mod pβ)

(

n

k

)

(−1)k
∑

0<l≤⌊(k−r)/pα⌋

(

⌊(k − r)/pα⌋

l

)

(pαb)l

=
∑

0<l≤⌊(n−r)/pα⌋

plαbl
∑

k≡r (mod pβ)

(

n

k

)

(−1)k
(

⌊(k − r)/pα⌋

l

)

.

For each 0 < l ≤ ⌊(n − r)/pα⌋, applying Theorem 1.1 with f(x) =
(

x
l

)

we
find that

plα
∑

k≡r (mod pβ)

(

n

k

)

(−1)k
(

⌊(k − r)/pα⌋

l

)

≡ 0 (mod pλ).

Therefore D ≡ 0 (mod pλ). This concludes the proof.
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Let a ∈ Z be congruent to 1 modulo a prime p. By induction, ap
α

≡ 1
(mod pα+1) for any α ∈ N. Let n, r ∈ Z and n ≥ pα−1. If α ≥ 2, then by
Corollary 1.3 in the case β = α we have

(1.8)
∑

k≡r (mod pα)

(

n

k

)

(−a)k ≡ 0 (mod p⌊(n−p
α−1)/ϕ(pα)⌋).

By the binomial theorem, (1.8) is also valid with α = 0. We remark that
(1.8) also holds when α = 1, as pointed out by Fleck (cf. [D, p. 274]).
In the next section we will provide some lemmas. Section 3 is devoted to

the proof of Theorem 1.1.

2. Some lemmas. Let us recall the following well-known convolution
identity of Chu and Vandermonde (see, e.g., [GKP, (5.27)]):

n
∑

k=0

(

x

k

)(

y

n− k

)

=

(

x+ y

n

)

for all n = 0, 1, 2, . . . .

This can be seen by comparing the power series expansions of (1+t)x(1+t)y

and (1 + t)x+y.

Lemma 2.1. Let f(x) be a function from Z to a field , and let m,n ∈ Z+.
Then for any r ∈ Z we have
n
∑

k=0

(

n

k

)

(−1)kf

(⌊

k − r

m

⌋)

=
∑

k≡r (modm)

(

n− 1

k

)

(−1)k−1∆f

(

k − r

m

)

,

where r = r +m− 1 and ∆f(x) = f(x+ 1)− f(x).

Proof. By the Chu–Vandermonde identity, for any h ∈ N we have

h
∑

k=0

(

n

k

)

(−1)k = (−1)h
h
∑

k=0

(

n

k

)(

−1

h− k

)

= (−1)h
(

n− 1

h

)

.

Therefore
n
∑

k=0

(

n

k

)

(−1)kf

(⌊

k − r

m

⌋)

=
∑

j∈Z

cjf(j),

where

cj =
∑

k∈Z

⌊(k−r)/m⌋=j

(

n

k

)

(−1)k

=
∑

0≤k<(j+1)m+r

(

n

k

)

(−1)k −
∑

0≤k<jm+r

(

n

k

)

(−1)k

= (−1)(j+1)m+r−1
(

n− 1

(j + 1)m+ r − 1

)

− (−1)jm+r−1
(

n− 1

jm+ r − 1

)

.
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(Note that
(

n−1
i

)

6= 0 only for i ∈ {0, . . . , n− 1}.) So we have

n
∑

k=0

(

n

k

)

(−1)kf

(⌊

k − r

m

⌋)

=
∑

j∈Z

(−1)(j+1)m+r−1
(

n− 1

(j + 1)m+ r − 1

)

f(j)

−
∑

j∈Z

(−1)jm+r−1
(

n− 1

jm+ r − 1

)

f(j)

=
∑

k≡r (modm)

(

n− 1

k

)

(−1)k
(

f

(

k − r

m

)

− f

(

k − r

m
+ 1

))

=
∑

k≡r (modm)

(

n− 1

k

)

(−1)k−1∆f

(

k − r

m

)

.

This proves the desired identity.

It is interesting to compare the identity in Lemma 2.1 with the following
observation:

∑

0≤k≤n
k≡r (modm)

∆f

(

k − r

m

)

= f

(⌊

n− r

m

⌋

+ 1

)

− f

(⌊

−r − 1

m

⌋

+ 1

)

,

which appeared in the author’s proof of [S03, Lemma 3.1].

Lemma 2.2. Let p be a prime and α be a positive integer. Then, for any
k = 0, 1, . . . , ϕ(pα), we have

(

ϕ(pα)

k

)

≡

{

(−1)k (mod p) if pα−1 | k,

0 (mod p) otherwise.

Proof. Let k = k0 + k1p+ · · ·+ kα−1p
α−1 be the p-adic expansion of k,

where k0, k1, . . . , kα−1 ∈ {0, . . . , p−1}. By a well-known theorem of E. Lucas
(see, e.g., [HS]),

(

ϕ(pα)

k

)

=

(
∑

0≤j<α−1 0p
j + (p− 1)pα−1

∑

0≤j<α−1 kjp
j + kα−1pα−1

)

≡

(

p− 1

kα−1

)

∏

0≤j<α−1

(

0

kj

)

(mod p).
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If pα−1 ∤ k, then kj > 0 for some j < α − 1, and hence
(

ϕ(pα)
k

)

≡ 0
(mod p). When pα−1 | k, we have kj = 0 for all j < α− 1, and thus

(

ϕ(pα)

k

)

≡

(

p− 1

kα−1

)

=
∏

0<s≤kα−1

p− s

s
(mod p)

≡ (−1)kα−1 ≡ (−1)p
α−1kα−1 = (−1)k (mod p).

This completes the proof.

3. Proof of Theorem 1.1. We use induction on wl(α, β) := l(α+1)+β.
In the case wl(α, β) = 0 (i.e., l = β = 0), the desired result is trivial

because
∑n
k=0

(

n
k

)

(−1)k = (1− 1)n = 0 for all n ∈ Z+.
Let w be a positive integer, and assume that the desired result holds

whenever wl(α, β) < w. Now we deal with the case wl(α, β) = w.

Case 1: β = 0. In this case, l is positive. Let n ∈ N, n ≥ pα−1, r ∈ Z
and r = r + pα − 1. By Lemma 2.1,

(3.1)
n
∑

k=0

(

n

k

)

(−1)kf

(⌊

k − r

pα

⌋)

=
∑

k≡r (mod pα)

(

n− 1

k

)

(−1)k−1∆f

(

k − r

pα

)

.

Clearly ∆f(x) is a polynomial of degree at most l−1, and ∆f(a) ∈ Zp for all
a ∈ Z. Also, wl−1(α, α) < wl(α, 0) = w. In view of (3.1) and the induction
hypothesis,

ordp

( n
∑

k=0

(

n

k

)

(−1)kf

(⌊

k − r

pα

⌋))

≥

⌊

(n− 1)− pα−1 − (l − 1)

ϕ(pα)

⌋

− (l − 2)α− α

=

⌊

n− pα−1 − l

ϕ(pα)

⌋

− (l − 1)α− 0.

(Note that this is trivial if n − 1 < pα−1.) Similarly, when α > 1, by (3.1)
and the induction hypothesis we have

ordp

( n
∑

k=0

(

n

k

)

(−1)kf

(⌊

k − r

pα

⌋))

≥

⌊

(n− 1)− pα−1 − δα,0
ϕ(pα)

⌋

− (l − 2)α− α

=

⌊

n− pα−1 − δ0,0
ϕ(pα)

⌋

− (l − 1)α− 0.
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Case 2: 0 < β ≤ α. If l = 0 (i.e., f(x) is constant), then wl(β, β) =
wl(α, β) = w and it suffices to handle the case α = β. In fact, when l = 0,
n ≥ pα−1 and r ∈ Z, provided that

∑

k≡r (mod pβ)

(

n

k

)

(−1)kf

(

k − r

pβ

)

∈ p⌊(n−p
β−1)/ϕ(pβ)⌋Zp

we have
∑

k≡r (mod pβ)

(

n

k

)

(−1)kf

(⌊

k − r

pα

⌋)

∈ p⌊(n−p
α−1)/ϕ(pα)⌋−(0−1)α−βZp,

because

n− pβ−1

ϕ(pβ)
−
n− pα−1

ϕ(pα)
=

n

pα−1

∑

0≤s<α−β

ps ≥ α− β.

Below we simply let (l − 1)α+ β ≥ 0 (i.e., α = β if l = 0).
Let us use induction on n ≥ pα−1. The desired result is trivial when

n− pα−1 < ϕ(pα) = pα − pα−1.
Below we let n ≥ pα and assume that the desired result holds for smaller

values of n not less than pα−1. Note that n′ = n − ϕ(pβ) < n and also
n′ ≥ n− ϕ(pα) ≥ pα−1.
Let r be any integer, and set

(3.2) S =
∑

k≡r (mod pβ)

(

n

k

)

(−1)kf

(⌊

k − r

pα

⌋)

.

By the Chu–Vandermonde identity,

S =
∑

k≡r (mod pβ)

ϕ(pβ)
∑

j=0

(

ϕ(pβ)

j

)(

n′

k − j

)

(−1)kf

(⌊

k − r

pα

⌋)

=

ϕ(pβ)
∑

j=0

(

ϕ(pβ)

j

)

∑

k≡r (mod pβ)

(

n′

k − j

)

(−1)kf

(⌊

k − j − (r − j)

pα

⌋)

=

ϕ(pβ)
∑

j=0

(

ϕ(pβ)

j

)

(−1)jSj ,

where

(3.3) Sj =
∑

k≡r−j (mod pβ)

(

n′

k

)

(−1)kf

(⌊

k − (r − j)

pα

⌋)

.

For any j = 0, 1, . . . , ϕ(pβ), by the induction hypothesis we have

ordp(Sj) ≥ γ =

⌊

n′ − pα−1 − lδα,1
ϕ(pα)

⌋

− (l − 1)α− β,
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and Lemma 2.2 yields
(

ϕ(pβ)

j

)

≡

{

(−1)j (mod p) if pβ−1 | j,

0 (mod p) if pβ−1 ∤ j.

Thus, if γ ≥ 0 then

S ≡

p−1
∑

j=0

(

ϕ(pβ)

pβ−1j

)

(−1)p
β−1jSpβ−1j ≡

p−1
∑

j=0

Spβ−1j (mod p
γ+1).

Observe that
p−1
∑

j=0

Spβ−1j =
∑

k≡r (mod pβ−1)

(

n′

k

)

(−1)kf

(⌊

k − (r − pβ−1jk)

pα

⌋)

,

where jk is the unique integer in {0, . . . , p − 1} with p
β | k − (r − pβ−1jk).

For k ≡ r (mod pβ−1), clearly

k − r + pβ−1jk
pβ

=
k − r′ − pβ−1(p− 1− jk)

pβ
=

⌊

k − r′

pβ

⌋

where r′ = r − ϕ(pβ). Therefore
∑p−1
j=0 Spβ−1j = S

′, where

(3.4) S′ =
∑

k≡r′ (mod pβ−1)

(

n′

k

)

(−1)kf

(⌊

k − r′

pα

⌋)

.

From the above it follows that

ordp(S − S
′) ≥ γ + 1 ≥

⌊

n− pα−1 − lδα,1
ϕ(pα)

⌋

− (l − 1)α− β.

Let l0 = l if α = 1, and l0 = min{l, δβ−1,0} if α > 1. As wl(α, β − 1) <
wl(α, β) = w, by the induction hypothesis we have

ordp(S
′) ≥

⌊

n′ − pα−1 − l0
ϕ(pα)

⌋

− (l − 1)α− (β − 1)

≥

⌊

n− pα−1 − lδα,1
ϕ(pα)

⌋

− (l − 1)α− β.

(Note that if α > 1 = δβ−1,0 then β = 1 < α and hence n′ − 1 + ϕ(pα) ≥
n′ + ϕ(pβ) = n.)

Combining the above we finally obtain

ordp(S) = ordp((S − S
′) + S′) ≥

⌊

n− pα−1 − lδα,1
ϕ(pα)

⌋

− (l − 1)α− β.

Since δβ,0 = 0, this concludes the induction step in Case 2.

The proof of Theorem 1.1 is now complete.
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